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In this paper we develop a three-element vector model to describe the stimulated Raman interaction in a
system. This model is valid over the range of interaction energies for which the excited state follows the
ground states adiabatically. We use the model to present simple physical interpretations of the generation of
Raman-Ramsey fringes in a separated field excitation, the ac Stark shift in the Raman clock, the ultrahigh-
resolution mapping of microwave phase using Raman probes, and the coherent transfer of population by
adiabatic passage for atomic beam splitters. The expressions for observables are derived by inspection and
agree quantitatively with published experimental res(i§d4.050-294{®7)00302-9

PACS numbd(s): 42.65.Dr, 32.80.Wr

I. INTRODUCTION variables. The time evolution of these three variakisd
thus the entire systenis modeled by the motion of a three-
Recently, there has been much interest in potential applielement vector. The ground-state population difference and
cations of the Raman interaction in\atype three-level sys- coherence are directly manifested by this vector. In addition,
tem, where the upper state is short lived and the low-lyingve show how other observables, such as the excited-state
states are long lived. The applications include the RamaRopulation and its coherences with the ground states, can
clock [1-3], frequency conversion using Raman lasidgs], ~ also be read directly off this vector. _ .
Raman phase conjugatiof6,7], generation of squeezed Th|s r_nodel has_ two main fea}ures: it p.rowdes a clear
states[8], lasing without inversior{9], optical mapping of physlqal mteypretaﬂon of the transient behavior of the syst_em
microwave phase and optical deflection of millimeter wavesnd itis designed to handle the cases of unequal and/or time-
[10], Raman-induced spin echo for optical data storage an¥aTying Rabi frequencies simply. The motion of the vector
image processinfl1], ultrahigh resolution position sensing ¢an be interpreted physically in terms of partially diagonal-
[12], atomic interferometry13—15, atomic beam deflection |ged states so that one can find exphcn expressions for the
[16], and subrecaoil cooling of atonfad 7—19. For these and time-dependent observables by simply QraW|ng a diagram.
potentially other applications, it is useful to understand the™0r example, we show how the expression for the ac Stark
time-dependent behavior of the Raman interaction. shlft_ of the Rama_n-Ramsey fringes can be found_ without
For a closed system, the optical Bloch equations forthe solving any equations at all. We also show _how this model
system involve eight real variables. Numerical methods havéan be used to compute observables in microwave phase-
been employed to determine the time evolution of the sysSensitive optical absorptl_on. The _results obtained in this way
tem, but this approach does not greatly enhance one’s int@'e S€en to agree well with e_xperlmen_tal dafta rep_orteo_l earlier
ition. As an alternative, several authd0] have used the [3,10. The model also describes low-intensity adiabatic pas-
dressed states to illustrate the fundamental features such 88d€ in a bichromatic standing wave in a simple and physi-
population trapping in the Raman interaction. The dressed@ally illuminating manner.
state basis was extended to develop a coupled-pendulum
model[21] for further insight. Variations of this model have Il. THE STIMULATED RAMAN INTERACTION
also been used to illustrate the behavior of optical forces on
a A-system aton{22]. However, this model does not take
into account the influx of spontaneously decaying atoms into Figure 1 illustrates schematically th& system under
the two low-lying states, so that the results obtained are onlgtimulated Raman excitation. Here the excited stajeis
qualitatively correct. When the source terms are includedhort lived and the two low-lying ground states and|b)
[19], the dressed states optical Bloch equations are no longare long lived. The light at frequenay, couples|a) to |e),
easy to interpret. while the light atw, couples|b) to |e) as shown. Both cou-
In this paper, we develop a model to describe sheys-  plings are electric-dipole interactions, whose strengths are
tem under stimulated Raman excitation that is easy to intergiven by the Rabi frequencies
pret physically, but at the same time can be used to find
analytical solutions for the time-dependent behavior of ob-
servables, often by mere inspection. This model is valid over
the range of interaction energies for which the excited state
follows the two ground states adiabatically. In this limit where u is the dipole moment operator of the atom. The
(consistent with many cases of experimental interabie  laser detunings,=w;— (€.~ €,)/% and S,=w,—(€,— €,)/h
Raman interaction is represented by the ground-state dynamare used to define the difference detuninghass, — 4, and
ics, thus reducing the optical Bloch equations to three realhe common mode detuning @s=3(5;,+ 8,). Finally, the in-

A. Basic theory
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€/ where |w,) and|w,) are semiclassical photon states. In this
basis, which we will call the composite states basis, the
af? la Hamiltonian can be written as
o1 |8
-af2 5> A 0 -97
& ~ h
S5 Lok B o Aetl o - - |, ©®)
fof %l ~91 —Q; -—26-il
“1.9 wa.92 where we have chosen the zero of energy such that
6> o+e/h=0. We have also added the damping rate to the
la> Hamiltonian to account for spontaneous decay directly. A

diagram of the energy levels of the atom-field composite
FIG. 1. Energy diagram of thd system under stimulated Ra- states is illustrated in Fig. 1. The equation of motion for the
man excitation. Shown are the coupling strengths and frequenciea,ensity matrix can then be written as
detunings, and decay rates. The stdtes |b), and|e) represent
those of the three-level atom alone. The std&s |b), and [€)

S B
represent the atom-field composite states that form what we refer to pP= % [PHT— Hp]+Lpss, (7)
as the atomic states basis. The energies are shown at the left, in
terms of the difference and common mode detunings. wherep is the rotating-wave density operator represented in

o . the basis of Eq(5) andL is the source matrix
dividual decay rates are given By, andT',, and the total

decay rate is given by'. Note that we assume a closed I'.a 0 O
system, so that atoms decaying from the excited state enter L=| 0 Ty Of. (8)
one or the other of the ground states. 0 0 0
In this paper we use a semiclassical approach in which the
laser field is expressed classically as The physical process governing the Raman interaction is
. ot L ot more transparent in a basis in which the Raman trapped state
E(r,t)=z[Ey(r)e” v +c.c]+z[Ex(r)e ' +c.cl, is one of the basis vectors. We will use this approach in

