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Semiclassical calculation of the diffusion constant for the A system momentum
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We present a one-dimensional, semiclassical calculation of the momentum diffusion constant for a sta-
tionary A atom. We show that if the difference detuning between the driving fields is zero, the diffusion
vanishes, and we interpret this behavior in terms of the atom-field eigenstates. We present explicit solu-
tions to the equations of motion in the special case where one of the driving fields vanishes and compare
them to the case of a two-level atom at a field node. Finally, we examine the correspondence between
the semiclassical and quantum-mechanical analyses at zero difference detuning and we show a
correspondence between the semiclassical and quantum-mechanical dark states when the driving fields
are superpositions of plane waves with the same magnitude of wave vector.

PACS number(s): 32.80.Pj

I. INTRODUCTION

The cooling and the trapping of A three-level atoms in
Raman resonant fields (see Fig. 1) have been of great in-
terest for some time. The A system is shown in Fig. 1
and consists of two long-lived ground states |a ) and |b)
and an excited state |e ). We assume that this system is
excited by two laser fields E, and E,, where E, interacts
only with the transition |a ) —|e) and E, interacts only
with the transition from the ground state |b)—le). It
has been shown that if E; and E, are counterpropagating
traveling waves with no difference detuning A, then there
is no momentum diffusion in the steady state [1]; conse-
quently, there is no limit on the narrowness of the
momentum distributions. Unfortunately, though there is
compression in momentum space, there is no semiclassi-
cal cooling or compression in position space. In contrast,
it has been shown that if the two driving fields are stand-
ing waves, then there can be significant compression in
position space, as well as semiclassical cooling and

FIG. 1. A system.
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velocity-selective coherent population trapping [2,3]. A
trapping configuration that uses these forces has been
proposed [4]. The ultimate temperature and density that
can be achieved in a standing-wave Raman trap may be
limited by the diffusive processes which accompany the
cooling and trapping [5].

In this paper, we present a semiclassical calculation of
the momentum diffusion coefficient D, for a stationary
atom in one dimension [6]. This calculation shows that if
the difference detuning A=0, then the diffusion
coefficient D, will be zero. This semiclassical result is in-
dependent of all other field parameters, including the
functional form of the fields. It is consistent with the
well-known result that D, =0 if the two excitation fields
are counterpropagating traveling waves [7]. It is also
consistent with the fully quantum-mechanical proof of
the existence of a state with zero diffusion in the case
where the two excitation fields are standing waves and
the difference detuning A=0 [2]. This calculation is,
however, more general since it also allows the momentum
diffusion coefficient to be evaluated for cases where A70.
Finally, we examine the correspondence between the
semiclassical and quantum-mechanical analyses at zero
difference detuning and we show that there is a
correspondence between quantum-mechanical and semi-
classical dark states when the driving fields are superposi-
tions of plane waves with the same magnitude of wave
vector.

II. DESCRIPTION
OF SEMICLASSICAL CALCULATION

A. Hamiltonian and equations of motion

In the semiclassical description, the Hamiltonian H for
the A system is given by
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H=HA_d'E(z)t) . (1)

Here H ,= —#iw,,|a ){a| —#w,,|b){b] is the bare atom-
ic Hamiltonian and d is the electric-dipole operator. We
restrict ourselves to one spatial dimension z and take
E(z,¢) to have a positive-frequency component

—loyt

E Nz, 0=1[6E (De V+EE (e 1. @

We assume that the polarizations € , are chosen such
that E|,(z) interact separately with the |a,b)—|e)
transitions. Eliminating antiresonant terms and trans-
forming to the rotating frame, we have

HA=ﬁ(81]a)<a|+82|b)(b|), (3)
—d-E(z)=—g[ﬂlle)(a|+Qzle)(b|+H.c]. @)

We have defined the detuning 8, ; and the Rabi frequen-
cies QI,Z by

81,2= 01~ @ p)e > (5)
<e|d'€1’2|a,b >E1’2
1,2= h . (6)

We further define the common mode detuning 8 and the
differential detuning A by

5=1(8,+8,) , (7)
AZSI_SZ ) (8)

so that we can symmetrize H , by displacing the zero of

energy by —#6. Making this transformation, we have for
H

=—”—2éua><ar—|b><b|>—ﬁa|e><e|

—g[ﬂlleﬂal*—ﬂﬂaﬂel

+Q,le)(b|+QX[b)(el] . )

Assuming that the population of |e ) decays at a rate
T, with rates y, ), to |a,b), we get the equations of
motion of the density-matrix elements by projection over
the following master equation for the density matrix p:

92— 11,91~ {le el p)

+(ygeladal+v,l10)<bl)p,, . (10)
We will use the equations of motions for the density-
matrix elements when computing D,.
B. Diffusion constant

