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We use the normal modes of atom-field coupling 10 explain the force on a three-level (A ) atom excited by two standing wave
optical fields. An expression for the force in the weak field, small detuning limit is derived by inspection, and shown to agree with
the exact solution 10 the optical Bloch equations. We describe the physical origin of the completely rectified force components as
well as components which vary on scales much narrower than the optical wavelength. We emphasize the importance of the force

component associated with the “dark state™ and discuss the influence of the phase difference between the fields.

1. Introduction

Recently there has been considerable interest in
the optical force on three-level atoms [1-4]. Re-
search has been focused on the A system, which
undergoes coherent population trapping. The force
associated with coherent population trapping due to
counterpropagating traveling wave fields has cooled
atoms below the single photon limit [1]. There have
been disparate calculations of the force on an atom
in two standing wave excitation fields [2,3,5], which
have not discussed the underlying physical processes
in any detail. In this paper we describe the origin of
the force on stationary atoms *' in terms of the evo-
lutions of the normal modes of the atom field sys-
tem. We show that most of the qualitative features

* The physical process behind force on 2 moving atom in such
a system will be treated in an upcoming publication.

of the force can be derived by inspection without ac-
tually solving the optical Bloch equations (OBE’s).

Fig. laillustrates schematically the three-level sys-
tem in the A configuration. The levels |a) and |b)
are long-lived, and the level |e) is short lived. We
assume that the field at frequency w, only couples
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Fig. 1. (a) Schematic of resonance Raman system. (b} Raman
induced transparency.
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lay to |e}, and the one at e, only couples |b) to
|e». Here, we denote the common mode detuning
by & and the difference detuning by 4. It is well known
[6.7] that when the difference detuning vanishes
{4=0), the system gets optically pumped into a non-
absorbing or dark state. Experimentally, this pro-
duces a dip in absorption or fluorescence as the laser
difference frequency is scanned, as illustrated in fig.
Ib. This transparency always appears at 4=0 inde-
pendent [8] of the value of the common detuning,
3

2. Force expression in the dark state basis

For this paper we will restrict discussions to cal-
culation of the force when both laser fields are pure
standing waves {SW ), An important parameter will
be the spatial phase difference, 7, between the stand-
ing wave patterns. In particular, we consider the case
when the two laser fields have nearly the same wave-
lengths so that y can be treated as constant on the
optical wavelength scale.

In one dimension, the Lorentz force is written as
F=Tr(p/ ). Here, p is the density operator and [ is
the force operator given by the product of the dipole
operator and the gradient of the electric field,
Jf=—=uVE. For the system of fig. la, the nonzero ele-
ments of / are given, in the rotating wave approxi-
mation, by the gradients of the Rabi frequencies

Ja=l=V8, fo=lt=Vg, (H=1). (1)

The force on the three-level atom can thus be triv-
ially computed by solving the optical Bloch equa-
tions (OBE) in the atomic states basis. However, the
behavior of the force is easier to understand if the
force is computed in a basis that is more natural for
this system. To see what this is, recall what happens
when 4=10. The atom then gets optically pumped into
the dark state. Thus, the dark state is a natural choice
for one of the basis states of the system.

The dark state and its orthogonal states are given
by the following expressions [6]

=>=(g: la>—g |by)/g.
| +r=(g lay+g: |B>)/g, 18, (2)

336

OPTICS COMMUNICATIONS

1 May 1992

where the | — % state is the dark state, and we have
defined g*=g?+g3. Here we have used the atom-
field composite states

1@y=lay ey, |By=1b)la), |&)=|e),

(3)
where |, and |« are semi-classical photon states
[8]-

To see how this dark state basis simplifies the in-
leraction, consider its hamiltonian. To obtain this,
we first write down the hamiltonian in the |3, |b)
and |&» basis:

1 4 0 =g
H.=§ 0 =4 —-& |, (4)
-8 —g: -1

where the zero of energy is chosen such that w +d=0.
This hamiltonian can be obtained by inspection from
fig. la. Next, we note that the | — » and |+ ) states
can be expressed as a rotation of the |3} and |b)
states, where the rotation angle 8 is defined by
tan f=g, /g;. Making the appropriate transforma-
tions gives the hamiltonian in the |-}, |+} and
|&) basis

| dcos(260)  dsin(28) 0
H= 5 Asin(26) —dcos(20) -g |. (5)
0 - —24

To get a physical feel for this hamiltonian, consider
again the case of A=0. In this case, the | — ) state is
not coupled to the rest of the system by the applied
fields, as expected. However, the | + ) and |&) states
are coupled together by an effective Rabi frequency,
g. This is illustrated by the energy level diagram in
fig. 2a. As shown in the figure, spontaneous decay is
allowed to both the | — > and the | + » siate, so that
all the atoms get optically pumped into the | —  state.

