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Theoretically identified are the conditions under which velocity selective coherent population trapping (VSCPT) takes place
when a three-level A\ system is excited by & pair of Raman resonant standing waves. The efficiency of the VSCPT depends on the
relative phase, o, between the standing waves, and vanishes when g= 0. Also reviewed are previous experimental observations by
Aspect et al, [Phys. Rev, Lett. 61 (1988 ) 826 ] which qualitatively validate the predictions. Finally, the implication of this result
1o the feasibility of a dense trap of sub-recoil ture A atoms is di: d

1. Introduction

Recently, there has been a great deal of interest in the forces experienced by a folded three-level { A ) atom.
Aspecteral. [1] first demonstrated that such an atom can be cooled below the recoil limit via velocity selective
coherent population trapping (VSCPT ), when excited by a pair of counter-propagating travelling waves. In
this paper, we show that VSCPT occurs in a /A atom excited by a pair of Raman resonant standing waves, and
its efficiency depends on the relative phase ™, ¢, between the standing waves. We will also review previous
experimental observations made by Aspect et al. [1] in Raman resonant standing waves which are consistent
with our theoretical predictions. Finally, we briefly describe the generalization of VSCPT in standing waves
10 three dimensions [3].

The interest in VSCPT in Raman resonant standing waves stems from our earlier experimental [4] obser-
vation of deflection and cooling of / sodium atoms in an atomic beam. This experiment suggests that these
standing wave forces could be used to design a stimulated force trap [4]. In addition, we have developed a
theory [3] which predicts that the cooling can be made to have characteristics very similar 1o those of con-
ventional polarization gradient (pol-grad ) cooling, so that such a trap should have a sub-Doppler lemperature.
The results derived in the present paper suggest that it may be possible to reach a sub-recoil temperature in
a Raman force trap.

The existence of VSCPT corresponds to absence of diffusion for zero velocity atoms in the trapped state.
However, Chang et al. [5] have previously computed a non-zero diffusion coefficient in Raman resonant
standing waves by a perturbative numerical solution of the Wigner density matrix equation of motion. Our
disagreement with Chang et al. seems to stem from the fact that they assumed, a priori, that the distribution
of atoms in momenium space is smooth, which 15 in sharp contrast with the result of VSCPT.

¥ Mauri et al. [2] also found a process of VSCPT with a phase-dependent efficiency.
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2. Theory of standing wave VSCPT

In general, it is rather difficult to find an ideal A system. One example is when a j=1++' =1 transition is
excited by a pair of left- and right-circularly polarized waves, which turns into a A system after a few optical
pumping cycles [ 1]. This is illustrated in fig. 1a, for the case where each circular polarization forms a standing
wave. The lines joining the magnetic sublevels indicate the allowed electric-dipole transitions. As can be seen,
the m=0—m’ =0 transition is not allowed. In addition, the fields do not excite any x transitions (the dashed
lines). As a result, after a few spontaneous lifetimes, the atoms originally in the n1=0 sublevel get completcly
depleted, and we get a perfect A system, as indicated by the thick lines. In the coming analysis, we will use
this j= 1+’ = 1 system. We emphasize, however, that the analysis is valid for any ideal A system, independent
of the polarizations of the excitation fields.

The three atomic states |ad, |by, and |e) in fig. Ib correspond respectively 1o the m=—1, m=+1, and
=0 states. The electric field is expressed as

E=1E (z) [exp(—iw,:)+c,c.]+}Ez(:][cxp(—iw,n+c.c,] i (n
where
E (z)=6, Eqcos(kz) . E(c)=d_Eypcos(kz+0), (2)

- is the position of the center of mass of the atom, ¢ is the phase difference between the standing waves. and
&, and &_ are the polarization vectors, corresponding respectively 1o right- and left-circular polarizations.
We define the Rabi frequencies as

81 (2) = prae-Er =g cos(hi D) . 82(2) =gt -Ex/fi=gag cos{hzz40) (3)
Ignoring the anti-resonant terms, and making the rotating-wave transformation, we get the hamiltonian for the
syslem:
4 4 0 —5i(z)
H=3 0 -4 —g2(=)
“L-gi(z) —sfz) 24
=(h/2)(4(]a) (al—|b) (b|)—=28]e) (e —a(2)(1ay (el +he)—gal2) (b} el +he)]. (4)

Here, the Rabi frequencies are real, and the common detuning 4 and the difference detuning 4 are as defined
in fig. 1b. In what follows, we will consider primarily the case where 4= 0. We also assume that states |a ) and
|b) are degenerate, so that @ =en=w, §=d:= &, and k, =k,=k. In addition, for simplicity we consider only
the case of ge=gn=48.

