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Limits to clock synchronization induced by completely dephasing communication channels
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Clock synchronization procedures are analyzed in the presence of imperfect communications. In this context
we show that there are physical limitations, which prevent one from synchronizing distant clocks when the
intervening medium is completely dephasing, as in the case of a rapidly varying dispersive medium.
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INTRODUCTION lowed) increase in the accuracy of classical clock synchroni-
zation protocols, such as the one obtainable exploiting en-
There are two main kinds of protocols for achieving clocktangled systemfg5—8].
synchronization. The first is the “Einstein synchronization The presented discussion also takes into account the pos-
protocol” [1] in which a signal is sent back and forth be- sibility that the two distant parties who want to synchronize
tween one of the clockésay Alice’s clock and the other their clocks(say Alice and Bob and who are localized in
clocks. By knowing the signal speed dependence on the irSPace can entangle their systems by exchanging a certain
termediate environment, it is possible to synchronize all théwumber of quantum states, and the possibility that they may
clocks with Alice’s. The other main protocol is the “Edding- €mploy the “wave function collaps€3], through postselec-
ton slow clock transfer2]: after locally synchronizing it tion measurements. The intuitive idea behind the proof is as
with hers, Alice sends a clocli.e., a physical system that follows. To synchronize clocks, Alice and Bob must ex-
evolves in time with a known time dependente all the ~ change physical systems such as clocks or pulses of light that
other parties. The clock’s transfer must of course be perfectijnclude timing information. But any effect, such as rapidly
controllable, as one must be able to predict how the clockarying dispersion, that randomizes the relative phases be-
will react to the physical conditions encountered route  tween energy eigenstates of such systems completely de-
which may shift its time evolution. Moreover, since any ac- Stroys the timing information. Any residual information, such
celeration of the transferred clocks introduces a delay beas entanglement between states with the same energy, cannot
cause of relativistic effects, one must suppose that the tran§e used to synchronize clocks as shown below.
fer is performed “adiabatically slowly,” i.e., such that all ~ The paper is organized as follows. In Sec. | the analytic
accelerations are negligible. Notice that the above protocol§amework is established. In Sec. Il the clock synchroniza-
can be implemented using only classical resources: peculidion procedure is defined and the main result is derived. In
quantum features such as entanglement, squeezing, etc., &@ticular, in Sec. Il A the exchange of quantum information
not needed. In what follows, such synchronization schemeBetween Alice and Bob is analyzed and in Sec. II B the
will be referred to as “classical protocols.” analysis is extended to include partial measurements and
A recenﬂy proposed quantum clock synchronization pro.pOStSE|ECti0n schemes in the synchronization process.

tocol [3] was found[4] to be equivalent to the Eddington
slow clock synchronization. The application of entanglement I. THE SYSTEM

purification to improve quantum clock synchronization in the : .
presence of dephasing was attempted without succd$&g.in Assum_e th? fo[lowmg hypothgses that Qescnbe the most
general situation in which two distant parties communicate

One might think there were other ways to implement a syn—hrough a noisy environment:
chronization scheme that gmploys quantum features such ‘%S (1) Alice and Bob aresepérateentities that initially are
entanglement and squeezing, but this paper shows that th|s(|jsS

not the case. In fact, it will be shown that quantum mechan®" joint They_ belong to the same inertial re_ference frame
and communicate by exchanging some physical system.

ics does not allow one to synchronize clocks if it would not (2) The environment randomizes the phases between dif-

be possible to also employ one of the classical protocolsf ¢ ; ot £ th h d : hile |

which one can always employ if the channel is perfect or if erent energy eigenstates ot the exchanged system whiie in

its characteristics are controllable. However, the relevance otfans't' Lo .

guantum mechanics to the clock synchronization procedur From these hypotheses I will be shown that Alice and
H Qb cannot synchronize their clocks.

should not be underestimated, since there exist schemes t In Sec. | A we explain the first hvoothesis by giving its
exploit quantum mechanics to achievdctassically not al- ' P yp y gving
formal consequences. In Sec. | B we analyze the second hy-

pothesis and explain how it describes a dephasing channel.
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$Email address: smshahri@mit.edu initially Alice and Bob do not already share any kind of