Next, consider the case of 4#0. When £1=45», the
hamiltonian shows that the | — 3 state is coupled to
the |+ state by an effective Rabi frequency, A
(since sin{28)=1). Physically, this can be ex-
plained by considering the following wave function
which contains only the ground state contributions

[P(1)y = (1) exp( —ide/2) = |B exp(idi/2)] .
(6)

This wave function is a pure | — » state at {=0, but
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Fig. 2. (a) Resonance Raman system in dark state basis, for
£ =g (b) Raman system in the dark and damped state basis.
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Fig. 3. (a) Plot of the |+ statc amplitude, C.., versus time, 1,
neglecting interaction with the excited state |& 3. The solid curve
is for equal Rabi frequencies g, = g2 and the dotted curve is for
uncqual Rabi frequencies g, # g2 (b) Analogous plot of the ex-
cited state amplitude, C,. versus time, f, for an undamped two-
Jevel system. Solid curve is for zero detuning dy=0. Dotted curve
is for nonzero detuning dr#0.

evolves into a pure |+ » state after a time r1=mn/d
because of the time dependent coefTicients. This is
illustrated by the solid curve in fig. 3a. These time
dependent coefficients in turn arise because the atom
field composite states have different energies when
A#0. However, the | — » and | + } states are still de-
generate when g, =g,, since their energies are split by
Acos(2f) and cos(28) =

In the more general case, when the Rabi frequen-
cies are not equal (g, #g;), the effective Rabi cou-
pling is 4sin(20) = 24g,g,/g>. In this case, the | =)
and |+ states are no longer degenerate, and they
differ in encrgy by dcos(20)=(gi—gi)/g*#0.

OPTICS COMMUNICATIONS

1 May 1992

Physically, the energy difference arises from the fact
that when g, #g; the | — » and |+ ) states have un-
equal contributions from the composite states |a)
and |b%, which in turn have different energies for
A#0. For example, at the g;=0 node, the | - state
is the pure composite state |By which has energy
—A/2 and the |+ 5 state is the state |&) which has
energy + 4/2. More generally, the | — » state can be
viewed as having a state |) population of g3 /g’
(energy 4/2) and a state |5) population of g} /g*
(energy —4/2). Combining these gives an effective
| = ) state energy of (4/2) (g3 —gi)/g? which agrees
with the hamilionian. A similar argument for the
| + % state also shows agreement.

Finally, to see why the | — » 10 | + ) state coupling
is reduced when g, # g», recall that this coupling rep-
resents the tendency of the | — ) state to evolve into
the | + 5 state with time. However, for unequal Rabi
frequencies, the | — » state cannot evolve completely
into the |+ 5 state since these two states contain un-
equal contributions of [d) and |BY. For example,
when g,=0 the |- =1|b) state never evolves into
the |+ =|a) state for any value of the difference
detuning. More generally, what staris as

1P0)y=|->=(&ldr—glb))/e,
turns into
1#(r/2)y=—i(g: 18> +g, b)) /2.

after a time t=n/4. This is illustrated by the dotied
curve in fig. 3a. The result is that the effective cou-
pling is reduced by a factor of

[+ |¥(x/d)) | =28 8:/g%=sin(26) ,

in agreement with the hamiltonian.

At this point it is useful to draw an analogy be-
tween the | =3 and |+ state system and the fa-
miliar two-level system. As is well known, when a
two-level system is driven on resonance, dr=»0, the
ground state evolves completely into the excited state
at a rate determined by Rabi coupling gy (solid curve
of fig. 3b). Off resonance (d;#0), the ground state
no longer evolves completely to the excited state.
Rather, the maximum excited state amplitude is
given fﬂiﬁ (dotted curve in fig. 3b), where
g7=+/g7 +47 is the new amplitude oscillation fre-
quency. Replacing gr by 4sin(28) and J&¢ by
Acos(28) gives the | =) and |+ ) state results of
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fig. 3a. The correspondence between the undamped
two-level system and the | — 3 and | 4 » state system
are summarized in table 1. Note that for SW exci-
tation of the |-} and |+ ) state system it is the
population flopping frequency, 4, rather than the ef-
fective detuning, that is independent of position.

