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We present a fully quantum-mechanical analysis of laser cooling of an angular momentum J, = 1
to J. = 1 transition in a laser configuration consisting of two counterpropagating linearly polar-
ized laser beams. The essential feature of this configuration is the coexistence of velocity-selective
coherent population trapping (VSCPT) and polarization-gradient cooling. The role of polarization-
gradient cooling is to provide (i) for short interaction times “precooling” of the initial momentum
distribution and (ii) in the long-time limit “confinement of velocities.” This eventually leads to a
larger number of atoms being captured in the dark state when compared with the scheme of Aspect et
al. [Phys. Rev. Lett. 61, 826 (1988)]. We find that the optimum parameter values for polarization-
gradient cooling and VSCPT are in a completely different parameter regime: polarization-gradient
cooling works best off resonance and for low intensities, while VSCPT works best on resonance.
We can combine the advantages of polarization-gradient cooling and VSCPT in a scheme where we
cycle in time between the optimum cooling parameters for both cooling mechanisms.

PACS number(s): 32.80.Pj, 42.50.Ar

I. INTRODUCTION

Kinetic energies achieved in laser Doppler cooling of
two-level atoms are of the order £ = AI'/2, with T’
the spontaneous decay rate of the excited state of the
atom. Polarization-gradient cooling of atoms with Zee-
man substructure by a Sisyphus cooling typically leads
to energies of the order of a few tens of recoil energies
Epg [1], where the one-photon recoil energy is defined as
Er = R%k?/2M, with k = 2n/) the wave number of
the atomic transition and M the mass of the atom. For
heavy atoms and dipole-allowed transitions, Erp < Al
and temperatures achieved in polarization gradient cool-
ing are much lower than for Doppler cooling. Energies
below the recoil limit £ < FEg, corresponding to an
atomic de Broglie wavelength longer than the wavelength
of the light A, can be obtained by optical pumping into a
velocity-selective dark state [2]. This can be realized by
velocity-selective coherent population trapping (VSCPT)
in a three-level A system [3,4] or by cooling with a se-
quence of shaped Raman pulses where the frequency
spectrum of the light is tailored so that atoms with near-
zero velocity are no longer excited [5]. While dark-state
cooling produces subrecoil temperatures, these mecha-
nisms are based on a random walk (diffusion) in momen-
tum space and thus—in particular in two-dimensional
(2D) and 3D configurations [2,6,7]—have efficiencies sig-
nificantly lower and cooling times much longer than
Doppler and polarization-gradient cooling.

In their work on VSCPT, Aspect et al. [3] considered a
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1D laser configuration with counterpropagating o, and
o_ polarized lasers. In this configuration the positive
frequency part of the electric field propagating along the
z axis has the form

E(+)(Z,t) :g(e+ikzé'+1 +e_ikzé'~1)e_iwt, (1)
with €41 = F(€; + ié'y)/\/i spherical unit vectors. For a
Jy =1 to J. = 1 transition, as for metastable He 25 35,
2p 3P, the two ground-state superpositions

(z | ¥nc,c(p)) = et /Mg 1) £ e P2/hg ) (2)

correspond to a noncoupled (coupled) state. In particular
the atom has a velocity-selective dark state

(z | D)= (z | ¥nc(0) = et [g_1) + e *|giq) .
(3)

We denote the ground and excited states by |g,, ) and
|em ), respectively, with m = —1,0,4+1 Zeeman quan-
tum numbers. In this running-wave (RW) case, induced
emission processes couple only states within a momen-
tum family F(p) = {|p — hk,g-1),|p,e0), |p + Ak, g+1)}
while emission of a spontaneous photon with projection
of the photon momentum —#4k < Au < hk along the z
axis corresponds to a quantum jump F(p) — F(p + ku)
[8]. If in this random walk in momentum space the dark
state (1) in the momentum family F(p = 0) is populated
by a quantum jump, the atom will remain trapped in this
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state while a noncoupled state with momentum close to
zero will have a decay rate back to the coupled state pro-
portional to (kp/m)2. Thus, as a function of time an
increasing number of atoms within the excitation profile
of the laser will accumulate in noncoupled states close
the dark state (3).

In this paper we present results of an analysis of
VSCPT in a o4-0_ standing-wave (SW) configuration
for a J;, = 1 to J. = 1 transition (Fig. 1). The laser
configuration consists of two counterpropagating linearly
polarized light waves where the angle between the polar-
ization vectors is denoted by 6,

E)(2,t) = £/V2[cos (kz + 0/2) €41
+cos(kz — 0/2) €_1]e " . (4)

The essential feature of this model is the coexis-
tence of polarization-gradient cooling and VSCPT where
polarization-gradient cooling provides a precooling mech-
anism which is expected to lead to an enhanced pumping
rate into the dark state. This dark state has the form

(z | D) =cos(kz—0/2)|g+1) + cos (kz +0/2)|g-1)
(5)

and shows again a double-peaked momentum distribu-
tion at p = thk. A semiclassical analysis of the cooling
force has been given by Shahriar and co-workers [9,10]
and optimum cooling was found for an angle of 6 = 7 /4.
From a quantum-mechanical point of view the picture
of cooling is best discussed in terms of adiabatic opti-
cal potentials: neglecting nonadiabatic mixing and for
weak laser excitation the two adiabatic optical potentials
obtained by diagonalizing the coupling between the two
ground states [g_; ) and |g41 ) are

