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Dark-state-based three-element vector model for the stimulated Raman interaction
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In this paper we develop a three-element vector model to describe the stimulated Raman interaction in aL
system. This model is valid over the range of interaction energies for which the excited state follows the
ground states adiabatically. We use the model to present simple physical interpretations of the generation of
Raman-Ramsey fringes in a separated field excitation, the ac Stark shift in the Raman clock, the ultrahigh-
resolution mapping of microwave phase using Raman probes, and the coherent transfer of population by
adiabatic passage for atomic beam splitters. The expressions for observables are derived by inspection and
agree quantitatively with published experimental results.@S1050-2947~97!00302-8#

PACS number~s!: 42.65.Dr, 32.80.Wr
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I. INTRODUCTION

Recently, there has been much interest in potential ap
cations of the Raman interaction in aL-type three-level sys-
tem, where the upper state is short lived and the low-ly
states are long lived. The applications include the Ram
clock @1–3#, frequency conversion using Raman lasing@4,5#,
Raman phase conjugation@6,7#, generation of squeeze
states@8#, lasing without inversion@9#, optical mapping of
microwave phase and optical deflection of millimeter wav
@10#, Raman-induced spin echo for optical data storage
image processing@11#, ultrahigh resolution position sensin
@12#, atomic interferometry@13–15#, atomic beam deflection
@16#, and subrecoil cooling of atoms@17–19#. For these and
potentially other applications, it is useful to understand
time-dependent behavior of the Raman interaction.

For a closed system, the optical Bloch equations for thL
system involve eight real variables. Numerical methods h
been employed to determine the time evolution of the s
tem, but this approach does not greatly enhance one’s i
ition. As an alternative, several authors@20# have used the
dressed states to illustrate the fundamental features suc
population trapping in the Raman interaction. The dress
state basis was extended to develop a coupled-pendu
model@21# for further insight. Variations of this model hav
also been used to illustrate the behavior of optical forces
a L-system atom@22#. However, this model does not tak
into account the influx of spontaneously decaying atoms
the two low-lying states, so that the results obtained are o
qualitatively correct. When the source terms are includ
@19#, the dressed states optical Bloch equations are no lo
easy to interpret.

In this paper, we develop a model to describe theL sys-
tem under stimulated Raman excitation that is easy to in
pret physically, but at the same time can be used to
analytical solutions for the time-dependent behavior of
servables, often by mere inspection. This model is valid o
the range of interaction energies for which the excited s
follows the two ground states adiabatically. In this lim
~consistent with many cases of experimental interest!, the
Raman interaction is represented by the ground-state dyn
ics, thus reducing the optical Bloch equations to three r
551050-2947/97/55~3!/2272~11!/$10.00
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variables. The time evolution of these three variables~and
thus the entire system! is modeled by the motion of a three
element vector. The ground-state population difference
coherence are directly manifested by this vector. In additi
we show how other observables, such as the excited-s
population and its coherences with the ground states,
also be read directly off this vector.

This model has two main features: it provides a cle
physical interpretation of the transient behavior of the syst
and it is designed to handle the cases of unequal and/or t
varying Rabi frequencies simply. The motion of the vec
can be interpreted physically in terms of partially diagon
ized states so that one can find explicit expressions for
time-dependent observables by simply drawing a diagr
For example, we show how the expression for the ac S
shift of the Raman-Ramsey fringes can be found with
solving any equations at all. We also show how this mo
can be used to compute observables in microwave ph
sensitive optical absorption. The results obtained in this w
are seen to agree well with experimental data reported ea
@3,10#. The model also describes low-intensity adiabatic p
sage in a bichromatic standing wave in a simple and ph
cally illuminating manner.

II. THE STIMULATED RAMAN INTERACTION

A. Basic theory

Figure 1 illustrates schematically theL system under
stimulated Raman excitation. Here the excited stateue& is
short lived and the two low-lying ground statesua& and ub&
are long lived. The light at frequencyv1 couplesua& to ue&,
while the light atv2 couplesub& to ue& as shown. Both cou-
plings are electric-dipole interactions, whose strengths
given by the Rabi frequencies

g1[
mae•E1

\
, g2[

mbe•E2

\
, ~1!

wherem is the dipole moment operator of the atom. T
laser detuningsd1[v12(ee2ea)/\ and d2[v22(ee2eb)/\
are used to define the difference detuning asD[d12d2 and
the common mode detuning asd[1

2~d11d2!. Finally, the in-
2272 © 1997 The American Physical Society
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55 2273DARK-STATE-BASED THREE-ELEMENT VECTOR MODEL . . .
dividual decay rates are given byGea andGeb and the total
decay rate is given byG. Note that we assume a close
system, so that atoms decaying from the excited state e
one or the other of the ground states.

In this paper we use a semiclassical approach in which
laser field is expressed classically as

E~r ,t !5 1
2 @E1~r !e

2 iv1t1c.c.#1 1
2 @E2~r !e

2 iv2t1c.c.#,
~2!

wherer is the position~c.m.! of the atom andv1 andv2 are
the frequencies of the optical fields. Here we will concentr
on the case whereE1~r ! andE2~r ! are traveling plane waves
implying that the field amplitudes and Rabi frequencies
independent of position. In the atomic states basis the Ha
tonian for the stimulated Raman interaction in the elect
dipole and rotating-wave approximations is

H5\F ea /\
0

2 1
2g1e

2 iv1t

0
eb /\

2 1
2g2e

2 iv2t

2 1
2g1* e

1 iv1t

2 1
2g2* e

1 iv2t

ee /\
G ,

~3!