2 deriving as well as interpreting the three-element vector
model. However, since most of the familiar observables are

wherer is the position(c.m) of the atom andv; and w, are . ) L
the frequencies of the optical fields. Here we will concentratEXPressed in the basis of H§), we will interpret the results

on the case wherg;(r) andE,(r) are traveling plane waves, in that basis as well.
implying that the field amplitudes and Rabi frequencies are
independent of position. In the atomic states basis the Hamil-
tonian for the stimulated Raman interaction in the electric- The trapped state is a coherent superposition of the two

B. The Raman interaction in terms of the trapped state

dipole and rotating-wave approximations is ground states, weighted in such a way that there is no net
_ dipole moment coupling this state to the excited state. We

€;lth 0 —3gretiet denote the trapped state jas) and its orthogonal states as

H=% 0 €plh —igsetion |+) and|e), where both—) and|+) are coherent superposi-

tions of ground states only. The properly normalized expres-

1 —iwqt 1 —iwot
— = e 1 — = e 2 . .
201 202 €elh sions for the basis statés), |+), and|e), are

3

where thee are the energies of the atomic states, and the
basis vectors are

|- )= coss|A) — sind| b),

|+)=sing[a) +cosab), |e)=[8), 9
1 0 0
_lo by—| 1 _lo 4 where sind=g,/g, co¥=g,/g, andg= \/glz+gzz. This par-
&)= 0 . b)= 0 . le= 1 : ) tially diagonalized basis can be formally expressed by the
transformation matriR:
It is convenient to transform the Hamiltonian to the rotating- co¥) —sind O
wave basis, which is spanned by the atom-field composite .
R=|sind co¥ Of. (10)
states
0 0 1
1 0 The equation of motion for the density matrix in this basis is
[@=la)|w)=| 0|, [b)=|b)lo)=|1|, ()  Givenb
g y
0 0
o
0 p=7 [pH"=Hpl+Lpee, (1)
[e)=le)=| 0|,
1 where
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p=RpR™, 12 €[+
and similarly forH andL. Note thafpzz=pec iS a constant
under this transformation. The transformed Hamiltonian is -5 4
5 CA SA 0
HZE SA —CA -9 , (13
0 -—g —26-iT -Cal2 T
O 4
where C=cos? and S=sin26, and the transformed source CA/Z i
matrix is

1+Cd Sd 0 FIG. 2. A system under Raman excitation in terms of the par-
L= 5 Sd 1-Cd 0], (14 tially diagonalized basis states. Shown are the coupling strengths,
0 0 0 the decay rates for the cade=0 (i.e., I'c,=I'¢p), and the relative
energies for the cas®<0 and §<0. Note that the trapped stdte)

where d=(I'y,—I'p)/T" is the normalized difference be- is not directly coupled to the excited sta, but is indirectly
tween the rates of decay to states and|b). coupled tole) through thef+) state.

To interpret the Raman interaction in this basis, consider .
first the elements of the HamiltonianH _=#CA/2 'Y, We consider the case of equal decay rates
(H,.=—#%CA/2) represents the energy of the) (|+))  (Iea=I'en=1/2) for most of this paper.

state and can be seen simply as the weighted sum of the szje denﬁi.ty—ma.trix':_equ;tifon of mo.tic[Eq.I(ll)]&iziI:jui—
energies of the constituent stati& and |b). Clearly the Urated graphically in Fig. 2, for negative values #&ndA.

energy of statée) remains the same. The off-diagonal ele- When Eq.(11) is e_xpanded, subject to the cons_train_t that
ments represent direct couplings between the states=0,  P—-TP++TPee=1 (ie., a closed systemwe get eight lin-
which means that the-) state is not directly coupled to the early_lndependent d|ffer§nt|al equations. The time-dependent
|e) state, independent of the values of the parameters, Physiolution of these equations can be found, for example, by
cally, this decoupling occurs because the sté@sand |b) numerlcal methods..However, for weak mteractm?g%l“)',

are out of phase, so that the dipole moments coupling thedt 'S E)jossublel FO fmc_i an f_;llpprommate anﬁlytlcal time-
states to statfg) cancel each other. On the other hand, in the9SPendent solution quite easily, as we now show.

case of the+) state these dipole moments add, yielding a o _ o

strong coupling betweeft) and|e), so thatH , .= —#g/2. C. The adiabatic following approximation