Vaa(2) =0, (6)
VY(2) = Up[cos®(kz — 0/2) + cos®*(kz +60/2)] . (7)

In Eq. (6) Up = As is the height of the potential with
A the laser detuning and s < 1 the saturation parame-

le,+1>
Q.
lg,-1> 1g,0> lg,+1>
Y
/ Y\ >(\ /

FIG. 1. Upper part: atomic-level scheme of a J;, = 1 to
Je = 1 transition in a o+ standing-wave configuration. Only
the A system is physically relevant. Lower part: electric-field
amplitudes of the o+ standing waves. © indicates the relative
phase shift.
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ter. The existence of a dark state is reflected in the flat
adiabatic potential V%,(z) = 0, while the spatial modula-
tion of V},(2) provides hills for a Sisyphus cooling mech-
anism. Nonadiabatic transitions couple the motion on
the two potentials. Cooling is found for blue detunings
A > 0 where V!, > V2 = 0 [9]. There is no polarization-
gradient cooling for A =0 or 6 = w/2.

A proper theoretical description of cooling below the
recoil limit requires a fully quantum-mechanical treat-
ment of the center-of-mass motion of the atom. In the
present paper we will solve the 1D master equation for
laser cooling by quantum Monte Carlo methods, as out-
lined by us in detail in Refs. [10-12] (see also the related
papers [13]). Furthermore, we will calculate the energy
spectrum of the optical potentials in the limit of weak
excitation to identify the dark state and “almost” dark
states in the band structure. This band structure calcu-
lation is the basis for a rate equation analysis [14] which
is valid in the limit of sufficiently large detunings. We
emphasize that in contrast to the RW case there are no
closed families of states as in the SW configuration to
simplify the calculations.

The topics to be addressed in this paper are the kinetic
energy E = (p%/2M), the width of the momentum distri-
bution, the dark-state population as a function of time,
and the laser and atomic parameters for a given initial
momentum distribution. We will also discuss our op-
timum parameters for polarization-gradient cooling and
VSCPT and compare the SW and RW configurations.
In Sec. IT we summarize the basic equations for 1D laser
cooling and establish our notation. In Sec. III we dis-
cuss the band structure and rate equation solution in the
limit when the excited state is adiabatically eliminated.
Finally, in Sec. IV we compare the RW and SW configu-
rations. We find that for the SW a duty cycle which al-
ternates between the optimum polarization gradient and
VSCPT parameters gives significantly higher dark-state
population than the RW.

II. BASIC EQUATIONS

A. Master equation

In this section we summarize the basic equations of
laser cooling in one dimension and establish the notation
for the following sections. We consider an atom with
angular momentum Jg to J. transition interacting with
an electric field

E(z,t) = SZe € (2)e™ ™t 4 c.c. (8)

For the special case of two o+ standing waves the polar-
izations have a spatial dependence of €4 (2) = cos(kz +
0/2). In a rotating frame the atomic Hamiltonian for the
atom interacting with the laser light is

2
Y t
H=_— A;AUA,,

2 -1 e o(2)4, + He] (9)
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with A = wrp — weg the laser detuning,

Q =2&(e||D|lg)/v/2J. + 1 Rabi frequencies, and

Ao = > | Jgs My )(Jg, Mg;1,0|Je, Mc)(Je, Mc | (10)

Mgy, M.

atomic lowering operators given in terms of the Clebsch-
Gordan coefficients. The terms on the right-hand side of
Eq. (9) are the kinetic energy of the atom and the bare
atomic and atom-laser interaction Hamiltonian, respec-
tively.

The coupling of the atom to the vacuum modes of the
radiation field leads to the master equation for the re-
duced atomic density operator,

+k o L
+rZ/_k duN, (u)[Aq(2)e""%] plet™2 AL (3)]
(11)
with
Heg=H - %FZAI,A(, (12)

an effective (non-Hermitian) Wigner-Weisskopf Hamilto-
nian and I' the spontaneous decay rate from the excited
atomic state. The last term in the master equation de-
scribes the return of the atomic electron to the ground
state when a spontaneous photon is emitted (including
the associated momentum transfer to the atom). The
light polarization of the emitted photon is ¢ = 0,41 and
the corresponding angular distribution is given by N, (u)
while Au is the projection of the momentum of the spon-
taneously emitted photon along the z axis.

B. Adiabatic elimination of the excited state

For laser intensities far below saturation, s =
39%/(A?+T?/4) < 1, the excited states of the atom can
be eliminated adiabatically [15]. Making these approxi-
mations one can rewrite the master equation in terms of
the reduced density operator involving only the atomic
ground states,

Pgg = —1 (heﬁpgg - nghsz)
+k o
+7OZ/ dulN, (u)[B,(2)e ™4
o —k

ngg[e+iu23¢1(2)] (13)

with the effective Hamiltonian

b = B+ (v - ;‘%) S BIAB.() (1)

E-‘Ii-i—V(i)—

oi7 G(3). (15)

Note that the atomic lowering operators of Eq. (10) are

replaced by Raman transition operators

By(2) =) (-1)7A4, Al . (2), (16)

ol

which describe laser excitation according to the polariza-
tions €, (z) present at the position z and subsequent spon-
taneous decay back to the ground states. The effective
Hamiltonian h.g contains the ac Stark shift Uy = sA/2
and the optical pumping rate v = sI'/2, which are both
spatially modulated by 3 Bl(z)B,(z). The spatially
modulated ac Stark shifts V(z) act as potentials for the
ground states and are called optical potentials.