where theei are the energies of the atomic states, and
basis vectors are

ua&5F 10
0
G , ub&5F 01

0
G , ue&5F 00

1
G . ~4!

It is convenient to transform the Hamiltonian to the rotatin
wave basis, which is spanned by the atom-field compo
states

uã&[ua&uv1&[F 10
0
G , ub̃&[ub&uv2&[F 01

0
G , ~5!

uẽ&[ue&[F 00
1
G ,

FIG. 1. Energy diagram of theL system under stimulated Ra
man excitation. Shown are the coupling strengths and frequen
detunings, and decay rates. The statesua&, ub&, and ue& represent
those of the three-level atom alone. The statesuã&, ub̃&, and uẽ&
represent the atom-field composite states that form what we ref
as the atomic states basis. The energies are shown at the le
terms of the difference and common mode detunings.
ter
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where uv1& and uv2& are semiclassical photon states. In th
basis, which we will call the composite states basis,
Hamiltonian can be written as

H̃5
\

2 F D
0

2g1

0
2D
2g2

2g1*

2g2*
22d2 iG

G , ~6!

where we have chosen the zero of energy such
d1ee/\50. We have also added the damping rate to
Hamiltonian to account for spontaneous decay directly.
diagram of the energy levels of the atom-field compos
states is illustrated in Fig. 1. The equation of motion for t
density matrix can then be written as

ṙ̃5
i

\
@r̃H̃†2H̃ r̃ #1L̃ r̃ ẽ ẽ , ~7!

wherer̃ is the rotating-wave density operator represented
the basis of Eq.~5! and L̃ is the source matrix

L̃5FGea

0
0

0
Geb

0

0
0
0
G . ~8!

The physical process governing the Raman interactio
more transparent in a basis in which the Raman trapped s
is one of the basis vectors. We will use this approach
deriving as well as interpreting the three-element vec
model. However, since most of the familiar observables
expressed in the basis of Eq.~5!, we will interpret the results
in that basis as well.

B. The Raman interaction in terms of the trapped state

The trapped state is a coherent superposition of the
ground states, weighted in such a way that there is no
dipole moment coupling this state to the excited state.
denote the trapped state asu2& and its orthogonal states a
u1& andue&, where bothu2& and u1& are coherent superpos
tions of ground states only. The properly normalized expr
sions for the basis statesu2&, u1&, andue&, are

u2&5cosuuã&2sinuub̃&,

u1&5sinuuã&1cosuub̃&, ue&5uẽ&, ~9!

where sinu5g1/g, cosu5g2/g, andg5Ag121g2
2. This par-

tially diagonalized basis can be formally expressed by
transformation matrixR:

R5F cosusinu
0

2sinu
cosu
0

0
0
1
G . ~10!

The equation of motion for the density matrix in this basis
given by

ṙ5
i

\
@rH†2Hr#1Lree, ~11!

where

s,

to
in
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2274 55SHAHRIAR, HEMMER, KATZ, LEE, AND PRENTISS
r5Rr̃R21, ~12!

and similarly forH andL. Note thatr̃ ẽ ẽ5ree is a constant
under this transformation. The transformed Hamiltonian

H5
\

2 FCD
SD
0

SD
2CD
2g

0
2g

22d2 iG
G , ~13!

whereC[cos2u andS[sin2u, and the transformed sourc
matrix is

L5
G

2 F 11Cd
Sd
0

Sd
12Cd
0

0
0
0
G , ~14!

where d[(Gea2Geb)/G is the normalized difference be
tween the rates of decay to statesua& and ub&.

To interpret the Raman interaction in this basis, consi
first the elements of the Hamiltonian.H225\CD/2
(H1152\CD/2) represents the energy of theu2& ~u1&!
state and can be seen simply as the weighted sum of
energies of the constituent statesuã& and ub̃&. Clearly the
energy of stateue& remains the same. The off-diagonal el
ments represent direct couplings between the states.H2e50,
which means that theu2& state is not directly coupled to th
ue& state, independent of the values of the parameters. Ph
cally, this decoupling occurs because the statesuã& and ub̃&
are out of phase, so that the dipole moments coupling th
states to stateuẽ& cancel each other. On the other hand, in
case of theu1& state these dipole moments add, yielding
strong coupling betweenu1& and ue&, so thatH1e52\g/2.
Next, note that theu2& and u1& states are coupled as well,
the rate ofH215SD. To understand this coupling, reca
that uã& and ub̃& differ in energy by an amountD. Thus the
u2& state rotates into theu1& state at the same rate, modifie
by the factorS5sin2u to account for the different weights o
uã& and ub̃& in the statesu2& and u1&. For example, conside
the case ofg15g2 . Hereu2&5~1/&!(uã&2ub̃&) andu1&5~1/
&!(uã&1ub̃&). So if uc~t50!&5u2&, then, ignoring any field-
induced couplings,uc(t)&5(1/&)(uã&e2 iDt/22ub̃&e1 iDt/2)
}(uã&2ub̃&eiDt). Thus, after a timep/D, uc& will equal u1&.
If SD50, the u2& state is also decoupled fromu1& state, so
that in steady state, all of the population is in the trapp
state. This occurs either whenD50 or wheng150 ~g250!,
which corresponds tou2&5uã& ~u2&5ub̃&!, i.e., simple opti-
cal pumping into one of the ground states.

Consider next the elements of the source matrix. When
atom decays fromuẽ& to uã&, for example, it adds to the
populations of both statesu2& and u1&, as well as to the
coherencer21 between these two states. Explicitly,uã&
5cosuu2&1sinuu1&, so that the decay to stateuã& contrib-
utesGeacos

2u to r22 , Geasin
2u to r11 , andGeasin2u/2 to

r21 . Similarly, the decay to stateub̃&52sinuu2&1cosuu1&
contributes Gebsin

2u to r22 , Gebcos
2u to r11 , and

2Gebsin2u/2 to r21 . The elements ofS simply represent the
algebraic sum of these two sets of contributions. In parti
lar, note that the sources to the coherencer21 exactly cancel
each other only ifGea5Geb , i.e.,d50. WhendÞ0, sponta-
neous emission does add to the coherencer21 . For simplic-
r
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e

d

n

-

ity, we consider the case of equal decay ra
(Gea5Geb5G/2) for most of this paper.