Next, note that th¢—) and|+) states are coupled as well, at  The adiabatic following approximation redudé®m 8 to
the rate ofH_, =SA. To understand this coupling, recall 3) the number of variables needed to describe the state of the
that[a) and|b) differ in energy by an amounk. Thus the  system so that the time-dependent solution of the equation of
|—) state rotates into ther) state at the same rate, modified motion can be represented by the motion of a three-element
by the factorS=sin2¢ to account for the different weights of yector in space. The physical idea behind the adiabatic fol-
|a) and|b) in the states—) and|+). For example, consider |owing approximation is that if the decay rafeof the ex-
the case ofj; =g,. Here|—)=(1~2)(|a)~[b)) and|+)=(1/  cited state is much greater than any of the other parameters
v2)([a) +|b)). So if [y{t=0))=|—), then, ignoring any field- iy the system, then for any change in the ground states
induced _couplings,| ¢(t))=(172)([a)e '*"*~ |b)e"'*"*) " (which occurs on a time scale much greater than), lihe
«([a)—|b)e'™). Thus, after a timer/A, |¢) will equal [+).  excited state will rapidly come into equilibrium with the
If SA=0, the|—) state is also decoupled frofit) state, SO ground stategat the rate of). Thus the excited-state ampli-
that in steady state, all of the population is in the trappedude will adiabatically follow the ground-state amplitudes.
state. This occurs either whek=0 or wheng;=0 (9,=0),  That is, the excited-state amplitudand thus population
which corresponds tp-)=(a) (|—)=|b}), i.e., simple opti-  wjll be related to the ground-state amplitudes by some fixed
cal pumping into one of the ground states. _ ratio for any time scale greater thar"LOnce that fixed ratio
Consider next the elements of the source matrix. When agy calculated, the excited state can be eliminated from the
atom decays fronje) to [a), for example, it adds to the equation of motion. The reduced system involves only the
populations of both statels-) and |+), as well as to the two ground states, so that the motion can then be described
coherencep_, between these two states. Explicitlig)  with only three real variables, which can be modeled by the
=cosf|—)+sing+), so that the decay to stafa) contrib-  motion of a three-element vector in space. Thus the time
Utes TooCOS'0 t0 p_, T8I’ 10 p. o, and[;Sin262 10 eyolution of the entire system can be described by the mo-
p— . Similarly, the decay to statp) =—sinf|—)+cosf|+)  tion of a vector that can provide simple physical interpreta-
contributes Tepsin’d to p__, T'e,C0S6 to pyy, and tions of the time evolution.
—Tepsin26/2 top_ . . The elements of simply representthe  Thijs interpretation is often the simplest in the partially
algebraic sum of these two sets of contributions. In particugiagonalized(—),|+),/e)) basis. We can represent the sys-

lar, note that the sources to the coherepce exactly cancel  tem for an individual atom by a wave function of the form
each other only i’ =Ty, i.e.,d=0. Whend+0, sponta-

neous emission does add to the cohergnce. For simplic- ly=A_|=)+A,|+)+Ade). (15
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For a weak interactiofg<I'), the excited-state population is in agreement with Eq(24). To see it more intuitively, refer
small(proportional togT"2), so that we can ignore the influx to Egs.(17), (22), and(23). The energy:3 and decay rater
of atoms from the excited state to the ground states. The timare just the energy-# 6 and decay rat€ of |e) multiplied by

evolution of the state amplitudes is given by

o

Al Jca A 0 A
Al ‘1o —g -26-iT| A

Here |—) and|+) couple to each other at the rate $4/2,
|+) and|e) couple at the rate of/2, and|e) decays at the
rate of [/2. With '>g,SA, for any change if+) (which can
occur only at the two coupling rates gfandSA), |e) comes
into equilibrium with|+) at the much faster rate @f. For a
time greater than I/, we can then assume that<TI'A.,
which implies, from the third line in Eq.16), that

N ¢
Ac=i m A,
That is,|e) follows |+) with the ratio of Eq.(17). Thus we
can eliminatde) by defining the damped state

17

_ .9
|+>d=|+>+|[‘_i26|e>' (18)
The wave function can then be written as
[y =A_|=)+AL[+H)+HAJ)=A_| =)+ A [+)q.
(19
Equation(16) is then reduced to
A A
i |=H A, | (20)
with the Hamiltonian expressed in the),|+)4 basis:
SA
o | CA 9 (21)
-~ SA _ _. <z .
2 CA %5
We define
1 g7 g [°T
YT 2T2+46%° |T-i20 2° 22
2 2
__ 9% | 9 |
A= F2+452_‘F—i25| 2 @3
so that Eq(21) becomes
_h[cA SA
H=31sa —(ca-28)-i2al (24

the factorg?/(I'2+46%)=|g/(T —i248)|?, which is simply
the proportion of statée) in state|+)4 [Eq. (17)].

In deriving Eq.(17), we ignored the influx of atoms from
state|e) to |+), since for small values of (g<TI), pe is
small, makingl'p.c<p. .. For the reduced system ¢f)
and|+)4, however, we want to consider the general situation
in which the|—)«|+)4 coupling can possibly be as large as
the decay rate of+)4. In such a situation, the source terms
can no longer be ignored, and we must return to the density-
matrix formulation for the equation of motion. In the new
|-),|+)q4 basis, we have

Lo
P:g[PHT_HP]+LP++- (26)
Here
pP-— P-+ a O
_ L= , 2
P+- P++ 0 «a @7
where we have usep,.=p, . g%(I?+46), and
CA[-p sA
H=3sa  p—i2al 28)

which is the same as in E§24), except that we have sub-
tracted an energy dgfg/2 from the diagonal to make it more
symmetric and have define@’'=8—CA. Note that#g’
equals the energy difference between the statésand|—).
Also note thaf—) and|+)4 are coupled at the rate &\ /2,
which is just the coupling between the) state and the
(predominant |+) part of |[+)4. Note that atoms decaying
from the|+), state go to both statés ) and|+). This is as
expected, since the decay|ef), is due to the decay of state
|e) to both|—) and|+) (equally, in the case df ;=T ¢p).

lll. THE THREE-ELEMENT BLOCH VECTOR MODEL
A. The Bloch vector equation of motion

We now define a three-element Bloch vector to pictorially
describe the time evolution of th& system under Raman
excitation as expressed by the density-matrix equation of

motion[Eq. (26)]. We define the three-element Bloch vector

whereg are abstract unit vectors and the three real elements

i.e.,|+)q has energy ofi(—CA/2+p) and a damping rate of gre defined as

«. When compared tpt), the decay rate and the additional

energy for|+), result from the fraction ofe) that is in|+)y.
To see this explicitly, note thasettingz=1)

(e[He)

d<+|H|+>d:<+|H|+>+ r—i2s

g CA .
+2R <+|H|e) T—i2s =—7+ﬂ—la,

(29)

3(Ri+iR)=p_;, Rg=(p__—piy). (30)