Now consider the force operator fin the dark state
basis. The nonzero elements are

fo-=te=(8: V8, -8, V&) /g=8VE, (7a)
Jer = %e=(8: Ve +8: Vi) /g=VE, (7b)

where f,_ and f;. are real for pure standing wave ex-
citation. These elements can be derived by inspec-
tion by noting, for example, that the force operator
corresponding to the | — ) state is simply a weighted
sum of the |@) and |B) state force operators where
the weights are the same as in the definition of the
| = » state.

The |+ state force operator f;, is the same as
would be expected if the |+ > and [&) states were
a simple two-level system coupled by an effective
Rabi frequency g. In contrast, the | — % state force
operator f_, does not have a simple two-level anal-
ogy. In fact, a two level argument would lead to zero
force on the | — ) state, since it is transparent to the
optical fields, i.e. Hy_=0. To see why the | - state
force operator is not zero, recall that the dark state
is defined using Rabi frequencies which are constant
locally. Thus, for phase shifted SW's, the dark state
at position z, denoted by | — 3., is not a pure dark
stale al a position dz away, but contains a local
| + ¥.4q: State contribution. It is easy to show that
the amplitude of this contribution is given by V8dz.
Moreover, since the |+ 3., 4. 5tale has an interac-
tion energy Hi1% =g, it follows that the | — ). state
acquires an interaction energy of Hi** =gV0dz at
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position z+dz. This change in interaction energy with
position can be viewed as arising from an effective
force of gV0 on the | — ), state, which agrees with the
force operator, fz_.

Using the results so far gives the following explicit
form for the force on a three level atom in standing
wave fields

F=.!;—R-c(_p—e]+f;+]{e(ﬁ+e} . (8)

3. Perturbative estimate of force

We now compute the optical foree (eg. (8)) by
estimating the steady-state values of the density ma-
Lrix elements in several limiting cases. Consider first
the case of 4=0, wherein all the atoms are optically
pumped into the | — ) state. Clearly, in this case the
only nonzero element is p_ _=1, so that the off-di-
agonal elements are zero. Thus, the force is zero
everywhere, independent of all other parameters.

Mext, consider the case when 40 but Asin(28)
=0. This occurs at the nodes of either of the two
standing waves. Once again, the atoms are optically
pumped into the | —% state (which is now a pure
composite state) so that the off-diagonal elements
are again zero. Therefore, the steady state force al-
ways goes to zero at the field nodes even if 4£0.

Now consider the case when 4sin(28) is non-zero
but small compared to the optical pumping rate,
g%/, In this limit, the nonzero density matrix ele-
ments can be obtained by perturbing around the
£ .= solution. To simplify the analysis further we
make the additional approximation that g<< I, and
ignore ** the influx of atoms into the |+ % and | =

For footnote see next page.

Table 1
Similarities between two-level system and dark state basis. (The variable = in parenthesis implies that the quantity is a function of
position. )

Description Two-level system Dark state basis

Effective Rabi frequency grlz) —4,(z)

Effective detuning dr 4. (z)

Population flopping rate (gr+otmgy(2) di+dimd

Maximum mixing amplitude [lg_r ) _izxnf; e [ié] o

T 1 4
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states from the |&) state. This allows us to avoid
solving the complex density matrix equations
(OBE's) entirely, by instead representing the system
with a wave function of the form ¥=A_|-3+
Ay |+ +A:|8>.

The dynamics of the system is now contained in
the | =3, |+, |&) state amplitudes, whose equa-
tions of maotion are given by the Schridinger
equation:

o Fls A Ay 0 A

a Ay |=(-if2)| 4 -4, -£ Ay

A 0 -g -i(r-2is)lla
(9)

where d.=4cos(26), 4,=4sin(2¢), and the phe-
nomenological damping I” is added to the hamilto-
nian.

Since I'= g, we can use the adiabatic following ap-
proximation [10], to solve the third equation (of
eq. (9)) for 4. The result is Az=i(g/Fs)A., where
Iy=I—-2id. Using this result to eliminate 4;, the
wave function now becomes, V=d_|—»+4, |+ )a
The mew basis state |+ 5,=|+>+ilg/l)IE> is
called the damped state. In the adiabatic limit, the
dark and damped states form a closed 1wo level sys-
tem, as illustrated in fig. 2b. Here, it should be
noted * that the damped state amplitude is still ..

It is easy to show that the amplitude equations for
the dark and damped states are simply:

afA_ i 4. 4, A
a‘;[,«‘]—“"”[a, —i(fl—idc}:[-‘h]. 4

where I'y =g/ 5. Thus, the decay rate of the |+ 4
state is the optical pumping rate g%/ I, which is pro-
portional to total laser intensity. Physically, this de-
cay rate is analogous to the lowest order scattering
rate for a two level system, which is also propor-
tional 10 intensity.