C. Band structure and rate equations

For the Hermitian part of the effective Hamiltonian of
Eq. (14) it is useful to define an eigenbasis. Looking at
the optical potentials in Eq. (14) one finds that they have
the translational symmetry [T /2, heg] = 0, where T}/, is
a translation operator z — z+ A/2. Finding the common
eigenvalues of these operators defines the band structure
E.(g) and the Bloch eigenstates |n,q) = e **|n, q)

=Dy, a7)
Hgln,q) = En(q)In,q) . (18)
Tyj2ln,q) = €/?|n,q) . (19)

Here n is the band index and ¢ is the quasimomentum,
defined in the first Brillouin zone q € [—#k, hk]. Note
that |n, ¢ ) labels periodic wave functions defined and nor-
malized in the unit cell z € [-A/4,\/4].

Using this Bloch eigenbasis, we can further simplify
the master equation (13) by assuming that the coher-
ences between different Bloch eigenstates are small (secu-
lar approximation) [14,12,16]. Neglecting the coherences
between different bands n # n’ for a fixed ¢ is valid if
the energy separation between two Bloch states is much
larger than the transition rate due to spontaneous emis-
sion, |En(q) — Em(q)| > T'w(q) (Ym,n,q). This is equiv-
alent to Uy > ~q.

In this case the master equation reduces to a rate
equation for the populations of the Bloch eigenstates,
II,(q) = (n,q|pgg|n,q ), which reads

I 11a(0) = ~La(@Ta(@) + Y [ g yom(a, ) (0)
¢ 1In () = ~Tu(g)lln(q ; 9 Yn,m (¢, ¢ ) m(q),
(20)

where the partial rates for transferring population from
I1,.(q) to II,,,(¢) are defined as

’Yn,m(q’q/)
= Yo [k duz N, (u)|(n,q|Bs(2)e”"*|m, ¢’ )|2
(21)

These partial rates add up to the total rate for depop-
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ulating a Bloch state T'n(q) = Y, [dd Ynm(e,¢) =
Yo({n,q|V(2)|n,q). In Eq. (20) one sees that the optical
pumping rate 7o is an overall factor on the right-hand
side of the equation. This allows one to define a scaled
time variable £ = -y, t, which makes Eq. (20) independent
of Yo-

D. Quantum Monte Carlo wave function simulation

The parameter range for which one has to solve Eq.
(11) determines the method to be used. Whenever it is
possible we solve the rate equation Eq. (20), since the
number of equations is significantly reduced. However,
if the secular approximation cannot be made we have to
solve either the full or the adiabatic eliminated master
equation. This is done by using the method of quantum
Monte Carlo simulation, which is described in detail in
Refs. [12].

III. ADIABATIC ELIMINATION
OF THE EXCITED STATE

A. Band structure

In this section we investigate laser cooling for the J, =
1 to J. = 1 transition for the laser configuration (4) under
conditions where the excited state can be adiabatically
eliminated. The Raman transition operators B,(z) and
the optical potentials V' (2) for the ground states |g_1 ),
lg+1) are

1 0 0
B_(z) = _ﬁ ( cos(0/2 + kz) —cos(0/2 — kz) ) ’

(22)
1 cos(0/2 4+ kz) —cos(0/2 — kz
R ]
(23)
and
V(z)

_ 2cos?(0/2 + kz)

= %U" ( — cos(8) — cos(2kz) o) ~ cos(lka) ) :

2cos?(0/2 — kz)

(24)

respectively. The state |go ) does not enter our discussion
since it is decoupled from the A system |g_1 ), |g+1 ).
Before discussing the band structure for the optical po-
tential (24) it is worthwhile to recall the features of the
potential and band structure in the familiar case of polar-
ization gradient cooling in a Jg to J. = J, + 1 transition
[14,12]. In this case by far the largest ac Stark shifts are
found for the outermost M = +J, to M = +J tran-
sitions. The few lowest-energy eigenstates in the opti-
cal potential are thus associated with the diabatic poten-
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tial corresponding to these outer Zeeman levels. These
low-lying eigenstates are an almost flat energy band as
a function of the quasimomentum g [E,(g) ~const], i.e.,
tunneling to the neighboring wells is negligible. In con-
trast, in the present case the off-diagonal couplings in
the optical potential (24) are of the same magnitude as
the diagonal elements. These large off-diagonal elements
are related to the existence of a dark state and result in
a band structure that differs considerably from the one
encountered in the J. = Jy + 1 transition.

Figure 2 shows the band structure E,(q) as a function
of the quasimomentum ¢ for various potential depths Up.
To discuss these results, especially for low energies, it is
convenient to introduce adiabatic potentials. These adia-
batic potentials are obtained by diagonalizing the optical
potential matrix V(z) with the position variable z as a
parameter. Labeling the two eigenstates by 0 and 1, we
obtain the adiabatic potentials through Eq. (6). The ex-
istence of the flat potential V.%,(z) = 0 indicates that the
system has a dark state. The first adiabatic eigenstate
correspond to a superposition of the two ground states
which decouples from the laser [V,(z) = 0] whereas the
second couples to the excited state and has a nonzero op-
tical potential V},(z) # 0 (Fig. 3). The motion in these
two potentials is coupled by nonadiabatic effects.