This definition is motivated by an analogy with the two-level

(spin-3) system Bloch vector. Within the adiabatic following

limit, these three elements can be used to compute all nine

density-matrix elements, and thus all observables, in the in-

teraction. Using the constraint that _+p, =1, we get
p—_=3(1+Ry),

p++=%(l—R3). (32)
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Y 8, the familiar Rabi flopping in the two-lpvel system. Similarly,
L, =< ‘m Ry if =0, 8'#0, andSA =0, thenQ=g'ge;. The effect ofQ is
R® to mix R; andR,, which represent 2 Re , and 2 Imp_ .,
Rb respectively, at the rate of tHe-)«|+)4 energy difference
& ﬁﬁs --------- Rrr / 0 (“detuning”), while the initial population difference is con-
2 served. This is simply a manifestation of the dephasing be-

tween|—) and|+)4 and is also familiar from two-level sys-
FIG. 3. Motion of the three-element Bloch vector for the casetéms. In general, wheBA and g’ are both nonzeraQ acts
SA=0, 8'=0, a+0 (i.e., decay only. The initial offset Bloch vec- Just as the effective Rabi frequency vector in the two-level
tor (OBV) Ry decays in a straight line to the steady-state value zerdase.
at the rate ofe. The corresponding Bloch vect@8V) decays from Consider next the effect af, the decay rate dft)y. The
Ry to Rg=1€3, i.e., all the atoms in the trapped state. The &es Second term of Eq(34) indicates that each element of the
&,, &; centered at the origi® represent 2Re_,, 2Imp_,, and  Bloch vectorR, decays at this rate. But, at the same time, the
(p—_—p+4), respectively. third element of the Bloch vector grows at the rateagfas
indicated by the third term in Eq434). To understand the net
To find observables involving the stdi), we use Eq(17)  effect of these two processes, consider first the simplest case
to get in which |Q|=0. As can be seen by inspection from E8¢),
Bt the Bloch vector then decays to the steady-state Vdbumd
_«a _—phtia by setting R=0) of Rg=16;, i.e., R;s=0, R,s=0, and
Pee=F (17Ra). per= g (1-Ry), Rss=1, corresponding tp_,=p,,=0 andp__=1. Physi-
cally, this means that all the atoms have been pumped into
—B+ia . the trapped state. This occurs because we hav&setO,
Pe-="g (R1—iR2). (32 meaning that thé—) state is completely decoupled from the
system. In general, howeveRg is not equal to &;. Its value
Equations(30)—(32) express all the elements of the partially iS & balance of the three motions discussed alfdve toSA,
diagonalized states density mati) in terms of the three 8', anda) and is given by settinf=0 in Eq. (34). We get
elements of the Bloch vector.
The equation of motion for the Bloch vector is simply QXRg— a(Rg—&;)=0. (36
found by expanding Eq26) to give
° The explicit expression is
Ri| [« —B 0 |[R| [O

R2 = ﬂ' - SA R2 + 0 . (33) RlS 1 - ,8, SA
R) L0 -8\ —allRy |a Re=| Ros|= 57— | aSA | (37
Res] @ +B'+(SA) a2+ B2

Again, this equation holds in the adiabatic following limit

and for the case of ¢,=1I'cp (d=0). It can be expressed in Now, since it is more natural to picture a vector decaying to

the form zero instead of to some other constant vector, we define the
R= QXR— aR+ ad;, (34) offset Bloch vectoiR
whereQ is the torque vector, given by R'=R—Rs. (38
Q=—SAg +pB'e;. (35  This has the effect of shifting the origin to the position of

Rg, so that the offset Bloch vector will decay to zgwith
respect to this new origjnin the steady state. Using Egs.
(34), (36), and(38), we can see this explicitly in the offset
Bloch vector equation of motion

The Bloch vector equation of motigrEqg. (34)] reflects
two types of motion: precession & aboutQ at the rate of
|Q| and decay oR to some equilibrium positioiito be cal-
culated later at the rate ofa. To understand this motion in
physical terms, consider each of the three parameters in Eq. -, , ,

(34): SA, B/, anda, separately. R'=QXR'—aR’. (39

In the case of no decafn=0), there is a strict analogy
between the behavior of this system and that of the unThus the offset Bloch vectdiOBV) rotates around the same
damped two-level systenBA represents the coupling be- Q as the Bloch vector itself, while simply decaying to zero
tween the|—) and |+)4 states and is analogous to the Rabiamplitude at the rate of. This is illustrated in Fig. 3 for
frequency.8’ represents the energy difference between théQ|=0.
|—) and|+)4 states and is analogous to the two-level system There is one final point to make before applying this
detuning(i.e., the energy difference between the two states inmodel to specific problems. Equatiof80)—(32) express all
the rotating framg Thus, if =0, 8'=0, andSA#0, then the elements of the partially diagonalized states density ma-
Q=-SAg,. The effect ofQ is to mix R, and R, which  trix (p) in terms of the three elements of the Bloch vector.
represent 2 Rp_, andp__—p. ., respectively, at the rate Under certain circumstances, however, one needs to know
of the |—)«|+)4 coupling. This population flipping is just explicitly the elements of the atomic states density matrix
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2 (& 2imPy

FIG. 4. Motion of the BV for the cas8A =0, 8’ #0, a#0, with FIG. 5. Construction of the Bloch vector model for the most
initial conditionR,=R;8;. As one can see, the motion of the OBV general values of the paramet&4, 8', a, andRy.