So far, we have assumed that =, the position of the center of mass of the atom, can be treated as a classical

Fig. 1. (a) A J=1==J =1 transition, excited by a pair of circu-
larly polarized standing waves. (b) The resulting ideal A system:
&1s the average detuning, 4 is the differential detuning. and Tis
the exciled state decay rate.
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variable, However, we want to allow for the possibility that the atoms become cold enough that the de Broglie
wavelengths become comparable to or bigger than the optical wavelength [6]. In this regime, it is necessary
to treat = as a quantum mechanical operator, 2, with the atom’s linear momentum in the z-direction, j, being
the canonical conjugate. Denoting by |p) the eigenstate of p (i.e., flp) =p|p) ). the basis states can now be
written as

lapy=12)@(p), [bpp=1B)@p) . lepd=e)@p), (3)

where the linear momentum is a continuous variable: —ee <p,<ao, (i=a, b, ). In order to find the hamil-
tonian in this basis, we note first that

+ o
expl tikd) = J' dp |p> {pF hk| . (6}

—

which simply means that a travelling wave optical field with a wavenumber & couples a state with a momentum
p=fik 10 a state with a momentum p, conserving linear momentum. Given eq. {6 ), and noting that the kinetic
energy of a state | p} is p?/2M, where M is the mass of the atom, we get the following form for the hamiltonian:

ri Py pi
H= P_E_m [ﬁ lacpay (apal 4 530 1b, e (b pul + (ﬁ —fhi) l&, e (8P|

~tig [ 4p (19> Cp+KI +1p) p—HKI) (12> Cel +hec.)

—fhg j dp [1p> {p+hiklexp(—id)+|p) (p—hik|exp(+ig)](|b} (e| +hec.). (7}

—an

To illustrate this, consider some representative matrix elements. For example, the energy of the state |a, p,)
is given by ¢a. p.|Ha. p.» =p2/2M, while the coupling between states |a, p,» and |e, p. ) is given by

{a,pa|Hle, pedy=—hgldppone+ O pem] s diy=0ifi#jand 1ifi=j. (8)

This hamiltonian is illusirated in fig. 2 for a few of the infinite number of basis states. As can be seen, each
of the ground states is connected 1o two excited states. Therefore, it is not possible to find closed families of
states, as is possible for two travelling waves. Nevertheless, we will be able 1o find a velocity selective dark state
and calculate the VSCPT rate into this state (as a function of @) both perturbatively and by numerically in-
tegrating the optical Bloch equations [6].

In analogy to the travelling wave VSCPT, we are interested in finding a state (the dark state ) which satisfies
the following conditions: (i) it does not contain any excited state, so that it is completely decoupled from the
vacuum fields, and {ii) the net amplitude for coupling this state 1o any of the excited states must vanish. It
can be shown that if p=0 and/or ¢=0 then the state

INC(p)>=4[|a, p=fik) exp(—ig)+|a, p+hk) exp(ig)—|b, p—hicy — |b, p+#k) ] (9)

does not couple to any excited state. This is illustrated in fig. 3 for two cases: p=0 (levels denoted by solid
lines) and p#0 (levels denoted by dashed lines). In either case, momentum conservation allows for only three
excited states to be coupled by the hamiltonian directly to |[NC(p) ». We will show that the coupling to each
of these states vanishes (for p=0 and/or ¢=0) by showing that if the system is in the state |[NC) at 1=0,
then it remains in |[NC) after an infinitesimal amount of time, d.

We introduce the following notation for the seven levels of fig. 3:
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Fig. 2. lllustration of the energy levels of and couplings between Fig. 3. lustration of the dark suate, [NC(D)3 (levels denoted by
a typical se1 of momentum states ina / system excited by stand- solid lines) and the state [NC(p)} (levels denoted by dashed
ing wave fields. Here, we have chosen 8= -2, lines). Here, p=exp(ip). f=exp(i4@1). and {=explifdr). The

energy zeTo is chosen 10 be (p?)/(24/). Note that this causes
overlap of the states |¢, py and je, 3. The symbols in the tran-
sition lines represent the effects of the standing wave phase shift,
whereas those next 10 the solid {p=0) levels are associated with
the phases produced by the motional encrgy shifis. The symbols
next 1o the dashed (pe D) levels are the additional phases asso-
ciated with the cemter-of-mass momentum, p. Finally, the weights
for the state | NC 3 are shown 1o the ground state labels.