For A > 0 the ac Stark shift is positive and there-
fore the nonzero adiabatic potential is positive for all
values of z which implies V}; > V2. In the following
we assume A > 0 (or Uy > 0), which is required to
obtain polarization-gradient cooling. Thus we can dis-
tinguish three different zones in the band structure: (i)
In the energy region 0 < E < min[V]},(z)] below the
lower threshold of V};(z) we find approximately the dis-
persion relation of a free particle corresponding to mo-
tion in V2(z) = 0. The two thresholds are indicated
by dotted lines in Fig. 2. (ii) For intermediate energies

U,=8Ex U,=20E; Uy=60E; U,= 100 Eg
120 ~~— SR :

100 R
%Q@
T < N ZaN

w\/

k
L

<,F
I
|

1 0 -11 0 -11 0 -11 0 -1
q/hk q/hk q/Hk q/Hk

FIG. 2. Band structure in the optical potentials for a
Jg =1 to J. = 1 transition interacting with two o+ standing
waves with phase difference § = /4. The dotted lines indi-
cate the lower and upper thresholds of the nonzero adiabatic
potential.
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FIG. 3. Adiabatic potentials (Uy = —60) for a J; = 1 to
Je = 1 atom interacting with two o4 standing waves with

phase difference 8 = 7 /4.

min[V},(z)] < E < max[V]},(z)] we have in addition a
series of energy bands in V},(z), although these states
show strong nonadiabatic mixing with states in the po-
tential V% (z) = 0. (iii) Finally, for energies above the
upper threshold F > max[V},(z)], the adiabatic approx-
imation breaks down. Using the basis |[g_1) £ |g+1)
separates the problem approximately for energies high
above barrier. There the band structure behaves like two
decoupled levels E%1(q) = Ef,‘l:,es + (g + nhk)?/2m, with
different thresholds Ef"¢* = U, cos?(6/2) and Ethres =
Upsin®(0/2).

The dark state (5) is an eigenstate of the Hamiltonian
(9) and we identify it in the band structure with the
state ¢ = —hk in the first band. The dark state has
no potential energy and zero damping since the ac Stark
shift and the optical pumping rate in Eq. (13) have the
same spatial dependence.

In the rate equations the decay rate (loss rate due to
optical pumping) of the dark state I',,—1(¢ = +1) in Eq.
(20) is zero. In addition to this dark state one finds
states that have a very small decay rate (“almost” dark
states). In contrast to the oy,c._ running-wave case,
where states with small decay rates always were members
of a momentum family F(p) with p =~ 0, these almost
dark states for the lin Z lin configuration are located in
higher bands. For example, the state with band index
n = 2 and quasimomentum ¢ = 0 has a very small decay
rate. Looking at the momentum distribution of this state
one finds that it consists predominantly of momentum
components 0hk and +2Ak. The larger Uy is, the smaller
this decay rate. This is consistent with the fact that
for larger Uy the adiabatic approximation becomes more
accurate. In the adiabatic approximation all states in the
potential V2,(z) state are dark.

Comparing the decay rates of various Bloch states
one finds that states with higher energies decay faster
than the ones at lower energy. This is an indication for
polarization-gradient cooling. We will give a qualitative
picture for the process of polarization-gradient cooling in
this configuration in Sec. V.

B. Solution of the rate equations

In this subsection we discuss numerical results ob-
tained by solving the master equation (11) in a parame-
ter range where the rate equation (20) is valid. We note
that the rate equation depends only on the dimensionless
time variable ot and the parameter Uy/Er. We will see
in Sec. IV below that the rate equation limit is not nec-
essarily the optimum parameter range for polarization-
gradient-assisted dark-state cooling.

Figure 4 shows the time evolution of the momentum
distribution p(p,p) for different interaction times. This
result was obtained by integrating the rate equations (20)
with 50 bands and discretizing the quasimomenta on a
grid Aq = hk/10. For the initial condition we took
a distribution of equally populated bands with energy
E < 250FEg, which corresponds approximately to a flat
momentum distribution of width £16A4k. We see that the
initially broad momentum distribution is rapidly com-
pressed to a narrow Gaussian distribution. This corre-
sponds to polarization-gradient cooling. Somewhat sur-
prisingly, the width of this Gaussian distribution is nar-
rower than one obtained for the familiar polarization gra-
dient cooling on a J. = Jy+1 transition. For example, in
Fig. 4 the width of the distribution at ot = 60 is 2.5hk,
which is equivalent to a kinetic energy of 6.25Fg. This
has to be compared with the minimum energy of 40Fg
for the 1/2 - 3/2 transition [14,12]. For longer interac-
tion yot &~ 300 — 500 the dark state and the almost dark
states are populated and subrecoil peaks at +2hk, 1Ak,
and 0kk appear. For long interaction times only states
near the dark state are significantly populated. From
Fig. 4 one can see very clearly that polarization-gradient
cooling and dark-state cooling occur on entirely different
time scales. The momentum distribution becomes a qua-
sistationary Gaussian distribution on a time scale of the

013 Fyai=10 1 ILY-»(:“‘)‘ o 1
_ ; Y
o 0lF T ‘;
= |
= oost 1
0 " :
oy . . . v » T y i}
o I’“{ot = 600 ot =2000 1
= oaf 1 IT
(= i
<ol S |
0.05 | / \ \ 17 AWA :
N A [ i H
\ ‘ :
/ | v
0 B B S R 4 2 0 4 2
p/hk p/hk

FIG. 4. Momentum distribution p(p,p) for different inter-
action times, calculated by solving the master equation in
the secular approximation. The rate equation was solved
including 50 bands and 20 quasimomenta per band. As
the initial condition equally populated bands with an energy
smaller than 250 F g were assumed. The value for Uy is 40FR.
The width of the the momentum distribution for vyot = 60
(quasisteady state for polarization gradient cooling) is 2.5kk
({(Exin) = 6.25ER).
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order of 10/, while the population of the dark occurs at
a significantly lower rate.