The diffusion constant D, measures the rate of heating
of the atomic momentum distribution and is defined as

[6],
20, =% ((pp) = (p)-(p)) . an

To calculate these time derivatives, we use the Heisen-
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berg equation of motion dp(z)/dt =(1/i#)[p(t),H]. The
internal operators of the atom commute with the momen-
tum operator when taken at the same time, as do the
creation and annihilation operators of the vacuum field
E,,.. Since for O(z), any operator function of z, we have
[p,,0(z)]=—i#d0(z) /9z, and since E,,. has zero aver-
age gradient [8],

MEH(M:WQW><01+V02|e)(bl+H.c.) ,

d
(12)
PR (p (1)) +(£001p) =2 ReC E(0)pl0))
(13)
With this substitution, the diffusion constant becomes
D, =Re [ “dt[{£(0)-£(1)) —(£(0))-(£(1))] . (14)

The time zero is chosen for convenience and we have
rewritten p(¢)= f dt'f(¢'). In this analysis, we only con-
sider the diffusion in the steady state, so we can assume
that the atom is in the steady state at time zero. We then
may replace {£(0))-{f(¢)) with (f(0))-{f(0)) so that
finally [6],

D,=Re [ “dt[(£(0)-£(1)) = (£(0))-(£(0))]. (15)

Using (12) for the force and defining the projection
operators

Pij=|i><j'y
S:{VQ’IPea’VQrPawVQ‘ZPbe’VQ;Peb} ’

we may rewrite the diffusion constant as

D,=[dr| 3 [(0,(000,(0)—(8,(0))¢0,(0))]
0,0,es
+#2(k2y .0 k3 ) PLP,(0)) . (16)

The final terms are due to the commutator between (free)
fields and represent the momentum recoil due to spon-
taneous emission. We can add them in by noting that
the decay from the upper state due to spontaneous emis-
sion occurs at a rate ¥ ,,(¥,,), the momentum uncertain-
ty per spontaneous decay is simply #*k?(#%*k3), and the
number of decays is governed by the excited state popula-
tion, which is p,, = (P P,,(0)).

We see from (16) that D, depends on the two-time
correlation functions of the atomic operators. In order to
calculate these correlations, we use the quantum regres-
sion theorem [9]. This theorem relates the equation of
motion of a two-time correlation function such as
(P, (0)P,(t)) to that of a single operator equation of
motion such as (P,(7)), using the fact that
(P, (0)P,(t)) is formally equivalent to <{P,(z))
=tr[pP,(t)]=p,, With p replaced by pP,(0) [10]. For
example, if we solve the equation of motion of (P, (¢))
for an arbitrary set of initial conditions and write
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(P (1)) =ug(t)+u (1){Pge(0)) +u,(£){ P, (0)) +us(t){ Py (0)) +u,(t){P,(0))
Fus()(P,,(0)) +ug(t)(1){Py(0)) +us(){ Py ) +ug(t)( Py, (0)) +ug(t)( P, (0)) (17)

then
(P, (0)P,(t))=(uy+ug){P,(0))
+u,(P,,(0)) +u,(P,(0)) . (18)

Proceeding in this way and using Laplace transforms to

calculate quantities such as f o dt u;(t), we arrive at an
expression for D,. This expression is quite complicated
in general, so a plot better indicates the physical features

of the diffusion.

III. NUMERICAL RESULTS

In Fig. 2, we plot D, against differential detuning A for
the following sets of parameters: Q;=,=5.0 (dotted
line) and Q;=1.0, Q,=7.0 (dashed line). All frequencies
are given in units of y,, =¥ ., =1.0 and momenta are ex-
pressed in units of #ik, where k is the field momentum.
(We choose the frequencies of the driving fields to be
equal for convenience.) Notice that the effective Rabi fre-
quency o=y Q%+ 0?2 is the same for both plots. Two
features of the plot are striking. First, the diffusion con-
stant D, exhibits the Raman dip characteristic of the
excited-state population, and second, D, actually van-
ishes when A=0, which is precisely when the excited-
state population vanishes. In fact, the result that A=0
gives D, =0 holds for general monochromatic driving
fields.

A. Qualitative discussion of numerical results

1. Vanishing of D, for A=0

A simple way to understand the result of vanishing
diffusion when A=0 is the following. The diffusion con-
stant represents the rate of change of an expectation
value in a particular state. If that state is an eigenstate of
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FIG. 2. Plots of diffusion for Q;=Q,=5.0I" (dotted line) and
Q,=1.0T, Q,=7.0I" (dashed line).