R’ is much simpler. It consists of precession about the torque vectorh — /4 and th hat th . basi d iall
Q=p'e, at the rate ofQ|=|8'| and decay at the rate af to the that 6=n/4 and thus that the atomic state basis and partially

steady-state valuR'=0 (R=18,) corresponding tp__=1. The diagonalized basis are rotated by2 in the 1-3 plane with
time evolution of the OBV forms a spiral on a cone of evolution. respect to each othesee Fig. 4 Therefore, the initial con-

The terms in parentheses give the motion in terms of the atomiélition is equivalent tdRy= R108;. That is, the initial popula-
states for the conditiog; =g,. For different ratios ofy;/g, (keep-  tion differencepzz— ppp equalsR = R3o. The explicit equa-
ing g constany, only the rotation angle @will change, thus illus-  tion of motion in terms of the atomic state components can
trating the ease with which the Bloch vector model in the partiallyeasily be found by solving Eq39) and then using Eq42).
diagonalized basis handles unequal Rabi frequencies. If the Raman interaction had;+#g,, but gave rise to the
same values foBA, 8', anda (in particular, the values of,
(). For example, in our experimefio be described later &, T', andg® were the same then the same picture would
involving Raman excitation followed by a microwave exci- apply, except with rotation of the axes through a different
tation, and vice versa, it is important to know, for example,value of 2. That is, the Bloch vector picture in terms of the
the coherence and population difference between sfajes partlz_illy diagonalized basis would remain exactly the same.
and|b). In general, the initial conditions and observables arel his illustrates one of the key advantages of the Bloch vector
often best expressed in terms of the elements of the atomi®odel: it is equally simple for all ratios of Rabi frequencies
state density matrix. (94/9,). This aspect will be exploited in the modeling of
The partially diagonalized state density matrix containsow-intensity adiabatic passage. _
all the information of the atomic state density matrix, related Regardless of whether or not one needs to use the atomic

through Eq.(12). If we define state basis, the partially diagonalized basis is always the one
o _ in which the Bloch vector model is best constructed, for as
3(Ri+iRy)=p35, Rs=(paz—055)=(Paa—Pbb), we have shown above, it has a simple form and physical

(40) interpretation there. The following will be a step-by-step
o ] construction of a full Bloch vector model for arbitrary values
then the original Bloch vectoR gives these components of the parameter§see Fig. 5. Start with the atomic states

directly: basisa (not shown, with origin atO. Calculated from the

given values ofy; andg,. Rotate the axes clockwise by 2

in the 1-3 plane to get the partially diagonalized basis

= o . ) ) (shown at the upper right corner of Fig. &iven the initial

where theg basis is related to the basis by a simple rota- ,qpyation difference and coherence, place the initial Bloch

tion of 20 in the 1-3 plane. Specifically, to get thebasis, vector R, (using either basjs From this point on, use the

rotate counterclockwise from tlee basis through & Thatis, partially diagonalized basis only. Now calculate the steady-
state vectoRg [Eq. (37)] from the calculated values &A,

R= ﬁlgl + ﬁzgz + §3€3 , (41)

ﬁl C 0 -S| R B', and a. Translate the partially diagonalized basis to the
ﬁz =0 1 O R, |. (42)  offset Bloch vector originO’, which lies at the tip oRs.
Rs S 0 C||Rs Now place the torque vectd@ at O’ [Eq. (35)]. Place the

initial OBV R} at O’, connecting its tip to that oR,. Now
Pictorially, given the position of the Bloch vect& at any  draw the cone of evolution, the surface of revolutionRjf
time, one simply has to project the vector ontoﬁwaxes in about the axis that containQ. The time evolutio_n of the
order to get the atomic state density-matrix elements. FopysStem is represented by an exponentially decaying spiral on
instance, ifg,=0, then from sind=g,/g we find that6=0. the surface qf the coniEq. (39)]. The BIQCh vector gt any
Thus the partially diagonalized basis and atomic state basf§ ' t, R(1), is just the vector with origin aD and tip at

coincide, which is expected, since in this cda is the R (t). The values oR; or R; can be read off by projecting
trapped staté—) R(t) onto the partially diagonalized or atomic states basis

Now consider the previous case 8iA =0, g'+#0, and (both with origin atO), respectively.
a+#0, with the initial conditionRy=R;¢, (pictured in Fig.
4). In particular, consider the case in which the Raman inter-
action satisfies the conditiog;=g, (i.e., equal Rabi fre- We now illustrate the simplicity and power of the Bloch
quencieg at all times. Again using sif=g,/g, this implies  vector model by describing a few systems of interest.

IV. APPLICATIONS OF THE BLOCH VECTOR MODEL
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FIG. 6. Two-zone Raman interaction that leads to the generation
of Raman-Ramsey fringes. Displayed is the ideal case in which
there is no ac Stark shift of the central minimum. For all zones,
B'=0. An atomic beam first passes through zdnexcitation for
time 7,. [SA[<a and ar,>1, so the system reaches the steady- [, 7. ac Stark shift in the generation of Raman-Ramsey
state valueR(7y) =Rs=16;, with all the atoms in the trapped state. fringes in a two-zone interaction. This tingsis not necessarily zero
Then the atomic beam passes through the dark zone with no exGj excitation zones. An atomic beam first passes through Zone
tation for timeT. Now =0, so the BV precesses without decay excitation for timer, . |A|<a,|A], so the BV precesses and decays
aboutQ=—SAg, for ime T, sweeping out an anglBAT. Finally,  toward the steady-state valtRs=18; until it leaves zoneA at
the atomic beam passes through the z@hexcitation. Again  R(z,). Note that the BV does not necessarily reach the steady state

|SA[<a, so the BV decays tRs=1&; at a rate ofw. The resulting 5 zone A, unlike in Fig. 6. This leads to the shift of the fringe
integrated observed fluorescence in zdhes a function ofSA central minimum.

gives the Raman-Ramsey fringes.