[1y=|a.p=fk) ., |2y=|a.p+hk), |3>=[b.p—hk) . |4>=|bpthk),
15Y=le.p=20k)> . |6)=le.p). 175 = e, p+2fik) . (10)
The wave function ** can be written as

=T Al i=12...7. ()

The reduced hamiltonian for this subset of states is given, from eq. (7) by

-2, 0 0 0 £ g 0
0 2 0 0 0 g g
0 0 -9 0 o o 1]
H=h 0 0 0o V] ot ] 1 (12)
g 0 m 0 -20.+42, 0 0
g z gt o 0 0 0
0 z 0 g 0 0 20,+48,

Here, denoting by v the velocity corresponding to the momenium p, we define the Doppler shifi, 2,=Pk/m=kv,
the recoil energy, 2, =fik?/2M, and n=exp(i¢). Note that for simplicily, we have chosen §=—£2, and have
shified the zero of energy 10 coincide with the energy of state [6).

¥ The use of wave function is exacily valid for the case where |NC is a dark state, which implies that 4;=As=4,=0for 120. When
|MC is not a dark state, the wave function approach is still valid as long asdi =< 1 /T
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Note now that the dark state, [NC(p) ), is a linear combination of states | 1 » through |4 ). We define |C,(p) 3,
[Ca(p)» and |C;(p)» as three other mutually orthogonal states such that

INCY * o =1 =1 113
1G> | 7 -4 1 =1]]12
Gy 2l o 1 1 13 (13)
1C3> =t n 1 =1]L[|4)
The wavefunction can now be written as
[ =AncINCH + A4, 1C Y+ AL 1C: )+ 4, |Ci ) FA 15D HA 160 +A:]T) . (14)
Using eqs. (12) and (13), we get the hamiltonian for this basis:
0 0 0 2, 0 0 0
0 0 -2 0 o* 0 -an
0 -, o 0 ot 2Cg i
H=#h] 2, 0 1] 4] 0 i25¢g 0 . (15}
0 en ] 0 228, -2y 0 0
0 0 g —il2Sg 0 0 0
0 - o 0 0 0 222, +2,)

Here, we have defined S=sin ¢ and C=cos ¢ so that §=C+iS.

For p=0, so that £,=0. it is clear from eq. (15) that the state [NC(0)} is completely decoupled from any
state. Therefore, [NC(0) ) is a pure dark state. For p# 0, consider first the case of ¢ # nm, where # is an integer.
Note that [NC(p) » is still not coupled directly 1o any of the excited states. However, it is coupled to |C5(p) ).,
which in turn is coupled to one of the excited states, |6(p) 3. Thus, for @ nn, atoms with non-zero velocity
will be optically pumped into |NC(0) 3, which is the zero velocity dark state. This is of course velocity selective
coherent population trapping ( VSCPT).

Consider next the case of ¢=nz, with p£0. In this case, S=sin¢=0, so that [NC{p)} is coupled only to
ICa{p) >, which in turn is coupled only to [NC(p) 3. Thus, both |NC(p)} and |Calp)» are pure trapped
states, independent of the value of p, as long as ¢=nn. Since there are pure trapped states at each velocity,
VSCPT does not 1ake place when ¢=nn.

To see how the efficiency of VSCPT depends on ¢, it is necessary to determine the net coupling rate [NC(p) >
to the excited state |6(p) > via the state |Cy(p) ). By formal integration, we can write

.-I,,(f)=J-dr'J-dr",-'i},{r"). (16)
(] n

In the perturbative limit, where at 1=0 all the atoms are in the state |NC, the integrand can be found from
applying the Schroedinger equation twice:

As(17)=(=i/A)*(NC|H|Cy ) (C3 | H|6 ) Anc(1”) . (17)

Since the hamiltonian is independent of time, and Awc(£7) = 1 is a constant in the perturbative limit, we find
that the amplitude of the state |6} after a differential amount of time, dr, is given by

dds(p)=(d0)2(=i/A)Y¢NCIHICy 3 < Cs |H|6)=—2i(dr)*Q, gsing==2i(dt)*(p/m)kgsing . (18)