In Fig. 5 we plot the expectation value of the total en-
ergy E as a function of the potential depth Uy (in units
of ER) for different times. For short interaction times we
find the qualitative behavior expected for polarization
gradient cooling, namely, the existence of a minimum
of the energy for Uy = T0ERg (Yot = 60). For shallow
potential depths the momentum distribution develops a
broad background with high momentum tails which tend
to increase the energy expectation value. On the other
hand, a very deep potential depth leads to a strong lo-
calization of the atoms which decreases the cooling rate
(Lamb-Dicke narrowing) [12].

For longer interaction times lowest energies are found
in Fig. 5 for smaller values of Uy. The reason for this be-
havior is that the larger the potential depth, the slower
the optical pumping time into the dark state. To il-
lustrate this, we plot the pumping rate into the dark
state as a function of the potential depth in Fig. 6. As
pointed out before the time scales of the two cooling pro-
cesses are clearly distinguishable, as shown in the inset of
Fig. 6, where the energy expectation value is plotted as a
function of time. After the polarization-gradient cooling
has reached its quasistationary state the energy decays
exponentially o« exp(—vvscprt). In Fig. 6 we plot this
rate as a function of Uy. According to this figure this
rate is three orders of magnitude smaller than -y, and de-
creases with increasing potential depth. This can be ex-
plained by studying the partial rates into the dark states
~Y1,n' (g = —Fk,q’). One finds that the rates peak at ener-
gies E,(gq), which are close to the upper threshold of V},.
This is expected since the overlap integral in Eq. (21)
is maximized when the wave function |n’,q’) oscillates
in space with the same wave number as the dark state
|D). The spatial dependence of the dark state is that
of a momentum eigenstate with momentum +#Ak, which
therefore has the maximal overlap with wave functions

a5
40|
35|
30!
-4
B s Yot =60
A
& 20
Vo5t ]
Yo t =400
10l ]
7o £ = 2000
Yo t = 4000
20 40 60 80 100 120 140 160 180 200

Uo/Er

FIG. 5. Expectation value of the total energy E = (5°)/2m
as a function of the potential depth Uy /Eg for various interac-
tion times. For short interaction times one finds a minimum
for the energy at Up = 60FEg. This minimum is shifted to
smaller values for longer interaction times due to VSCPT.

100 g

L

0.8 .
jsa]
A 10 E
o A 3
=06 m 3
\E \ ~ e~ Yvscr t E
g
> 1 1 1 4
> 0.4 0 500 1000 1500 2000 T
= Yot
02+
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\FIG. 6. VSCPT cooling rate yvscpt as a function of poten-
tial depth Up/ERr. The VSCPT cooling rate is three orders of
magnitude smaller than the cooling rate for polarization gra-
dient cooling. Smaller potential depths improve the VSCPT
cooling rate.

whose energy are slightly above threshold. Polarization-
gradient cooling tends to localize the atom near the bot-
tom of the potential V};. Since for large potential depths
only the few lowest eigenstates in V!, are populated, the
pumping rate into the dark state decreases with Uj.

IV. COOLING EFFICIENCY, OPTIMUM
PARAMETERS, AND COMPARISON BETWEEN
SW AND RW CONFIGURATIONS

In this section we discuss the efficiency of polarization-
gradient-assisted VSCPT and give a comparison between
the SW and RW cases. The basis of our discussion is
provided by numerical results from quantum Monte Carlo
simulations without adiabatic elimination of the excited
state.

The question of optimum cooling parameters and the
comparison of the RW and SW configurations depends on
the physical observable that is considered and on the spe-
cific atom studied. The momentum distributions found in
VSCPT are (non-Gaussian) distributions with two sharp
peaks near +/Ak on top of a broader background. Observ-
ables of interest describing these narrow features are the
“population” of dark state and the corresponding widths
of the momentum distribution. The total kinetic energy
E = (p%)/2m, on the other hand, is a “global” feature
of the distribution and in the present case is often domi-
nated by the broad background [17].

For RW VSCPT we define in the following the dark-
state population Ilg,,; as

Aq/2

Miark(Aq) = / dp(¥nc(p) lp|¥ne(p)) (25)

—Agq/2

with |¥xc(p)) noncoupled states given in Eq. (2) [3].
The dark state has zero measure and therefore we inte-
grate over a small interval which in the following is taken
as Aq = hk/4. If this interval is small Aq < hk the
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dark-state population is directly related to the heights of
the two peaks at p = £ Ak in the momentum distribution.
In the same manner, we define the dark-state population
for the SW case by replacing the momentum family with
the Bloch eigenstates |n,q) in the first energy band,

Aq/2
Maari(A) :/ dp'(n = 1,q — hk|pln = 1.q — hk).

—Agq/2

(26)

Another important quantity is the full width at half
maximum (FWHM) (Apgerk) of the two peaks at p =
+hk. The inverse of this width Azgerk = A/Apaark is
an approximate measure for the spatial coherence of the
density matrix p(z,z’). If Apgark goes to zero, the atom
is in a pure state and the spatial coherence is therefore
infinitely extended.