[

the full Hamiltonian, then no expectation values can
change. When A=0, one can see from the Hamiltonian
(9) that the state | — ) is an eigenstate of H with eigenval-
ue zero, where

1
|—)=————__——(Q.2ia)—9.1|b) ) (19)
VvV Q3+ 0}
H|—-)=0. (20)
Since |—) is decoupled from the laser excitation, we

know that when A=0, the state |— ) is an eigenstate of
the atom plus laser photons system. Yet what makes
| — ) unique in terms of diffusion is that it is an eigenstate
of the atom plus laser photons plus vacuum field (spon-
taneous photons) system. Since the dark state is never ex-
cited into |e), it is never connected with spontaneous
photons and remains stationary. This should be contrast-
ed with a two-level dressed state, in which the dressed
state is an eigenstate of the atom plus laser system, but
each dressed state contains a component of the excited
state. This component couples the dressed state to the
vacuum field so that spontaneous emissions occur and
one dressed state decays into another, preventing them
from qualifying as eigenstates of the extended atom-
laser-vacuum system. We should note that the vanishing
of the diffusion constant here is not a strictly valid result
since the idea of a semiclassical diffusion constant is
based on adiabatic elimination of fast internal variables
and when the condition A=0 is fulfilled, the internal time
scale of the atom is no longer fast. However, we can still
use the result as a consistency check for our calculation.

2. Effect of unequal Rabi frequencies

The case of unbalanced Rabi frequencies clearly exhib-
its a broader region around its minima than the case of
balanced Rabi frequencies. This is understandable if we
view the ©process in the dark state basis
{(1=21+)=(1/9)Qla)+Q,|b)),le)}. One can
show that | — ) is coupled to |+ ) at a rate A sin26, where
tan(0)=Q,/Q, [11]. The |+ ) state then strongly cou-
ples to the excited state at a rate Q, while | — ) is never
directly coupled to the excited state. If 1, is much larger
than (,, sin(26) tends toward zero, so that the coupling
between |— ) and |+ ) is very small even for a range of
nonzero A. Thus, as the fields become unbalanced, the
coupling to the excited state, and thus the diffusion, be-
comes less sensitive to changes in the differential detun-
ing, giving rise to a broadened area around the minima.
We note in passing that if we plotted the diffusion con-
stant as a function of A sin26, the widths of the two plots
should be the same.

3. Analytic solution at a field node

Finally, we discuss the special case of a three-level
atom at a field node. This case is of particular interest
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since in a two-level atom at a standing-wave field node,
even though the excited-state population is zero, the
diffusion is nonzero. This has been interpreted by stating
that even though the field value is zero, the atom’s fluc-
tuating dipole moment interacts with the nonzero field
gradient, giving rise to a random diffusive force [6]. This
is not the case in the three-level system, as we will now
show expicitly.

When one of the driving fields ({);) vanishes, the opti-
cal Bloch equations predict that the population will all be
pumped into |a ). In this limit, the A system would ap-
pear like a two-level system at a field node, so intuitively
we expect that D, would be given by an expression simi-
lar to that of a two-level system at a field node. However,
our calculation indicates that D, always vanishes when
A=0. One way to understand this result physically is to
look back to the optical Bloch equations.

Letting p be the atomic density matrix and setting §,,
the detuning on the |a ) —|e) transition, equal to zero
for convenience, we find that the equations of motion of
Pqe and p,, become decoupled from the other density-
matrix elements. In particular, if T is the total decay rate
of the state |e ),

dp r 1.

d:e == S Pae T 51N 2D
dpap _ 1,
-;;’—=?Q;pab ) (22)

We notice that this equation of motion for p,, is not the
same as the equation of motion for the coherence o, in
an undriven two-level system, which is given by
dog, r

@ 2% 23)
where ' is the decay rate. In the three-level system
there is the extra term p, which corresponds to the
coherences between the two ground states. This extra
term represents the coherent excitation of the two ground
states and marks a fundamental difference between the
two- and three-level systems.

We find, using the quantum regression analysis, that
D, depends only on p,,. If we write the time-dependent
solution of p,, (for an arbitrary set of initial conditions)
as paezao(t)+aae(t) ae(0)+aabpab(0)+aebpeb(o)+ T
and so on for the nine density-matrix elements, we find
that

D,= fowa;ep,,,,(mdz . 4)

Combining (21) and (22) above, we notice that the equa-

tion of motion for a,, is formally equivalent to that of a

damped harmonic oscillator with damping rate " /2 and
natural frequency Q,. The solution is

— —1 1

. = A 7Fe;‘+'+ At 2F2ex_z

— 25
e AL —A_ Ar—A_ ’ 25

where

Ay=—Tx—(I?—40))"*. (26)
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Integrating this solution shows that D, vanishes; it is im-
portant to notice that D, does not vanish because the
kernel of the integral is identically zero, but rather be-
cause of a sign change in the force correlation over time.