The density-matrix equation of motion@Eq. ~11!# is illus-
trated graphically in Fig. 2, for negative values ofd andD.
When Eq.~11! is expanded, subject to the constraint th
r221r111ree51 ~i.e., a closed system!, we get eight lin-
early independent differential equations. The time-depend
solution of these equations can be found, for example,
numerical methods. However, for weak interactions~g!G!,
it is possible to find an approximate analytical tim
dependent solution quite easily, as we now show.

C. The adiabatic following approximation

The adiabatic following approximation reduces~from 8 to
3! the number of variables needed to describe the state o
system so that the time-dependent solution of the equatio
motion can be represented by the motion of a three-elem
vector in space. The physical idea behind the adiabatic
lowing approximation is that if the decay rateG of the ex-
cited state is much greater than any of the other parame
in the system, then for any change in the ground sta
~which occurs on a time scale much greater than 1/G!, the
excited state will rapidly come into equilibrium with th
ground states~at the rate ofG!. Thus the excited-state ampl
tude will adiabatically follow the ground-state amplitude
That is, the excited-state amplitude~and thus population!
will be related to the ground-state amplitudes by some fix
ratio for any time scale greater than 1/G. Once that fixed ratio
is calculated, the excited state can be eliminated from
equation of motion. The reduced system involves only
two ground states, so that the motion can then be descr
with only three real variables, which can be modeled by
motion of a three-element vector in space. Thus the ti
evolution of the entire system can be described by the m
tion of a vector that can provide simple physical interpre
tions of the time evolution.

This interpretation is often the simplest in the partia
diagonalized~u2&,u1&,ue&! basis. We can represent the sy
tem for an individual atom by a wave function of the form

uc&5A2u2&1A1u1&1Aeue&. ~15!

FIG. 2. L system under Raman excitation in terms of the p
tially diagonalized basis states. Shown are the coupling streng
the decay rates for the cased50 ~i.e., Gea5Geb!, and the relative
energies for the caseD,0 andd,0. Note that the trapped stateu2&
is not directly coupled to the excited stateue&, but is indirectly
coupled toue& through theu1& state.
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55 2275DARK-STATE-BASED THREE-ELEMENT VECTOR MODEL . . .
For a weak interaction~g!G!, the excited-state population i
small~proportional tog2/G2!, so that we can ignore the influ
of atoms from the excited state to the ground states. The
evolution of the state amplitudes is given by

°

FA2

A1

Ae
G5 1

2i FCD
SD
0

SD
2CD
2g

0
2g

22d2iG
GFA2

A1

Ae
G. ~16!

Here u2& and u1& couple to each other at the rate ofSD/2,
u1& and ue& couple at the rate ofg/2, andue& decays at the
rate ofG/2. WithG@g,SD, for any change inu1& ~which can
occur only at the two coupling rates ofg andSD!, ue& comes
into equilibrium with u1& at the much faster rate ofG. For a
time greater than 1/G, we can then assume thatȦe!GAe ,
which implies, from the third line in Eq.~16!, that

Ae. i
g

G2 i2d
A1 . ~17!

That is, ue& follows u1& with the ratio of Eq.~17!. Thus we
can eliminateue& by defining the damped state

u1&d[u1&1 i
g

G2 i2d
ue&. ~18!

The wave function can then be written as

uc&5A2u2&1A1u1&1Aeue&5A2u2&1A1u1&d .
~19!

Equation~16! is then reduced to
°

i\FA2

A1
G5HFA2

A1
G, ~20!

with the Hamiltonian expressed in theu2&,u1&d basis:

H5
\

2 FCD
SD

SD

2CD2 i
g2

G2 i2d
G . ~21!

We define

a[
1

2

g2G

G214d2
5U g

G2 i2dU
2 G

2
, ~22!

b[
g2d

G214d2
5U g

G2 i2dU
2

d, ~23!

so that Eq.~21! becomes

H5
\

2 FCD
SD

SD
2~CD22b!2 i2a G , ~24!

i.e., u1&d has energy of\~2CD/21b! and a damping rate o
a. When compared tou1&, the decay rate and the addition
energy foru1&d result from the fraction ofue& that is inu1&d .
To see this explicitly, note that~setting\51!

d^1uHu1&d5^1uHu1&1U g

G2 i2dU
2

^euHue&

12 ReF ^1uHue&
g

G2 i2dG52
CD

2
1b2 ia,

~25!
e

in agreement with Eq.~24!. To see it more intuitively, refer
to Eqs.~17!, ~22!, and~23!. The energy\b and decay ratea
are just the energy2\d and decay rateG of ue& multiplied by
the factorg2/(G214d2)5ug/(G2 i2d)u2, which is simply
the proportion of stateue& in stateu1&d @Eq. ~17!#.

In deriving Eq.~17!, we ignored the influx of atoms from
stateue& to u1&, since for small values ofg ~g!G!, ree is
small, makingGree!r11 . For the reduced system ofu2&
andu1&d , however, we want to consider the general situat
in which theu2&↔u1&d coupling can possibly be as large a
the decay rate ofu1&d . In such a situation, the source term
can no longer be ignored, and we must return to the dens
matrix formulation for the equation of motion. In the ne
u2&,u1&d basis, we have

ṙ5
i

\
@rH†2Hr#1Lr11 . ~26!

Here

r5Fr22

r12

r21

r11
G , L5Fa0 0

a G , ~27!

where we have usedree5r11 g2/~G214d2!, and

H5
\

2 F2b8
SD

SD
b82 i2a G , ~28!

which is the same as in Eq.~24!, except that we have sub
tracted an energy of\b/2 from the diagonal to make it mor
symmetric and have definedb8[b2CD. Note that \b8
equals the energy difference between the statesu1&d andu2&.
Also note thatu2& and u1&d are coupled at the rate ofSD/2,
which is just the coupling between theu2& state and the
~predominant! u1& part of u1&d . Note that atoms decaying
from theu1&d state go to both statesu2& andu1&d . This is as
expected, since the decay ofu1&d is due to the decay of stat
ue& to both u2& and u1& ~equally, in the case ofGea5Geb!.