We assume that the fields have the same phases inBzase
A. The ac Stark shift in Raman-Ramsey fringes in zoneA, so that we can simply continue wWil(7,+T) in
— : . the same position as in the dark zone. In zBnéSA|<a, so
In the application of Raman-Ramsey fringes to atomic « . < -
bp y Imnd Rs=1e; again and we assume th@t=—SAe, is negligible.

clocks, the ac Stark shiftseen as a shift in the Ramsey ; |
- ; : The OBV just decays linearly tBg. The fluorescence at any
central minimunm is a direct source of errdi3]. Before we time t is simply given by Eqs(44) and (45):

explain this shift in terms of the Bloch vector model, we

must first express our observable, fluorescence, in terms of Si(t)=a[1—COoSAT)]e . (46)
Bloch vector components. Then we can describe the genera-
tion of the fringes and, afterward, the shift. In a typical experiment, the fluorescence observed is inte-
The fluorescence sign& is proportional to the excited- grated over the interaction zone. Thus, ta>1,
state populatiorp... From the adiabatic following approxi- .
mation[in particular, Eq.(17)], we have §f:J Bdt a[1—cogSAT)]e  “'=1—cogSAT)
g |? i
pee:’F_lzg P++- (43) :_Ré(TA+T), (47)

where the last step is by inspectioRig. 7). Thus plotting

Thus - . .
N S as a function ofSA, i.e.,

Si=I'pee=2ap..=a(l-Ry), (44) gf(SA):l—COE{SAT), (48)

where the last step is from E1). _ generates the ideal Raman-Ramsey fringes, with a minimum
First we will describe the generation of the ideal Raman-y¢ i orescence aBA =0.

Ramsey fringes, in which the central minimum occurs at  The a¢ Stark shift in the two-zone setup is the result of

A=0. The two-zone Raman interaction that generates thg,ss than-ideal conditions, namely, the fact that the system

Raman-Ramsey fringes consists of an atomic beam thajyes not reach equilibrium in zon® and thatg' 0. The

passes through three regions in succession: first Raman exsym “ac Stark shift” itself refers to the energy difference

citation in zoneA for a time 75, next a dark zone with N0 yatween thd—) and |+), states(8') due to the value ob
fields for a timeT, and finally Raman excitation in zori, (8'=8). We will find that there is no shift i’ =0. For sim-

which is identical to that in zonA (Fig. 6). We assume tAhat plicity, we chooseg,=g, in both excitation zones, so that
[Eq. (37)], i.e., all atoms in the trapped state. For now, Weayonalized basis is rotated b2 with respect to the atomic
assume.that the zonk interaction is strong enough so that giates basis. In both excitation zones, we assume that
amy>1, i.e., that the system reaches steady state by the eng| < gl since we want to consider only a small shift with
of zoneA:  R(7y)=18;. In the dark zoneaxg”=0 (sinc€  yegpact ta, ThusRs=18, there[Eq. (37)]. In the dark zone,
g=0 thers, thus we can no longer igno@\. This causes ,— 3—0 (sinceg=0), soA is no longer negligible. This time
the Bloch vector to precegRabi flopping at the rate ofSA, e . 2 -
so that during the dark zone flight tinfe R rotates through W€ €hoose_a specific initial conditioRo=Do€;=D€,,
where Dg=p33—ppp IS the initial atomic ground-state

an angleSAT. At the end of the dark zone, we have by , .
population difference. In zond, the OBV precesses and

inspection ~ ~
decays until timer, (Fig. 7). We use the 12 projection to
R(74+T)=sin(SAT)&,+CcogSAT)e;. (45  calculate the projection angl¢ by inspection. We have
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ac Stark shift disappeafgas can readily be seen from Figs.
7-9. Finally, the shift disappears fdd,=0, which is also
clear from Figs. 7—9. We point out that in addition to the
two-zone interaction described above, the Bloch vector
model can be used to derive the Raman dip in the single-
o zone Raman interaction and its associated ac Stark[2Bift

T The Raman clock ac Stark shift predicted by Egfl) has
been verified quantitatively, over a large range of experimen-
tal conditiong[3]. In addition, the insight obtained from this
derivation was instrumental in identifying conditions for sup-
pressing this effedi3].

—-R (TN — /ﬁ”(TpT)

22 PRAJECTION

B. Separated zone Raman-microwave mixing

FIG. 8. Dark zone with no excitation for timé. Now g=0, The A system provides a unique mechanism for mixing
a=0, so the BV precesses without decay ab@ut —Ag, for time optical and microwave fields in particular and widely differ-
T, sweeping out an angl&T as seen in the 2 projection. The  ent frequencies in general. The uniqueness results from the
integrated observed fluorescence measured in the followingBone fact that in the presence of two optical frequendies and
is given by the value-Ry( 74+ T). Thus the minimum fluorescence ), the|a)« |b) microwave excitation forms a closed loop.

occurs forA=—¢/T. As a result, the effect of the interaction depends nontrivially
on the phase differencepy, — ¢r), Whereg,, is the phase of
’Iil(rA)zl—e*“TA, ’Iiz(TA):Doe*“TAsin(BTA). the microwave field andxg, is the phase of the Raman prod-

(49) uct field (defined aspr=¢,— @,, where ¢, and ¢, are the
phases of the individual optical fields at frequencigsand

Thus ,). To see why, note that, for example, the coherence be-
tween statesa) and|b) is excited in two ways: directly by
’,{az(TA) e @A the microwave fields and indirectly by the two optical fre-
tan ¢p= = =D, Sin(B7ya). (50 quencies. Since each of these two processes tends to drive
Ri(74) 1-e @A the coherence at its own phase, there exists a competition

between them. The result of this competition therefore de-

In the dark zone, with onlA+0, the Bloch vector precesses pends strongly on the difference between the phases.