Thus, the net rate at which atoms starting in |[NC(p)} 5 is coupled into the excited state is proportional to
(psin @)
The formal approach used in deriving eq. (18) is presented 1o clarify the physics of VSCPT in standing
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waves. as well as 10 demonstrate the existence of additional dark states when ¢=0. However, it is possible 1o
uniderstand the behavior in eq. (18) in a relatively simple way by inspection of fig. 3. If p# 0 (the dashed levels
in the figure), each level has an additional energy due to the kinetic energy associated with the momentum.
In the figure, the energy p?/2M is chosen as the energy zero so that the states |e, 0> and |e, p) are super-
imposed. If we consider the sum of the interaction matrix elements coupling the ground states to each of the
excited states, we see that the couplings 1o the levels |e, p—2fik) and e, p+2#iky still vanish but the coupling
1o the level |e, p3 does not. In particular, assume that the atoms are in |[NC3 at +=0, as given by eq. (9).
The problem now becomes one of weighted summation of the four transition paths to state |e, p) from the
ground states, as shown in fig. 3. Using the relative ground state weights (shown in fig. 3) and the relative
transition matrix elements we find that

Ce, pINC(p)y = [l +nl*—nl—*(*] xsin (1) sing. (19)

Note that since n=exp(i¢) and {=exp(ifh1), eq. {19) has the same functional dependence on ¢ and 2, as
eq. (18), in the limit of small 1. Thus, the expression for the efficiency of VSCPT can be derived essentially
by inspection of fig. 3.

According to eq. {19), we expect that the efficiency of VSCPT would vary roughly as sin’g, being maximum
al p=(2n+1)x/2 and vanishing at ¢=nx. This phase dependence of standing wave VSCPT is also consistent
with the semi-classical picture. Consider the basis stales |—}=cos flay —sinfby, |+)=sinflay+
cos@]b>. and |e) where 8(ar) =tan~ [gi(vt) /g2 (v1)]. For v=0, g, and g; are constants, and the | =) state
is the dark state, decoupled from |+ ) and |e). For v#0, |—5 is coupled to |+ at the rate of vVflx
kvsin 6. Note that the phase dependence of this coupling rate is also the same as the phase dependence of VSCPT
(egs. (18) and (19)) since 2,=Fkv. In particular, for ¢=0, g, =g at all positions and therefore 8(17) is a con-
stanl, o that this coupling vanishes, and | —} is a dark state for each velocity.

It is also possible 10 estimate the relative efficiency of standing wave VSCPT compared to that of travelling
wave VSCPT. Consider the case of ¢=(2n+ 1)x/2. In this case, INC(p)) is coupled to |Cs(p) » at the rate
of 2. In turn, states |C,(p) ), 1C2(p) >, |Cslp) ) are cach coupled to the excited state (through one or more
channels) at the rate of 2g. as given by eq. (15). If we analyze the travelling wave case in the same way, we
find that the coupling rates are the same, except that there are only three states, (|a, p=fik> —|b, p+hk3 ),
(|a, p—fiky + |b, p+Hik)> and |e, p), which have properties analogous 1o |[NC3, |Gy}, and |63, respectively.
Thus, for ¢= (2n+ 1)1/2, we expect the standing wave VSCPT efficiency (o be of the same order of magnitude
as the travelling wave VSCPT efficiency.

The VSCPT rate derived abave (eg. (18)) is in agreement with numerical simulations obtained by inte-
grating the optical Bloch equations for the A system under standing wave excitation. In particular, we cal-
culated the time evolution of the momentum distribution for different values of ¢. Even though there are no
closed families of states in the SW system, an excited state with momentum p is still coupled only to ground
states with momenta p+ fik which in turn couple to excited states with momenta p* 24k, etc. Thus, there are
still families of states which can be closed by truncation. For our calculation, we choose a momentum range
of +5hk.

Figure 4 shows the initial (top trace) and final momentum distributions at =350""" for helium excited by
standing waves of the phase indicated (middle traces). and also for travelling wave excitation (bottom trace),
included for comparison. We see that for g=n/2 VSCPT does occur and is about half as efficient as for trav-
elling waves. For other ¢, we sce the predicted sin’¢ dependence. In particular, at ¢=0 there is no peaking of
the momentum distribution **.

1 In fact, we see some very slight alleration in the momentum distribution at ¢=0 due 1o optical pumping into the relevant dark states.
However, after a short time (<50 I'=') the momentum redistribution stops, in contrast 1o the ¢#0 cases where the Ak peaks
continue 1o grow and sharpen.
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INIT

Fig. 4. Numerical simulation of WSCPT in the A system with
standing waves after r= 501" for He, where g,o=g:=0.3and
BmA=0, INIT is the initial momentum distribution: a gaussian
distribution in the ground states with a standard half width at
e~ 42 of 3fik. The middle 4 traces are for standing wave excila-
‘ tion with the phases ¢ as indicated. TW is travelling wave case
-18 1 with Rabi frequencies g,+ =g,- =0.3I" In all cases, momentum
MOMENTUM €Rk ) is in units of ik and population is normalized to 1.