III. THE THREE-ELEMENT BLOCH VECTOR MODEL

A. The Bloch vector equation of motion

We now define a three-element Bloch vector to pictoria
describe the time evolution of theL system under Raman
excitation as expressed by the density-matrix equation
motion @Eq. ~26!#. We define the three-element Bloch vect

R[R1ê11R2ê21R3ê3 , ~29!

whereêi are abstract unit vectors and the three real eleme
are defined as

1
2 ~R11 iR2![r21 , R3[~r222r11!. ~30!

This definition is motivated by an analogy with the two-lev
~spin-12! system Bloch vector. Within the adiabatic followin
limit, these three elements can be used to compute all n
density-matrix elements, and thus all observables, in the
teraction. Using the constraint thatr221r1151, we get

r225 1
2 ~11R3!, r115 1

2 ~12R3!. ~31!
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To find observables involving the stateue&, we use Eq.~17!
to get

ree5
a

G
~12R3!, re15

2b1 ia

g
~12R3!,

re25
2b1 ia

g
~R12 iR2!. ~32!

Equations~30!–~32! express all the elements of the partia
diagonalized states density matrix~r! in terms of the three
elements of the Bloch vector.

The equation of motion for the Bloch vector is simp
found by expanding Eq.~26! to give

°

FR1R2
R3
G5F2a

b8
0

2b8
2a

2SD

0
SD
2a

GFR1R2
R3
G1F00

a
G. ~33!

Again, this equation holds in the adiabatic following lim
and for the case ofGea5Geb ~d50!. It can be expressed in
the form

Ṙ5Q3R2aR1aê3 , ~34!

whereQ is the torque vector, given by

Q52SDê11b8ê3 . ~35!

The Bloch vector equation of motion@Eq. ~34!# reflects
two types of motion: precession ofR aboutQ at the rate of
uQu and decay ofR to some equilibrium position~to be cal-
culated later! at the rate ofa. To understand this motion in
physical terms, consider each of the three parameters in
~34!: SD, b8, anda, separately.

In the case of no decay~a50!, there is a strict analogy
between the behavior of this system and that of the
damped two-level system.SD represents the coupling be
tween theu2& and u1&d states and is analogous to the Ra
frequency.b8 represents the energy difference between
u2& and u1&d states and is analogous to the two-level syst
detuning~i.e., the energy difference between the two state
the rotating frame!. Thus, if a50, b850, andSDÞ0, then
Q52SDê1. The effect ofQ is to mix R2 and R3, which
represent 2 Rer21 and r222r11 , respectively, at the rate
of the u2&↔u1&d coupling. This population flipping is jus

FIG. 3. Motion of the three-element Bloch vector for the ca
SD50, b850, aÞ0 ~i.e., decay only!. The initial offset Bloch vec-
tor ~OBV! R08 decays in a straight line to the steady-state value z
at the rate ofa. The corresponding Bloch vector~BV! decays from
R0 to RS51ê3, i.e., all the atoms in the trapped state. The axesê1,
ê2, ê3 centered at the originO represent 2 Rer21 , 2 Imr21 , and
~r222r11!, respectively.
q.

-

i
e

in

the familiar Rabi flopping in the two-level system. Similarl
if a50, b8Þ0, andSD50, thenQ5b8ê3. The effect ofQ is
to mix R1 andR2, which represent 2 Rer21 and 2 Imr21 ,
respectively, at the rate of theu2&↔u1&d energy difference
~‘‘detuning’’ !, while the initial population difference is con
served. This is simply a manifestation of the dephasing
tweenu2& and u1&d and is also familiar from two-level sys
tems. In general, whenSD andb8 are both nonzero,Q acts
just as the effective Rabi frequency vector in the two-le
case.

Consider next the effect ofa, the decay rate ofu1&d . The
second term of Eq.~34! indicates that each element of th
Bloch vectorR, decays at this rate. But, at the same time,
third element of the Bloch vector grows at the rate ofa, as
indicated by the third term in Eq.~34!. To understand the ne
effect of these two processes, consider first the simplest
in which uQu50. As can be seen by inspection from Eq.~34!,
the Bloch vector then decays to the steady-state value~found
by setting Ṙ50! of RS51ê3, i.e., R1S50, R2S50, and
R3S51, corresponding tor215r1150 andr2251. Physi-
cally, this means that all the atoms have been pumped
the trapped state. This occurs because we have setSD50,
meaning that theu2& state is completely decoupled from th
system. In general, however,RS is not equal to 1ê3. Its value
is a balance of the three motions discussed above~due toSD,
b8, anda! and is given by settingṘ50 in Eq. ~34!. We get

Q3RS2a~RS2ê3!50. ~36!

The explicit expression is

RS5FR1S

R2S

R3S

G5
1

a21b821~SD!2 F 2b8SD
aSD

a21b82
G . ~37!

Now, since it is more natural to picture a vector decaying
zero instead of to some other constant vector, we define
offset Bloch vectorR8

R8[R2RS . ~38!

This has the effect of shifting the origin to the position
RS , so that the offset Bloch vector will decay to zero~with
respect to this new origin! in the steady state. Using Eq
~34!, ~36!, and ~38!, we can see this explicitly in the offse
Bloch vector equation of motion

Ṙ85Q3R82aR8. ~39!

Thus the offset Bloch vector~OBV! rotates around the sam
Q as the Bloch vector itself, while simply decaying to ze
amplitude at the rate ofa. This is illustrated in Fig. 3 for
uQu50.

There is one final point to make before applying th
model to specific problems. Equations~30!–~32! express all
the elements of the partially diagonalized states density
trix ~r! in terms of the three elements of the Bloch vect
Under certain circumstances, however, one needs to k
explicitly the elements of the atomic states density ma

o
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( r̃). For example, in our experiment~to be described later!
involving Raman excitation followed by a microwave exc
tation, and vice versa, it is important to know, for examp
the coherence and population difference between statesuã&
andub̃&. In general, the initial conditions and observables
often best expressed in terms of the elements of the ato
state density matrix.