When comparing these quantities we will distinguish
between light (I' > wpg) and heavy (I' > wg) atoms.
For the case of light atoms we choose helium on the
2538, — 2p3P; transition. The atomic parameters are
I' = 1.6 MHz and wgr = 42.5 kHz so that ' = 37.5wpg.
A time step of wgrt = 1 corresponds to t = 23.5 us.
The width (FWHM) of the momentum distribution after
Doppler cooling is Ap = 6.1hk. We have also performed
calculations for sodium, representing a heavy atom. For
sodium on the 351/2,Fg =1 - 3P1/2,Fe =1 transitions
the atomic parameters are I' = 10 MHz and wg = 25kHz
(I' = 400ER). The width of the Doppler distribution is
Ap = 20hk. We note that in contrast to Na, polarization-
gradient cooling for He gives temperatures not much
different from Doppler cooling. The parameters in our
model are the Rabi frequency €2, the laser detuning A,
the interaction time ¢, and the width of the initial distri-
bution.

A. Optimum parameters for the RW configuration

In order to have a fair comparison we first investigate
the optimum conditions for the standard o+ RW VSCPT
(3]. For a given atom the quantities one can vary are the
Rabi frequency 2 and the laser detuning A. Our goal is
to maximize the dark-state population for a certain inter-
action time starting from an initially broad momentum
distribution (Doppler cooling). We will see below that
for VSCPT in a RW configuration there exists an opti-
mum Rabi frequency. The optimum detuning is A = 0
(on resonance).

The optimum Rabi frequency is determined by the fol-
lowing considerations: (i) The excitation profile of the
laser light should excite as many atoms as possible in
the given initial velocity distribution (capture range).
Increasing the Rabi frequency will power broaden the
atomic transition and thus increase this velocity range.
This range determines the number of atoms that are
eventually pumped into the dark state; atoms outside
this excitation profile will be lost. (ii) VSCPT is based
on a random walk between momentum families and scat-
tering more photons in a given time will increase the

number of “trials” to fall into the dark state. From this
perspective, it is preferable to work at large values of
the Rabi frequency (saturation) to increase the scattering
rate. (iii) If the Rabi frequency is too large, the process
of the coupling of the noncoupled state |¢ yc(p) ) back to
the coupled ground state |1)c(p)) loses its velocity selec-
tivity. According to Ref. [3], for low Rabi frequencies the
velocity selective decay rate |¢¥nc(p)) — [¥c(p)) scales
as I = T(kp/m)?/Q? and states with a family index
| p |# 0 have a very long lifetime and are “practically
dark.”

In Fig. 7 we plot the decay rate of the dark state as
a function of the atomic velocity for different Rabi fre-
quencies. The decay rate was obtained by diagonalizing
the effective Hamiltonian Heg in a given family F(p) and
plotting twice the imaginary part of the smallest eigen-
value. As expected, for the family index p = 0 the decay
rate is exactly zero and for a small region around the dark
state the decay rate is very small (Raman hole). With
increasing Rabi frequency the Raman hole gets deeper
and broader. To explain this we recall that the reason
for the Raman hole is a destructive interference between
the o, and o_ transition. This destructive interference
is complete for zero Raman detuning. Only the momen-
tum family with family index p = 0 leads to zero Raman
detuning, in contrast to the Doppler shifted momentum
families with p # 0. If the Rabi frequency is much larger
than this Doppler-induced Raman detuning, the differ-
ence in transition amplitudes for the o4 transition is
small and the cancelation therefore almost complete. For
He the Raman hole is much narrower than for Na (Fig. 7).
The reason is the different spontaneous decay widths; in
addition, for a given momentum p the Doppler shift for
Na is much smaller than for He. As a consequence, the
capture range of Na is much larger than for He, but un-
fortunately the Raman hole for Na is also broader.
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FIG. 7. Decay rate of the (nonperturbative) noncoupling
state |¢nc ) as function of the family index p, for the case of
helium atoms (I' = 37.5wg) and sodium atoms (I" = 400wr).
For p = 0 the decay rate vanishes. The width (FWHM) of
the Raman hole is approximately /2.
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The optimum value for the laser detuning is A = 0.
This is easily understood by applying the arguments
above. If the transition is not driven on resonance, the
Rabi frequency has to be increased in order to obtain the
same number of scattered photons as for zero detuning.
Increasing the Rabi frequency broadens the Raman hole
and therefore makes the VSCPT less efficient.

In Fig. 8 we plot the dark-state population as a func-
tion of Rabi frequency for the case of Doppler cooled
He and Na atoms. The optimum value for the Rabi fre-
quency for He is Q = 20wgr = 0.53I" for a short inter-
action time (wgt ~ 30). This corresponds to a satura-
tion parameter s = 0.56. For longer interaction times
the optimum Rabi frequency is shifted to larger values
(2 = 30wpg for wrt ~ 300) since a larger capture range
is required to excite atoms which have diffused to larger
momenta. For an initial distribution which is broader
than the Doppler cooling distribution for He, the op-
timum Rabi frequency is shifted to larger values, e.g.,
Q = 40wpg for an initial momentum width Ap = 8hk.
For Na the spontaneous decay width is much larger than
the recoil energy and our conclusions regarding the op-
timum Rabi frequency change correspondingly. In con-
trast to He, which could be driven close to saturation
without losing velocity selectivity, for a given momen-
tum p the Doppler shift for Na is much smaller (relative
to I'). From Fig. 8 we see that the optimum Rabi fre-
quency for Na is @ = T0wg for a short laser interaction
and Q@ = 100wpg for the long time regime; these values
correspond to a saturation parameter of s = 0.06 and
s = 0.125, respectively. Comparing the numbers of pho-
tons scattered in a time interval 1/wgp for He and Na
one finds that these numbers are approximately the same
(SoptT'/wR)He = (SoptI'/wR)Na, With sept(< 1) the opti-
mum saturation parameter. Very similar conclusions are
derived for VSCPT in a SW configuration with the laser
tuned on resonance, i.e., when there is no polarization-
gradient cooling.
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FIG. 8. Dark-state population as function of Rabi fre-
quency for the case of RW VSCPT for helium and sodium.