To solve the remaining amplitude equations in the

* This approximation is often used in first order perturbation,
and will be justified later by excellent agreement with the OBE
result.

# Note that the coefficient for the damped state is the same as
that fior the | + 3 state, according to the way the damped state
is defined.
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limit of A< I", we can again make the adiabatic ap-
proximation to solve the second equation (of eq.
(10) for A.. The result is

Ay =i/l —ide) 14 .

From these results, we can generate the approxi-
mate density matrix elements

_(2)_4 il E
“’"‘(n)(n—i&,)' ials '(ra)"*"'

z
4,
T an

J ———

where again p_ _ = | has been assumed. Substituting
these into the explicit force expression (eq. (8) ) and
remembering the approximations 4« I, < I gives

F=f_Re(p_:)=24g,8:(8: V8 —& Vg:)/8" .
(12)

where the additional approximation of d<=<I" has
been used. It should be noted that the |+ ) state
contribution to the force is negligible for these ap-
proximations. Thus, the force on a three level atom,
in this limit, is due entirely to the force on the |— )
or dark state *. Also note that the force is indepen-
dent of 4 (for § << ™). This is related to the fact that
the Raman induced transparency is independent of
4.

This force expression is plotted and compared to
the OBE solution in fig. 4b, for the case of two stand-
ing waves with equal amplitudes (=g). 1e.. g,=
gesin(kz) and gi=gysin(ikz+x), where k=k = k..
The phase difference is chosen to be y=n/4, Spe-
cifically, fig. 4a shows a plot of the two SW field am-
plitudes. The solid curve in fig. 4b is a plot of the
above force expression {eg. (12)) and the circles
correspond 1o the OBE solution. As can be seen, the
lowest order force estimate agrees well with the OBE
result.

The force plot in fig. 4 shows that the force can
vary by a large amount over a distance much shorter
than the optical wavelength. Since the force crosses
zero in these regions of rapid variations (see, for ex-
ample, points q and s in fig. 4), very narrow poten-
tials can result. To understand the origins of these

*4 An exact solution [ 3] of the OBE's shows thar the |+ state
contribution 1o the foree is always zero when d=10,
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Fig. 4. Optical force a on three level atom versus position, {a)
Standing wave field amplitudes. (b) Force on optical wavelength
scale. Solid curve is lowest order estimate. Dotted curve is OBE
solution. For each plot, go= 10004=0.11.

rapid zero crossings, recall that the force must be zero
at the nodes of either g, or g, because the | — 3 state
becomes a pure composite state at these positions,
and can no longer mix with the other states to gen-
erate nonzero coherences. However, between each of
the nodes. the force must reach a maximum (unless
it is zero everywhere ). Thus, it follows that the force
can have structures on a distance scale determined
by the node spacing, which can easily be much
smaller than the optical wavelength.

Of course, to obtain the sharp structures in the
force plot of fig. 4 the magnitude of the force must
somehow be enhanced in the region between the
closely spaced nodes (see for example, point rin fig.
4). To see why this occurs, it is necessary 1o sepa-
rately consider the coherence Re(p_,) and the force
operator f;_.

Consider first, the force operator f;_=gV8. In view
of earlier discussions, this can be seen as a measure
of the energy gradient of the locally defined state
| = ». as a function of position. Between the closely
spaced field nodes this energy gradient would tend
to be large because the | —» (and |+ ) ) state must
rotate from one pure composite state |3 or |b) to
the other in a distance much less than the optical
wavelength. For example, the composite state |B) is
the dark state | — », (interaction energy 0) at point
q (fig. 4b), but the strongly interacting | + 3, (in-
teraction energy £) at the nearby point s. To see ex-
pliculy how much the force operator can be en-
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hanced, consider the points p and r in fig. 4. At point
p, the force operator is

S =kgdsin y/g(z)=kgo /2 sin(x/2) .

and at point r the force operator is fi_=
i;gu\/i cos(x/2). Thus, compared to point p, the
force operator at point r is enhanced by a factor of
cotan(x/2). In the limit when z-0, f;_—/2gek at
point r and f;_—0 at point p.