(with constant amplitudethrough an angl&T (Fig. 8). As This type of interaction has several potential applications.
shown above, the integrated fluorescence measured in zoge, example, it can be shown that Raman-microwave exci-
B is given byS;= —R3(7a+T) [Eq. (47)]. Thus, by inspec-  tation can be used, with the proper choice dafto pump

tion, we find that the minimun$; occurs forA=—¢/T (see  atoms selectively into either the strong-field-seeking or the
the 1-2 projection in Fig. 8. Explicitly, the central mini- Weak-field-seeking dressed state of the microwave excita-

mum occurs at tion. This could potentially be used to make a much higher
density trap, which requires atoms in a particular dressed
1 e A state. Atoms that leave the required state due to phase-

Ao=—gtan | Do 7—=am SiNB7a) |, (5D changing collisions could be pumped right bat0,24).

Raman-microwave spin echo could possibly be used in opti-
where we have used E¢50). This ac Stark shift is mani- cal data storage, with potential advantages over the optical
fested in the Raman-Ramsey fring@g. 9. Consider now Photon echo processes as well as spin echo procgsgps
the limiting cases of Eq(51). For a7>1, A,=0 since the Finally, such a closed-loop mixing could be used for the
system reaches equilibriufall atoms in the trapped statia ~ Ultrahigh-resolution mapping of the phase of, for example, a
zoneA, which reduces the case to the ideal Raman_Ramsergulhmeter-wave field. This is of significant interest in de-

fringes. For8=0 (and these particular initial conditiopghe ~ Signing components such as a phased array antenna. To il-
lustrate how such a phase mapping can be performed, we

discuss now the microwave phase sensitive absorption of the
optical beams in the\ configuration[10].

The separated zone Raman-microwave mixing scheme
6=—TAursr consists of an atomic beam that passes successively through
1+ Ri2Ctdl— a Raman-only zone, then a microwave-only zone, and finally

5 another Raman-only zon@ig. 10. Thus the ground-state
: coherence is first excited by a Raman pulse. The atoms bear-
1 RiaCtl— ing this coherence then encounter a microwave pulse. The
’ effect of this interaction with the microwave pulse is then

LN

1 —

8 | T T T T T T T T A . . . -
2 41 o 1 2 Em determined by probing the atoms again with a Raman pulse.
t For simplicity, we assume that the two Raman zones are in
2= Bogrser phase, havg;=g,, and leave all atoms in the trapped state

in the steady state. In terms of Raman and microwave Bloch
FIG. 9. ac Stark shift. The minimum value of the fluorescence isvectors, the interaction is very simple to understand. Con-
shifted away fromA=0 by —/T. sider first the case in which the phase difference between the
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FIG. 10. Separated zone Raman-microwave mixing for the case
in which the phase difference between the Raman and microwave
fields is A¢p=mn/2. An atomic beam passes successively through a
Raman only field, then a microwave only field, and finally another ~ FIG. 12. Low-intensity adiabatic passage in terms of the par-
Raman only field. Note the different Raman and microwave basedially diagonalized basis. I8>26 (and SA), then the net preces-
Rs=paa—ppo for _both RF=2RepR, RZ=2ImpR, and  sion vectorQ will lie very close to thee; axis. Thus the initial BV
RY =2 RepM, RY=21ImpM, where  pR =p.,e'??,  Ro=18& will stay very close to the dark state at all times as the Rabi
pg"b:pabeifbm‘ andA¢= ¢y — ¢r. The Raman BV reaches steady frequency ratio is varied. This results in very little excited-state
state in the first Raman zone. Then the microwave BV is found bypopulation and thus coherent population transfer from one ground
rotating the Raman BV by ¢ in the coherence plarid-2 plang.  State to the other.

The microwave BV precesses due to microwave excitation about

the Rabi frequency vect@=ge}'. The Raman BV is found again to the microwave Bloch vector. In the microwave Bloch vec-

by rotating back byA¢. The second Raman interaction pumps at- tor picture, the Bloch vector lies in the Rabi-flopping plane

oms back into the trapped state and the integrated observed fluoreere it appears to be in a state with coherence that is pure

cenceS; is measured. In generd varies sinusoidally with both  negative imaginaryand thus strongly interacts with the mi-

the phase and the strength of the microwave field. crowave field, undergoing Rabi f|opp|ng at the rat@g)tthe
microwave Rabi frequengy If the pulse strength corre-

) ) sponds to a multiple of 2 pulses, then again the Raman
microwave zone and the Raman zone is ZerQyrope in the third zone yields a fluorescence minimum. For
(Ap=dy — ¢r=0). The Raman interaction in the first zone any other value of the microwave pulse size, the atoms no
pumps the system into a perfect trapped state. To go from thgnger appear to be completely in the trapped state in the
first to the second zone, the Raman Bloch vector must bgecond Raman zone. As a result, the fluorescence is no
rotated in the coherence plane by the phase difference ¥gnger minimum. In particular, for a microwave pulse, the
become the microwave Bloch vect@BV). This is S0 be- atoms appear to be in the strongly absorHin state in the
cause each Bloch vector picture incorporates the relativgecond Raman zone, thus yielding a fluorescence maximum.
phases. This phase information is necessary to relate the riy general, the fluorescence oscillates sinusoidally with the
tating frame (of the BV) to the atom’s f'rame(i.e.,.psb pulse strength.
=pan€ R=pap€ (1792 and  plt=pape' M= p,pe'93). For a given pulse strength, such as the fluorescence
Since the phase difference is zero in this case, in the secorgbserved is maximum fak¢= /2 and minimum forA ¢=0,
zone the state appears as one of the dregstdionary  as we have just shown. It is simple to show that, in general,
states of_the microwave interactidspecifically |)=(1/  the fluorescence varies sinusoidally with both the phase and
v2)(Ja)—|b))], so that the atom appears transparent to thehe field strength of the microwave field. Thus, to use this
microwave field. When this atom is probed again by theprocess for measuring the phase alone with optical resolu-
Raman pulse, it exhibits a fluorescenge., S;) minimum,  tion, the amplitude must also be measured with equal reso-
as if the microwave pulse did not occur at all. Consider nexiution. Note that this can easily be done by shutting off one
the case wherd ¢= /2. The first zone is the same as in the of the frequencies of the two Raman beamg.,g,=0). The
previous case. But in going from the first to the second zonegxperiment then corresponds to normal optical pumping into
the Raman Bloch vector must be rotated#/2 to convertit |a) or |b) in both Raman zones and therefore depends only

R &

< j’,..v". R
N = 20
e Rs <

les \ =
5 )
) 5 0
end -1 \\ R® 'B
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ A Reo (1A ?