The partially diagonalized state density matrix conta
all the information of the atomic state density matrix, relat
through Eq.~12!. If we define

1
2 ~R̃11 iR̃2![r̃ ã b̃ , R̃3[~r̃ ã ã2 r̃ b̃ b̃!5~raa2rbb!,

~40!

then the original Bloch vectorR gives these component
directly:

R5R̃1ễ11R̃2ễ21R̃3ễ3 , ~41!

where theễi basis is related to theêi basis by a simple rota

tion of 2u in the 1-3 plane. Specifically, to get theễi basis,
rotate counterclockwise from theêi basis through 2u. That is,

F R̃1

R̃2

R̃3

G5FC0
S

0
1
0

2S
0
C

GFR1

R2

R3

G . ~42!

Pictorially, given the position of the Bloch vectorR at any

time, one simply has to project the vector onto theễi axes in
order to get the atomic state density-matrix elements.
instance, ifg150, then from sinu5g1/g we find thatu50.
Thus the partially diagonalized basis and atomic state b
coincide, which is expected, since in this caseuã& is the
trapped stateu2&.

Now consider the previous case ofSD50, b8Þ0, and
aÞ0, with the initial conditionR05R10ê1 ~pictured in Fig.
4!. In particular, consider the case in which the Raman in
action satisfies the conditiong15g2 ~i.e., equal Rabi fre-
quencies! at all times. Again using sinu5g1/g, this implies

FIG. 4. Motion of the BV for the caseSD50, b8Þ0, aÞ0, with
initial conditionR05R10ê1. As one can see, the motion of the OB
R8 is much simpler. It consists of precession about the torque ve
Q5b8e3 at the rate ofuQu5ub8u and decay at the rate ofa to the
steady-state valueR850 ~R51ê3! corresponding tor2251. The
time evolution of the OBV forms a spiral on a cone of evolutio
The terms in parentheses give the motion in terms of the ato
states for the conditiong15g2 . For different ratios ofg1/g2 ~keep-
ing g constant!, only the rotation angle 2u will change, thus illus-
trating the ease with which the Bloch vector model in the partia
diagonalized basis handles unequal Rabi frequencies.
,

e
ic

s
d
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thatu5p/4 and thus that the atomic state basis and parti
diagonalized basis are rotated byp/2 in the 1-3 plane with
respect to each other~see Fig. 4!. Therefore, the initial con-

dition is equivalent toR05R10ễ3. That is, the initial popula-
tion differencer̃ ãã2 r̃ b̃b̃ equalsR105R̃30. The explicit equa-
tion of motion in terms of the atomic state components c
easily be found by solving Eq.~39! and then using Eq.~42!.
If the Raman interaction hadg1Þg2 , but gave rise to the
same values forSD, b8, anda ~in particular, the values ofD,
d, G, andg2 were the same!, then the same picture woul
apply, except with rotation of the axes through a differe
value of 2u. That is, the Bloch vector picture in terms of th
partially diagonalized basis would remain exactly the sam
This illustrates one of the key advantages of the Bloch vec
model: it is equally simple for all ratios of Rabi frequenci
(g1/g2). This aspect will be exploited in the modeling o
low-intensity adiabatic passage.

Regardless of whether or not one needs to use the ato
state basis, the partially diagonalized basis is always the
in which the Bloch vector model is best constructed, for
we have shown above, it has a simple form and phys
interpretation there. The following will be a step-by-ste
construction of a full Bloch vector model for arbitrary value
of the parameters~see Fig. 5!. Start with the atomic state

basisễi ~not shown!, with origin atO. Calculateu from the
given values ofg1 andg2. Rotate the axes clockwise by 2u
in the 1-3 plane to get the partially diagonalized basisêi
~shown at the upper right corner of Fig. 5!. Given the initial
population difference and coherence, place the initial Blo
vectorR0 ~using either basis!. From this point on, use the
partially diagonalized basis only. Now calculate the stea
state vectorRS @Eq. ~37!# from the calculated values ofSD,
b8, anda. Translate the partially diagonalized basis to t
offset Bloch vector originO8, which lies at the tip ofRS .
Now place the torque vectorQ at O8 @Eq. ~35!#. Place the
initial OBV R08 atO8, connecting its tip to that ofR0. Now
draw the cone of evolution, the surface of revolution ofR08
about the axis that containsQ. The time evolution of the
system is represented by an exponentially decaying spira
the surface of the cone@Eq. ~39!#. The Bloch vector at any
time t, R(t), is just the vector with origin atO and tip at
R8(t). The values ofRi or R̃i can be read off by projecting
R(t) onto the partially diagonalized or atomic states ba
~both with origin atO!, respectively.

IV. APPLICATIONS OF THE BLOCH VECTOR MODEL

We now illustrate the simplicity and power of the Bloc
vector model by describing a few systems of interest.

or

ic

FIG. 5. Construction of the Bloch vector model for the mo
general values of the parametersSD, b8, a, andR0.
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A. The ac Stark shift in Raman-Ramsey fringes

In the application of Raman-Ramsey fringes to atom
clocks, the ac Stark shift~seen as a shift in the Ramse
central minimum! is a direct source of error@3#. Before we
explain this shift in terms of the Bloch vector model, w
must first express our observable, fluorescence, in term
Bloch vector components. Then we can describe the gen
tion of the fringes and, afterward, the shift.

The fluorescence signalSf is proportional to the excited
state populationree. From the adiabatic following approxi
mation @in particular, Eq.~17!#, we have

ree5U g

G2 i2dU
2

r11 . ~43!

Thus

Sf[Gree52ar115a~12R3!, ~44!

where the last step is from Eq.~31!.
First we will describe the generation of the ideal Rama

Ramsey fringes, in which the central minimum occurs
D50. The two-zone Raman interaction that generates
Raman-Ramsey fringes consists of an atomic beam
passes through three regions in succession: first Raman
citation in zoneA for a time tA , next a dark zone with no
fields for a timeT, and finally Raman excitation in zoneB,
which is identical to that in zoneA ~Fig. 6!. We assume tha
b850 and uSDu!a in both excitation zones. ThusRS51ê3
@Eq. ~37!#, i.e., all atoms in the trapped state. For now,
assume that the zoneA interaction is strong enough so th
atA@1, i.e., that the system reaches steady state by the
of zoneA: R~tA!51ê3. In the dark zone,a}g250 ~since
g50 there!, thus we can no longer ignoreSD. This causes
the Bloch vector to precess~Rabi flopping! at the rate ofSD,
so that during the dark zone flight timeT, R rotates through
an angleSDT. At the end of the dark zone, we have b
inspection

R~tA1T!5sin~SDT!ê21cos~SDT!ê3 . ~45!