Now consider the coherence. There are three fac-
tors which must be considered: the |— 3 —|+3q
coupling strength 4,, the contribution of |&) to the
| + »q state (proportional 10 g/I"), and the |+,
state decay rate [, . For simplicity, consider only the
equal Rabi frequency points, p and r in fig. 4b, For
a given |+ », state decay rate, the p_, coherence
tends to increase with increasing g, because the |+ 3,
state contains a larger component of the |&% state,
and the | =3 — |+ coupling, |4,|=|4sin{29)|=
|4], is independent of g when |g,| = |g:|. However,
the | + >, state decay rate is not fixed, but depends
on g*/I". This position dependent decay rate has no
two level analog and its net effect is to give a p_, co-
herence that depends inversely on g. This can be
understood by noting that a smaller | + 34 state de-
cay rate leads 1o a larger steady state mixing of the
| =% state with the |+ %, state. As a result the p_;
coherence at point r in fig. 4b tends 1o be large since
£(z) is a minimum there. Thus, both the force op-
erator and the coherence contribute to the sharp, sub-
optical-wavelength structures in fig. 4b.

4. Force rectification

Not only does the force in the A system show sub-
optical-wavelength behavior, but it can show strong
rectification (i.e., non-zero value when averaged over
an optical wavelength ). One case where the origin of
this rectification can be clearly illustrated is when the
difference detuning is large enough to saturate the
| = »—+1+ >4 transition.

For simplicity, we set d=0 in this discussion, so
that ;=TI and I, =g*/I is purely real. When the
| = » == |+ >4 transition is saturated, the second adi-
abatic following approximation is no longer valid.
However, the |—> and |+ >4 system is effectively
a closed two-level system, so that its steady state den-
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Fig, 5. Force contributions on optical wavelength scale when
|4] == |I"y | and 4| = g. (a) Standing wave fields. (b) g.g: term.
(€) (£:Vgs—2,Ve: ) term.

sity matrix elements can be written,

[ 4
‘9“2_'(1]__2E)(‘°"_P“}’ (13a)
s +44;
(o _—pis)= " % (13b)

3 +a4+4422

Remembering the first adiabatic approximation then
gives

A\ g\ _Al.
Re(p_s) =RC[( ) P,‘]a(-) Ee
A+ i +44°
: L +ad (13¢c)

where use has been made of the identity 47 + 47 = 4%,

In the limit of |4| << I, this result reduces to that
obtained using the second adiabatic following ap-
proximation, as expected. However, in the opposite
limit of [4] = [, | (but |4] = g), the force becomes

F=1(g1g)(e: Ve, —g, Ve:) 2047
=kgi[cos y—cos(2kz+x) 1 (sinx) /44 . (14)

Here, the (g.Vg, —g,Vg,) term arises from the force
operator. This term equals g7 siny, which is effec-
tively constant over an optical wavelength. In con-
trast, the gig-=(g3/2) [cos y—cos(2kz+y)] term,
which comes from the p_, coherence, is not a con-
stant over an optical wavelength. However, it has a
component {(cosy) which is a constant. The other
component of p_;, [cos(2k=+y)] is periodic over
an optical wavelength. Therefore, when averaged over
an optical wavelength, the force is proportional 1o
sin(2x). This rectified force as a function of x is
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Fig. 6. Rectified opuical force versus phase y. Solid curve is esti-
mate when |4| >[I, | and |4] @2g. Dotted curve is OBE solu-
tion. For each plot, g;=3.34=0.11"

shown by the solid line in fig. 6. The dotted curve in
fig. 6 is the rectified force computed using the exact
solution of the OBE’s. Again, reasonably good agree-
ment is seen.

If ky=k; then y is independent of pasition, Thus,
the rectified force is spatially invariant. The ampli-
tude and direction of this constant force (for a given
go and 4) can then be controlled by simply varying
the spatially invariant phase difference between the
two standing waves. In contrast, if & #4&, then
¥=Jo¥ (k,—k;)z where ¥, is a constraint phase dif-
ference. The rectified force is now no longer spatially
invariant, but is periodic over a long distance given
by the wave length of the difference frequency (e.g.,
17 cm for the ground state hyperfine splitting in so-
dium). Thus, in the imit of k,—4-, the scale over
which this force is periodic approaches infinity, i.e..
it becomes spatially invariant.

5. Conclusion

We have used the normal modes of the atom-field
interaction to physically model the origins of novel
structures that appear in the force on a A system atom
under standing wave excitation. In particular, we
have identified a situation where the force is only on
the dark state, thus leading 1o simple, closed form
expressions for the force. Finally, our estimated re-
sults agree well with solutions of the OBE's in the
regions where the approximations used are valid.
Future work will involve using the normal modes of
the atom-field system to model phase (x) dependent
cooling.
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