Rgct+dd
FIG. 13. Summary of the separate contributions to the motion of
FIG. 11. Low-intensity adiabatic passage explained in terms othe Bloch vectoiR(t) in the partially diagonalized basis. The over-
the atomic states basis. The motion of the BV is like that of aall motion is a balance of the three torquB4 (|—)«|+)4 cou-
precessing top. As the equilibrium vectBg moves from &; to pling), B (|—)|+)4 energy difference 26 (rate of change of the
—18;, the BV follows it around by precessing about it, rather thanRabi frequency ratip and the decay rate. The steady state value
decaying to it, resulting in coherent population transfer. is Rs.
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on the amplitude of the microwave field. This situation canThus, with respect to the partially diagonalized basis, the BV
be pictured from Fig. 10. Everything would be the same,will rotate counterclockwise at the rate ob2 N
except the Raman steady state would always be perpendicu- Now it is simple to see under what conditions low-

lar to the coherence plane, in which casgwould not affect ~ intensity adiabatic passage will work, with a minimum of
the Bloch vector. loss due to spontaneous emission. The condition for highly

coherent adiabatic following is

C. Low-intensity adiabatic passage B> \/(20)2+(SA)2+ o2 (52
Adiabatic passage is a process by which population is
transferred from one ground statef the A system to the ~ TO see how this works in terms of the atomic state basis, it is
othercoherently Thus, in the ideal case, there should neverhelpful to think of a processing tofFig. 11). The initial
be any excited-state population throughout the entire procondition isRy=1€;. As the equilibrium vectoiRg rotates
cess. If at any point there is any excited-state population¢lockwise at the rate of @ the BV tries to catch up with it.
spontaneous emission may occur, with atoms falling into thd’ here are two types of motion that can help it catch up:
ground states incoherently. In a recent experinjds;14,  precession aboud and decay at the rate of Decay due to
population has been transferred with little loss due to spone is bad because it corresponds to loss via spontaneous de-
taneous emission. In the dressed-state Bloch vector picturéay. Precession due A is also undesirable since it takes
ideal adiabatic passage requires that the system be in tiiBe system away from the-) state in such a fashion that
trapped state at all times. only a decay due tex can reverse the motion. This is to be
The method of transferring population fro) to |b) is  contrasted with precession duega In this case, the motion
to vary the Rabi frequency ratio frogy/g,=0 to g,/g,=o Is around the equilibrium_ statg¢—)) and not away from it.
while holding g= \/m constant. So at the beginning, Therefore, decay due t@ is _not necessary in order to keep
|—y=|a), and at the end—)=|b), with |~ passing through the BV close to the equilibrium. Thus we requigé>|SA|.
intermediate superposition states|aj and|b). The condi- In addition, we require that the precession dugstdoe fast
tions are chosen so thRt=18; (i.e., all the atoms are in the c0mpared to the motion of the equilibrium vector about the
|-) state at equilibriut Thus, for the process to be highly 2¢ torque, thatisg >|26]. This means that a complete half
coherent, the system must be near equilibrium at every poidPtation of the BV[i.e., fromR(t) to R(t+dt)] about the
throughout the process. In practice, this is accomplished b§auilibrium vector takes place in a very small time, in which
varying the Rabi frequency ratio very slowly. In terms of the € quilibrium vector has moved only slighfye., from
Bloch vector picture in the atomic state basis, the equilibRs(t) to Rs(t+dt)]. Thus the BV is led to stay around the

rium vector(which coincides with thé; axis of the partially €W equilibrium position. To make sure that very little co-
diagonalized basjswill be rotated through an angle of ~ Nerence loss occurs from decay duexowe further require

2 P . that 8'>a. Figure 12 illustrates the motion of the BV under
from R=1e; to R=—1e; (Fig. 11). The Bloch vector is

. . L these conditions.
supposed to follow this slowly moving equilibrium vector

very closely. But the reasoning behind why this should work V. CONCLUSION
is much clearer, both physically and quantitatively, in the
partially diagonalized basis. One can see the distinct advantages of this Bloch vector

Figure 12 shows the process in terms of the partially di-model, which holds in the adiabatic following limit. It gives
agonalized states BV. There are three separate torques actiggimple physical picture of the motion. It gives the transient
on the BV, as illustrated in Fig. 13. The BV will process behavior of the system, which in many cases allows one to
around the net torque vect@) at the rate oﬂQ| We have Solve problems by mere inspection. Furthermore, it is inde-
already discusseSA and’. The 20 comes from the rate of pendent of the Rabi frequency ratio, handling all cases with
change of the Rabi frequency ratio. To see this, consider thequal ease. However, its most important value is in giving
case above in which we start wigh=0 andg,=g+0. Then  the user a quick way to test out particular cases with simple
6=0 and the atomic state basis and partially diagonalizedlrawings, leading to alternative ideas for applications of the

basis coincide. The initial BV starts ab% 1&;,, i.e., all at- resonant Raman interaction.

oms in_ the|a)=|—) state. We change the_Rabi fr_eqL_Jency ACKNOWLEDGMENTS

ratio with g held constant so that changes linearly in time
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