B. Optimum parameters for the SW configuration
and comparison of RW vs SW

The results of our comparison between the SW and
RW configuration are summarized in Figs. 9-11 (for He)
and Fig. 12 (for Na). These figures illustrate the time
evolution of the dark-state population (Figs. 9 and 12),
the width of the momentum distribution Ap (Fig. 10),
and the kinetic energy E (Fig. 11). The initial momen-
tum distribution in these plots corresponds to Doppler
cooling.

Before discussing these figures in detail we find it
worthwhile to make the following remarks.

(i) Polarization-gradient cooling gives the lowest tem-
peratures for low intensities and large detunings [14].
VSCPT, on the other hand, works best on resonance.
Thus polarization-gradient cooling and VSCPT have
their optimum values in quite different regions of parame-
ter space. The question of finding optimum detuning and
Rabi frequency must always involve a trade-off between
polarization gradient and VSCPT. This motivates us to
study two scenarios: (a) The laser Rabi frequency and
laser detuning are kept constant as a function of time;
the optimum parameters for the RW and SW are deter-
mined by optimizing the dark-state population for a cer-
tain interaction time. (b) We study a duty cycle for the
SW configuration where we alternate in time between the
optimum Rabi frequency and detuning for VSCPT and
polarization-gradient cooling.

(i) The discussion below will identify the role
of polarization-gradient cooling in combination with
VSCPT as twofold: First, polarization-gradient cooling
provides a precooling of the initial distribution, and sec-
ond, confinement of the momentum distribution to a re-
gion of a few ik (suppression of atomic escape). The first
effect is the dominant mechanism for short interaction
times (as in atomic beam experiments). The relevance
of precooling depends strongly on the width of the ini-
tial momentum distribution: for Doppler cooled He, for
example, there is no need to precool, while for Doppler
cooled Na precooling is essential. On the other hand,
confinement of the velocity distribution by polarization-
gradient cooling and the coexistence of this cooling mech-
anism with VSCPT is essential for the long time behav-
ior.

In Fig. 9 we plot the dark-state population as a func-
tion of time for He. The solid line was calculated for the
case of standard VSCPT of helium with counterpropa-
gating o4+ waves. The parameters = 30wg and A =0
correspond to the optimum value for this configuration
(for a time wpt = 600). This has to be compared with
the dash-dotted line, which shows the time dependence
of the dark-state population for the SW cooling scheme
(2 = 150wg and A = 150wg). As mentioned above, for
short interaction times the case of A = 0 shows the most
dark-state population, but after an interaction time of
(wgrt = 300) the two curves cross and the SW scheme
becomes more efficient. For these times one is in the
regime where most of the population, which was origi-
nally located around p = 0, is either trapped in the dark
state or has been heated up to large momenta. If no
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FIG. 9. Dark-state population as function of interaction
time for the case of helium atoms (I' = 37.5wg). Solid
line, o+ running-wave laser configuration with A = 0 and

Q = 35wr; dash-dotted line, o+ standing-wave laser config-
uration (§ = w/4) with A = 150wg and Q = 150wg; dashed
line, o+ standing-wave laser configuration (6 = =/4) with
time-dependent laser parameters (duty cycle).  varies from
15wr to 170wg. A varies from Owg to 190wgr. The inset
shows a logarithmic plot of the momentum distribution at
wgrt = 600. For the RW (solid line) the distribution has sig-
nificantly broader wings than for the SW with duty cycle
(dashed line). This illustrates the compression of the mo-
mentum distribution by polarization gradient cooling.

polarization-gradient cooling is present, the rate of pop-
ulating the dark states becomes small since atoms with
large momenta need to scatter many photons in order
to become trapped in the dark state. This causes the
dark-state population to saturate in time. Polarization-
gradient cooling keeps the momentum distribution con-
fined and the saturation of the dark-state population as
a function of time happens at later times (see the inset
in Fig. 9). The width of the momentum distribution as
a function of time is plotted in Fig. 10. We note that
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FIG. 10. Width of the peaks at p = +#k as function of the
interaction time. Solid line, RW VSCPT; dash-dotted line,

SW VSCPT; dashed line, SW VSCPT with duty cycle. For
parameters see Fig. 9.

for the SW configuration (dash-dotted line) we find a
broader width than for the RW (solid line) since for the
SW the large Rabi frequency leads to a broader Raman
hole.