FIG. 6. Two-zone Raman interaction that leads to the genera
of Raman-Ramsey fringes. Displayed is the ideal case in wh
there is no ac Stark shift of the central minimum. For all zon
b850. An atomic beam first passes through zoneA excitation for
time tA . uSDu!a and atA@1, so the system reaches the stead
state valueR~tA!5RS51ê3, with all the atoms in the trapped stat
Then the atomic beam passes through the dark zone with no
tation for timeT. Now a50, so the BV precesses without deca
aboutQ52SDê1 for time T, sweeping out an angleSDT. Finally,
the atomic beam passes through the zoneB excitation. Again
uSDu!a, so the BV decays toRS51ê3 at a rate ofa. The resulting
integrated observed fluorescence in zoneB as a function ofSD
gives the Raman-Ramsey fringes.
c

of
ra-

-
t
e
at
ex-

nd

We assume that the fields have the same phases in zoneB as
in zoneA, so that we can simply continue withR(tA1T) in
the same position as in the dark zone. In zoneB, uSDu!a, so
RS51ê3 again and we assume thatQ52SDê1 is negligible.
The OBV just decays linearly toRS . The fluorescence at an
time t is simply given by Eqs.~44! and ~45!:

Sf~ t !5a@12cos~SDT!#e2at. ~46!

In a typical experiment, the fluorescence observed is in
grated over the interaction zone. Thus, foratB@1,

Sf5E
0

tB
dt a@12cos~SDT!#e2at512cos~SDT!

52R38~tA1T!, ~47!

where the last step is by inspection~Fig. 7!. Thus plotting
Sf as a function ofSD, i.e.,

Sf~SD!512cos~SDT!, ~48!

generates the ideal Raman-Ramsey fringes, with a minim
of fluorescence atSD50.

The ac Stark shift in the two-zone setup is the result
less-than-ideal conditions, namely, the fact that the sys
does not reach equilibrium in zoneA and thatb8Þ0. The
term ‘‘ac Stark shift’’ itself refers to the energy differenc
between theu2& and u1&d states~b8! due to the value ofd
~b8}d!. We will find that there is no shift ifb850. For sim-
plicity, we chooseg15g2 in both excitation zones, so tha
u5p/4. This means thatb85b, SD5D, and the partially di-
agonalized basis is rotated byp/2 with respect to the atomic
states basis. In both excitation zones, we assume
uDu!a,ubu since we want to consider only a small shift wi
respect toD. ThusRS51ê3 there@Eq. ~37!#. In the dark zone,
a5b50 ~sinceg50!, soD is no longer negligible. This time

we choose a specific initial conditionR05D0ễ35D0ê1,
where D05 r̃ ã ã2 r̃ b̃ b̃ is the initial atomic ground-state
population difference. In zoneA, the OBV precesses an

decays until timetA ~Fig. 7!. We use the 1˜- 2̃ projection to
calculate the projection anglef by inspection. We have

n
h
,

-

ci-

FIG. 7. ac Stark shift in the generation of Raman-Rams
fringes in a two-zone interaction. This timeb is not necessarily zero
in excitation zones. An atomic beam first passes through zonA
excitation for timetA . uDu!a,ubu, so the BV precesses and deca
toward the steady-state valueRS51ê3 until it leaves zoneA at
R~tA!. Note that the BV does not necessarily reach the steady s
in zoneA, unlike in Fig. 6. This leads to the shift of the fring
central minimum.
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R̃1~tA!512e2atA, R̃2~tA!5D0e
2atAsin~btA!.

~49!

Thus

tanf5
R̃2~tA!

R̃1~tA!
5D0

e2atA

12e2atA
sin~btA!. ~50!

In the dark zone, with onlyDÞ0, the Bloch vector precesse
~with constant amplitude! through an angleDT ~Fig. 8!. As
shown above, the integrated fluorescence measured in
B is given bySf52R38(tA1T) @Eq. ~47!#. Thus, by inspec-
tion, we find that the minimumSf occurs forD52f/T ~see

the 1̃- 2̃ projection in Fig. 8!. Explicitly, the central mini-
mum occurs at

D052
1

T
tan21SD0

e2atA

12e2atA
sin~btA! D , ~51!

where we have used Eq.~50!. This ac Stark shift is mani-
fested in the Raman-Ramsey fringes~Fig. 9!. Consider now
the limiting cases of Eq.~51!. For at@1, D050 since the
system reaches equilibrium~all atoms in the trapped state! in
zoneA, which reduces the case to the ideal Raman-Ram
fringes. Forb50 ~and these particular initial conditions!, the

FIG. 8. Dark zone with no excitation for timeT. Now b50,
a50, so the BV precesses without decay aboutQ52Dê1 for time
T, sweeping out an angleDT as seen in the 1˜- 2̃ projection. The
integrated observed fluorescence measured in the following zoB
is given by the value2R̃3(tA1T). Thus the minimum fluorescenc
occurs forD52f/T.

FIG. 9. ac Stark shift. The minimum value of the fluorescenc
shifted away fromD50 by 2f/T.
ne

ey

ac Stark shift disappears~as can readily be seen from Fig
7–9!. Finally, the shift disappears forD050, which is also
clear from Figs. 7–9. We point out that in addition to th
two-zone interaction described above, the Bloch vec
model can be used to derive the Raman dip in the sin
zone Raman interaction and its associated ac Stark shift@23#.