In the limit that Q,<<T, there is a simple physical
interpretation of this cancellation. In this limit,
Ay~—03/2T? and A_~—T/2; A, is the rate at which
the amplitude of the |+ ) state decays into the |—),
while A is the natural decay rate of |e ) into | — ). The
amplitudes corresponding to these decays are exactly out
of phase: because (), vanishes, the |+ ) state is simply
|b) and the population flopping between |e) and |b)
occurs at the Rabi flopping rate. The amplitude extrema
of these two states occur exactly 180° out of phase, so
that the time development of e ) and |b ) is out of phase.
The decays of their amplitudes therefore have opposite
signs; the rapidly decaying term (A_) corresponds to a
direct decay from |e) to |a ), while the slowly decaying
term (A, ) corresponds to a decay from |b ), mediated by
the driving field Q, and out of phase with the direct de-
cay. The oppositely phased amplitudes lead to a vanish-
ing D,.

IV. CORRESPONDENCE BETWEEN SEMICLASSICAL
AND QUANTUM-MECHANICAL RESULTS

One of the difficulties with the semiclassical result that
D,=0 when A=0 is that the semiclassical theory is based
on an adiabatic elimination of fast internal variables and
that when A—0, the internal time scale of a stationary
atom can become very long. In this section, we address
the question of the correspondence between the semiclas-
sical and quantum-mechanical results that the diffusion is
zero at A=0.

Physically, the vanishing of D, semiglassically arises
from the existence of the dark state, which is an eigen-
state of H. We now want to see whether this semiclassi-
cal dark state will carry over to the quantum-mechanical
dark state |D ), where |D) contains both internal and
translational (center-of-mass) degrees of freedom. Semi-
classically, one can always construct a dark state at each
point z, using the prescription (19). We want to see under
what conditions one can also construct a quantum-
mechanical dark state which does not experience momen-
tum diffusion. As before, we restrict ourselves to one spa-
tial dimension z.

In order to construct the quantum-mechanical dark
state, we consider the full Hamiltonian H, including the
kinetic terms:

a2

+H,—d-E®2); 27)

H , and —d-E(Z) are the same as those given in Egs. (4)
and (9), except that we treat the position Z as an opera-
tor. The two criteria for constructing a dark state |D )
are that first, | D ) must not “see” the laser interaction, so
it must have eigenvalue zero with respect to the dipole in-
teraction term, and second, |D) must be a stationary
state, so it must be an eigenstate of H:

—d-E(2)|D)=0, (28)



51 SEMICLASSICAL CALCULATION OF THE DIFFUSION . .. 2293

H|D)=A,|D) . (29)

We take |D ) as a superposition of the two ground states,
where each of the ground states has some associated
translational state |4, ):

IDY=|¢,)®la)+|¥,)e|b) . (30)

Letting ;(z)=(z|y;), condition (28) for a dark state
gives

Y,(2)Q,(2)= =19, (2)Q,(2) , (31)
so that
Y, 5(2) =L f(2)Qy 4(2) , (32)

where f(z) is some function of z that we may choose.
Condition (29) then implies that

ﬁZ 2
— g ([ (@1=0, 33)
2 2
-;—M&—AD Lf(2)0, (2)]=0 . (34)

Condition (34) is the general criterion for the
quantum-mechanical dark state and it can place restric-
tions on the allowed fields Q, ,(z). We now specialize our
analysis to the case in which the ground states |a ) and
|b) are degenerate; this situation arises, for example,
when the A system is derived from a degenerate
J,=1—J,=1 transition driven with o, and o _ circu-
larly polarized light. When |a ) and |b ) are degenerate,
the condition A=0 requires that the monochromatic
fields Q,(z) and Q,(z) have the same magnitude of wave
vector k, so they can be written as

Q,(2)= A+ A e %, (35)

where the AT are some complex amplitudes. In this
case, we may choose f(z) to be a constant, because
Q, ,(z) automatically obey the condition (23). It is in-
teresting to note that in this case, the semiclassical dark
state corresponds, up to normalization constants, to the
position representation of the quantum-mechanical dark
state [D ). This means that in the cases of standing- or
traveling-wave excitation on a A system with degenerate
ground states, one has a correspondence between the
semiclassical and quantum-mechanical dark states.

V. SUMMARY

In summary, we have presented a calculation of the
semiclassical diffusion constant for the three-level A sys-
tem. We find that the diffusion constant vanishes in the
steady state for the three-level A system, provided A=0
and for A¥0, the shape of the diffusion constant follows
the qualitative behavior of the Raman dip, including a
broadening of the dip for unbalanced Rabi frequencies.
We have also studied the correspondence between the
semiclasscial and quantum-mechanical dark states. Since
the steady state of the A system typically is reached on a
very long time scale, in the future it would be worthwhile
to investigate the behavior of the diffusion in the tran-
sient regime.
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