POPULATION (xl@@)

3. Previous experimental evidence of standing wave VSCPT

As mentioned earlier, both the existence and the approximate phase dependence of one dimensional VSCPT
in Raman resonant standing waves have already been observed by Aspect et al. [1], for the j=1++j'=1 tran-
sition in metastable helium. However, since these results were not explicitly presented in the context of standing
wave phase shifis, we will now review these observations for completeness. In the first part of the Aspect ex-
periment, VSCPT was observed as a pair of peaks in the momentum distribution when the He* beam was
excited with a pair of counterpropagating laser beams having opposite circular polarizations. For the A system
in the j= 1=+’ =1 transition this is of course cquivalent to a pair of counter-propagating pure travelling waves.
In the second part of the experiment, the He* beam was excited by counter-propagating linearly polarized laser
beams where the polarization axes of the forward and backward propagating laser beams had a relative angle
of z. Specifically, y=0 and y=n/2 correspond respectively 1o the so-called lin=parallel-lin and lin-perp-lin
configuration. It is easy 10 show that for the j= 1=’ = 1 transition these experimental configurations are equiv-
alent 1o a pair of opposite-circularly polarized Raman resonant standing waves, having a phase shift =y As
reported, no VSCPT was observed when y=0, but the double peaked momentum distribution reappeared (as
evidence of VSCPT) when y=x/2. This is in agreement with the present theory. In addition, the relative peak
hights in the Aspect experiment are consistent (within experimental noise) with our theoretical prediction of
relative efficiencies in fig. 4.

Here, it must be acknowledged that for the specific case of the j=1+j' =1 transition, Kaiser et al. [7] cor-
rectly explained the presence of VSCPT for the lin-perp-lin case and the absence thereof for the lin-parallel-
lin case by considering transitions between superpositions of the magnetic sublevels forming closed families
of states for this system. However, we emphasize that the theory presented in this paper is not limited to the
J=1++"=1 transiticn, and is valid for any pair of Raman resonant standing waves exciting a2 /A system. In
addition, our analysis gives the detailed phase dependence of VSCPT efficiency. This is important in the con-
text of a stimulated Raman trap, since both the deflecting force and the pol-grad cooling force are maximum
at ¢=n/4 and vanish [3] at y=0 and y=n/2.

4. Generalization to three dimensions

Finally, we have found [3] that this process can be generalized to three dimensions. Briefly, the scheme again
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employs a j= 1+’ = | transition, except with three mutually orthogonal pairs of Raman resonant standing waves
having direction vectors £, ¥ and £. This is accomplished using lefi-circularly polarized and right-circularly po-
larized standing waves, with phase differences of g, i=x, ¥, =. Under this configuration, VSCPT takes place
into a zero velocity three-dimensional dark state of the form w=A4, [m.=+ 1) +dg [ =03 +A_|m.= =15,
where 4, Ay, and 4_ are the standing wave ficld amplitudes at each point in space, which comprise of sum-
mations over momentum eigenstates. Note that the mathematical form of this zero velocity three-dimensional
dark state is similar to that found by Ol'shanii et al. [8], except that standing waves (rather than travelling
waves ) are used in the present case. To compute the efficiency of VSCPT in three dimensions, it is necessary
to consider other siates with non-zero net momentum as well. Extrapolation of the one dimensional analysis
suggests that this would yield a VSCPT efficiency as a complicated function of ¢,, ¢,, and @, and the analysis
have not yet been performed. Note that there is no phase dependence in the travelling wave three-dimensional
VSCPT considered by Ol'shanii et al. [8].

5. Summary

We have shown theoretically that phase sensitive VSCPT t1akes place when a /A sysiem is excited by a pair
of Raman resonant standing waves. This corresponds to absence of diffusion for zero velocity atoms in the
trapped state. We also review previous experimenial observations reported by Aspect et al. which agree with
our predictions. Finally, we outline the generalization to three dimensions. Given our prior observation of stim-
ulated trapping and cooling forces and our theoretical prediction of strong pol-grad cooling in Raman resonant
standing waves, the simultaneous existence of VSCPT may make it possible to design a subrecoil temperature
trap for A atoms.
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