One might expect a more pronounced improvement
when using the polarization-gradient-assisted VSCPT.
However, the polarization-gradient-cooling mechanism,
which keeps the momentum distribution confined, makes
the VSCPT less efficient so that in sum the improvement
is not so significant. A solution to this problem is to al-
ternate the laser parameters between the regime where
either polarization-gradient cooling or VSCPT works at
its optimum values. This duty cycle combines the advan-
tages of both mechanisms. During a cycle with large de-
tuning, polarization-gradient cooling compresses the mo-
mentum distribution and cools those atoms which were
heated during a VSCPT cycle. This is followed by a cy-
cle with A = 0, which pumps the population within the
VSCPT capture range in the dark state. We emphasize
that the coexistence of polarization-gradient cooling and
VSCPT is crucial for such a duty cycle since during the
period of polarization-gradient cooling the population in
the dark-state is preserved.

Figure 11 illustrates this duty cycle, where the dark-
state population and the total energy of the atom are
shown as a function of time. The dotted lines indi-
cate times when the laser parameters are switched from
Q = 180 and A = 200 for the polarization gradient cycle
to 2 = 10 and A = 0 in units of E for the VSCPT cycle.
For the duration of the cycle we took wgTeycle = 5, which
corresponds to an interaction time where polarization-
gradient cooling is almost stationary. As modulation,
a smoothed square function was assumed so the transi-
tion between the two sets of parameters was not abrupt.
From Fig. 11 we see that whenever the laser parameters
are set for optimum polarization-gradient cooling, the en-
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FIG. 11. Dark-state population (solid line) and energy
expectation value (dashed line) as function of time for
time-dependent laser parameters. For the first and the third
time period (dotted lines) 2 = 180 and A = 200 (optimum
polarization-gradient cooling). For the second and the fourth
time period Q@ = 10 and A = 0 (optimum VSCPT) in units
of Erg.
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FIG. 12. Dark-state population as function of interaction
time for the case of sodium atoms (I' = 400wgr). Solid line,
o+ running-wave laser configuration with A = 0 and 2 = wg;
dashed line, o+ standing-wave laser configuration (0 = 7w /4)
with time-dependent laser parameters (duty cycle): € = 200
and A = 150 for the polarization-gradient cycle and 2 = 70
and A = 0 in units of Er for the VSCPT cycle. The inset
shows a logarithmic plot of the momentum distribution at
wgrt = 600 (see Fig. 9).

ergy decreases, which corresponds to a compression of the
momentum distribution. On the other hand, during the
VSCPT cycle the energy increases, but the slope of the
time-dependent dark-state population is much steeper.
In Fig. 9 we compare this time-dependent scheme (dashed
line) with the standard VSCPT (solid line). We see that
for short interaction times as well as in the long time
regime, alternating between polarization-gradient cool-
ing a VSCPT improves the dark-state population signif-
icantly. In addition, in Fig. 10 the width of the peaks
at p = *hk in the momentum distribution is narrower
than that achieved with RW VSCPT (dashed line). The
reason for the narrow peaks is that one can choose a
relatively small Rabi frequencies during the VSCPT cy-
cle since only a small capture range is required as the
polarization-gradient-cooling cycle compresses the pop-
ulation around zero momentum. For the duty cycle we
used a period of wrTcycle = 4, which is shorter than
the time required to reach the quasistationary state for
polarization-gradient cooling but leads to an improve-
ment in the short time regime, since already for wrt = 8
a full VSCPT cycle is performed.

Finally, Fig. 12 compares the different cooling schemes
for the case of Na. As mentioned above, for Na a small
saturation parameter (s = 0.1) leads to optimal RW
VSCPT. For a small saturation parameter the results
for Na are very similar to those obtained for He. Fig-
ure 12 shows that the SW scheme with time-dependent
laser parameters (dashed line) improves the dark-state
population for all interaction times.

V. CONCLUSION

In this paper we have presented a fully quantum-
mechanical analysis of laser cooling on a J; = 1 to
J. = 1 transition in a laser configuration consisting or
two counterpropagating laser beams where the lasers are
linearly polarized with angle § = 7/4 between the po-
larization vectors. The essential feature of this configu-
ration is the coexistence of subrecoil cooling (VSCPT)
and polarization-gradient cooling. Polarization-gradient
cooling occurs at a time scale significantly shorter than
VSCPT. The optimum parameter values for polarization-
gradient cooling and VSCPT are in a completely different
parameter regime: Polarization-gradient cooling works
best off resonance and for low intensities, while VSCPT
works best on resonance.

The role of polarization-gradient cooling is twofold:
First, for short interaction times it provides precooling
of the initial momentum distribution to polarization-
gradient temperatures (we find typically Ap = 2.5hk
and we point out that these temperatures are consider-
ably lower than what is expected for usual polarization-
gradient cooling on a J. = Jg + 1 transition). The rel-
evance of precooling depends strongly on the width of
the initial relative to the polarization gradient distribu-
tion. Second, in the long time limit polarization-gradient
cooling leads to a confinement of the velocities to within
a few hk during the phase of dark-state cooling. Thus
polarization-gradient cooling compresses the high-energy
tail of the velocity distribution. This eventually leads
to a larger number of atoms being captured in the dark
state (when compared with the scheme of Aspect et al.
).

We can combine the advantages of polarization-
gradient cooling and VSCPT in a scheme where we cycle
in time between the optimum cooling parameters for both
cooling mechanism. This leads to an increased pumping
time into the dark state and in the polarization-gradient
cycle compresses the atoms that escape in VSCPT with
o* running waves.

In unpublished work we have generalized the above
quantum calculations to 2D laser configurations. In
addition we have performed quantum simulations for
polarization-gradient-assisted dark-state cooling in a
“flat bottom” trap (generated, for example, by far off-
resonant laser light).
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