The Raman clock ac Stark shift predicted by Eq.~51! has
been verified quantitatively, over a large range of experim
tal conditions@3#. In addition, the insight obtained from thi
derivation was instrumental in identifying conditions for su
pressing this effect@3#.

B. Separated zone Raman-microwave mixing

The L system provides a unique mechanism for mixi
optical and microwave fields in particular and widely diffe
ent frequencies in general. The uniqueness results from
fact that in the presence of two optical frequencies~v1 and
v2!, the ua&↔ub& microwave excitation forms a closed loop
As a result, the effect of the interaction depends nontrivia
on the phase difference (fM2fR), wherefM is the phase of
the microwave field andfR is the phase of the Raman prod
uct field ~defined asfR5f12f2, wheref1 andf2 are the
phases of the individual optical fields at frequenciesv1 and
v2!. To see why, note that, for example, the coherence
tween statesua& and ub& is excited in two ways: directly by
the microwave fields and indirectly by the two optical fr
quencies. Since each of these two processes tends to
the coherence at its own phase, there exists a compet
between them. The result of this competition therefore
pends strongly on the difference between the phases.

This type of interaction has several potential applicatio
For example, it can be shown that Raman-microwave e
tation can be used, with the proper choice off, to pump
atoms selectively into either the strong-field-seeking or
weak-field-seeking dressed state of the microwave exc
tion. This could potentially be used to make a much high
density trap, which requires atoms in a particular dres
state. Atoms that leave the required state due to ph
changing collisions could be pumped right back@10,24#.
Raman-microwave spin echo could possibly be used in o
cal data storage, with potential advantages over the op
photon echo processes as well as spin echo processes@11#.
Finally, such a closed-loop mixing could be used for t
ultrahigh-resolution mapping of the phase of, for example
millimeter-wave field. This is of significant interest in de
signing components such as a phased array antenna. T
lustrate how such a phase mapping can be performed,
discuss now the microwave phase sensitive absorption o
optical beams in theL configuration@10#.

The separated zone Raman-microwave mixing sche
consists of an atomic beam that passes successively thr
a Raman-only zone, then a microwave-only zone, and fin
another Raman-only zone~Fig. 10!. Thus the ground-state
coherence is first excited by a Raman pulse. The atoms b
ing this coherence then encounter a microwave pulse.
effect of this interaction with the microwave pulse is th
determined by probing the atoms again with a Raman pu
For simplicity, we assume that the two Raman zones ar
phase, haveg15g2 , and leave all atoms in the trapped sta
in the steady state. In terms of Raman and microwave Bl
vectors, the interaction is very simple to understand. C
sider first the case in which the phase difference between
s
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2280 55SHAHRIAR, HEMMER, KATZ, LEE, AND PRENTISS
microwave zone and the Raman zone is z
~Df5fM2fR50!. The Raman interaction in the first zon
pumps the system into a perfect trapped state. To go from
first to the second zone, the Raman Bloch vector mus
rotated in the coherence plane by the phase differenc
become the microwave Bloch vector~BV!. This is so be-
cause each Bloch vector picture incorporates the rela
phases. This phase information is necessary to relate th
tating frame ~of the BV! to the atom’s frame~i.e., rab

R

5rabe
ifR5rabe

i (f12f2) and rab
M 5rabe

ifM5rabe
if3!.

Since the phase difference is zero in this case, in the sec
zone the state appears as one of the dressed~stationary!
states of the microwave interaction@specifically uc&5~1/
&!(uã&2ub̃&)#, so that the atom appears transparent to
microwave field. When this atom is probed again by t
Raman pulse, it exhibits a fluorescence~i.e., Sf! minimum,
as if the microwave pulse did not occur at all. Consider n
the case whereDf5p/2. The first zone is the same as in th
previous case. But in going from the first to the second zo
the Raman Bloch vector must be rotated byp/2 to convert it

FIG. 10. Separated zone Raman-microwave mixing for the c
in which the phase difference between the Raman and microw
fields isDf5p/2. An atomic beam passes successively throug
Raman only field, then a microwave only field, and finally anoth
Raman only field. Note the different Raman and microwave ba
R̃35raa2rbb for both R̃1

R52 Rerab
R , R̃2

R52 Im rab
R , and

R̃1
M52 Rerab

M , R̃2
M52 Im rab

M , where rab
R 5rabe

ifR,
rab
M 5rabe

ifM, andDf5fM2fR . The Raman BV reaches stead
state in the first Raman zone. Then the microwave BV is found

rotating the Raman BV byDf in the coherence plane~1̃- 2̃ plane!.
The microwave BV precesses due to microwave excitation ab
the Rabi frequency vectorQ5g3ê1

M. The Raman BV is found again
by rotating back byDf. The second Raman interaction pumps
oms back into the trapped state and the integrated observed flu
cenceSf is measured. In general,Sf varies sinusoidally with both
the phase and the strength of the microwave field.

FIG. 11. Low-intensity adiabatic passage explained in terms
the atomic states basis. The motion of the BV is like that o
precessing top. As the equilibrium vectorRS moves from 1ê3 to
21ê3, the BV follows it around by precessing about it, rather th
decaying to it, resulting in coherent population transfer.
o
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to the microwave Bloch vector. In the microwave Bloch ve
tor picture, the Bloch vector lies in the Rabi-flopping pla
~here it appears to be in a state with coherence that is p
negative imaginary! and thus strongly interacts with the m
crowave field, undergoing Rabi flopping at the rate ofg3 ~the
microwave Rabi frequency!. If the pulse strength corre
sponds to a multiple of 2p pulses, then again the Rama
probe in the third zone yields a fluorescence minimum. F
any other value of the microwave pulse size, the atoms
longer appear to be completely in the trapped state in
second Raman zone. As a result, the fluorescence is
longer minimum. In particular, for ap microwave pulse, the
atoms appear to be in the strongly absorbingu1& state in the
second Raman zone, thus yielding a fluorescence maxim
In general, the fluorescence oscillates sinusoidally with
pulse strength.

For a given pulse strength, such asp, the fluorescence
observed is maximum forDf5p/2 and minimum forDf50,
as we have just shown. It is simple to show that, in gene
the fluorescence varies sinusoidally with both the phase
the field strength of the microwave field. Thus, to use t
process for measuring the phase alone with optical res
tion, the amplitude must also be measured with equal re
lution. Note that this can easily be done by shutting off o
of the frequencies of the two Raman beams~e.g.,g150!. The
experiment then corresponds to normal optical pumping i
ua& or ub& in both Raman zones and therefore depends o
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FIG. 12. Low-intensity adiabatic passage in terms of the p

tially diagonalized basis. Ifb@2u̇ ~andSD!, then the net preces
sion vectorQ will lie very close to thee3 axis. Thus the initial BV
R051ê3 will stay very close to the dark state at all times as the R
frequency ratio is varied. This results in very little excited-sta
population and thus coherent population transfer from one gro
state to the other.

FIG. 13. Summary of the separate contributions to the motion
the Bloch vectorR(t) in the partially diagonalized basis. The ove
all motion is a balance of the three torquesSD ~u2&↔u1&d cou-
pling!, b8 ~u2&/u1&d energy difference!, 2u ~rate of change of the
Rabi frequency ratio!, and the decay ratea. The steady state value
is RS.
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55 2281DARK-STATE-BASED THREE-ELEMENT VECTOR MODEL . . .
on the amplitude of the microwave field. This situation c
be pictured from Fig. 10. Everything would be the sam
except the Raman steady state would always be perpen
lar to the coherence plane, in which caseDf would not affect
the Bloch vector.

C. Low-intensity adiabatic passage

Adiabatic passage is a process by which population
transferred from one ground state~of the L system! to the
othercoherently. Thus, in the ideal case, there should nev
be any excited-state population throughout the entire p
cess. If at any point there is any excited-state populat
spontaneous emission may occur, with atoms falling into
ground states incoherently. In a recent experiment@13,14#,
population has been transferred with little loss due to sp
taneous emission. In the dressed-state Bloch vector pic
ideal adiabatic passage requires that the system be in
trapped state at all times.

The method of transferring population fromua& to ub& is
to vary the Rabi frequency ratio fromg1/g250 to g1/g25`
while holding g5Ag121g2

2 constant. So at the beginning
u2&5ua&, and at the end,u2&5ub&, with u2& passing through
intermediate superposition states ofua& and ub&. The condi-
tions are chosen so thatRS51ê3 ~i.e., all the atoms are in the
u2& state at equilibrium!. Thus, for the process to be high
coherent, the system must be near equilibrium at every p
throughout the process. In practice, this is accomplished
varying the Rabi frequency ratio very slowly. In terms of t
Bloch vector picture in the atomic state basis, the equi
rium vector~which coincides with theê3 axis of the partially
diagonalized basis! will be rotated through an angle ofp

from R51ễ3 to R521ễ3 ~Fig. 11!. The Bloch vector is
supposed to follow this slowly moving equilibrium vecto
very closely. But the reasoning behind why this should wo
is much clearer, both physically and quantitatively, in t
partially diagonalized basis.

Figure 12 shows the process in terms of the partially
agonalized states BV. There are three separate torques a
on the BV, as illustrated in Fig. 13. The BV will proces
around the net torque vectorQ at the rate ofuQu. We have
already discussedSD andb8. The 2u̇ comes from the rate o
change of the Rabi frequency ratio. To see this, consider
case above in which we start withg150 andg25gÞ0. Then
u50 and the atomic state basis and partially diagonali

basis coincide. The initial BV starts at 1ễ51ê3, i.e., all at-
oms in theua&5u2& state. We change the Rabi frequen
ratio with g held constant so thatu changes linearly in time
from 0 top/2. If there are no other forces acting on the B
~SD5b85a50, i.e., no fields!, then the BV will not move
with respect to the atomic state basis, while the partia
diagonalized basis will rotate clockwise at the rate of 2u̇.
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Thus, with respect to the partially diagonalized basis, the
will rotate counterclockwise at the rate of 2u̇.

Now it is simple to see under what conditions low
intensity adiabatic passage will work, with a minimum
loss due to spontaneous emission. The condition for hig
coherent adiabatic following is

b8@A~2u̇ !21~SD!21a2. ~52!

To see how this works in terms of the atomic state basis,
helpful to think of a processing top~Fig. 11!. The initial
condition isR051ê3. As the equilibrium vectorRS rotates
clockwise at the rate of 2u̇, the BV tries to catch up with it.
There are two types of motion that can help it catch u
precession aboutQ and decay at the rate ofa. Decay due to
a is bad because it corresponds to loss via spontaneous
cay. Precession due toSD is also undesirable since it take
the system away from theu2& state in such a fashion tha
only a decay due toa can reverse the motion. This is to b
contrasted with precession due tob8. In this case, the motion
is around the equilibrium state~u2&! and not away from it.
Therefore, decay due toa is not necessary in order to kee
the BV close to the equilibrium. Thus we requireb8@uSDu.
In addition, we require that the precession due tob8 be fast
compared to the motion of the equilibrium vector about t
2u̇ torque, that is,b8@u2u̇u. This means that a complete ha
rotation of the BV@i.e., fromR(t) to R(t1dt)# about the
equilibrium vector takes place in a very small time, in whi
the equilibrium vector has moved only slightly@i.e., from
RS(t) to RS(t1dt)#. Thus the BV is led to stay around th
new equilibrium position. To make sure that very little c
herence loss occurs from decay due toa, we further require
thatb8@a. Figure 12 illustrates the motion of the BV unde
these conditions.

V. CONCLUSION

One can see the distinct advantages of this Bloch ve
model, which holds in the adiabatic following limit. It give
a simple physical picture of the motion. It gives the transie
behavior of the system, which in many cases allows one
solve problems by mere inspection. Furthermore, it is in
pendent of the Rabi frequency ratio, handling all cases w
equal ease. However, its most important value is in giv
the user a quick way to test out particular cases with sim
drawings, leading to alternative ideas for applications of
resonant Raman interaction.
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