A. First hypothesis
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system that acts as a synchronized clock. $&paratewe  (1). From the above example, it is easy to see that in each
mean that at any given time Alice and Bob cannot gain aceommunication exchange it is possible to defindeparture
cess to the same degrees of freedom and there is no diretiine t¢ after which the sender cannot act anymore on the
interaction between Alice’s and Bob’s systems. This can beystem in transit, and aarrival time t, before which the
described by the following properties of the system’s Hilbertreceiver cannot yet act on such system. It is between these
space and Hamiltonian. At timethe Hilbert space of the two times that the exchanged system belongs{¢a

global system can be written as In hypothesis 1 by initiallydisjoint we mean that Alice
and Bob do not share any information prior to the first com-
H=HA)@Hc(t) ®Hg(1), (1) munication exchange. In particular this means that, before

. . they start to interact, the state of the system factorizes as
where the Hilbert spack/4(t) refers to the system on which y y

Alice can operate at timég Hg(t) refers to Bob’s system, W) =|d)a®|0)s, ©)

and H(t) describes the systems on which neither of them

can operate. The time dependence in @g.does not imply i.e., the initial state is not entangled and they do not share
that the global Hilbert space changes in time, but it refers tany quantum information. Hergp), is the state of Alice’s

the possibility that a system that was previously under Al-system evaluated at the time at which she starts to act, while
ice’s influence has been transferred to Bob vice versa,  |¢)g is the state of Bob’s system evaluated at the time at
after a transient time at which it cannot be accessed by any afhich he starts to act. For ease of notation, the tensor prod-
them. Since informatiormustbe encoded into a physical uct symbol® will be omitted in the following except when
system, this mechanism describes any possible communic@is explicit presence helps comprehension.

tion between them. Moreover, the Hamiltonian of the system

can be written as B. Second hypothesis

H(t)=Ha(t)+Hg(t)+Hc(t), 2) The second hypothesis imposes limitations to the infor-
mation retrieved from the exchanged signal. The dephasing

where the time dependeHit,(t) andHg(t) evolve the states of the energy eigenstates describes the nondissipative noise
in H, and Hg under the control of Alice and Bob, respec- present in most nonideal communication channels and im-
tively, while He(t) evolves the system in transit between plies a certain degree of decoherence in any quantum com-
them when it is not accessible. As a consequence of Hg. munication between Alice and Bob. Defirle,d) as the
at timet the three terms on the right side of E8) commute, eigenstate relative to the eigenvattie, of the free Hamil-
since they act on different Hilbert spaces. For the same redonian of the exchanged syste@ The labeld takes into
son any operator under the influence of Alice at tinoem-  account possible degeneracy of such eigenstate. We assume
mutes with all Bob’s operators at the same time. A simplethat during the travel, when neither Alice nor Bob can con-
example may help explain this formalism. Consider the situtrol the exchanged system ¢, the statege,d) undergo
ation in which the system is composed of three 1/2 spirthe transformation
particles(qubits. A possible communication is then modeled .
by the sequence le,d)—e"'%e,d), 4

where the random phasg,e[0,27] is independent ofl.
3 12 3 112 3 The channel dephasing arises when different energy eigen-
@ @ @ — @ @ @ _>® @ @ states are affected by different phase factpgs For this
Ha Hr Ha He Hs Ha s reason the dephasing is characterized by the joint probability
functionp(¢e, o) that weights the probability that the en-
ergy levels|e,d) and|e’,d) are affected by the phases
i.e., initially Alice’s Hilbert spaceH, contains spins 1 and 2, ande.s, respectively. The parametee [0,1] measures the
and Bob owns only spin 3. Alice then encodes some infordegree of decoherence in the channel. In particudarl
mation on spin Aeventually entangling it with spin)land  describes the case of complete decoherence, where the
sends it to Bob. There will be a time interval in which none phases relative to different energy eigenstates are completely
of them can access spin 2, and this situation corresponds técorrelated, namelp . (¢.,¢¢) is a constant. On the other
having spin 2 belonging td{. . Finally, Bob receives spin 2, hand,e=0 describes the case of no decoherence, where each
and his Hilbert spacé{s describes both spins 2 and 3. No- energy eigenstate acquires the same phase, namely
tice that the form of the Hamiltonian in Eq2), where no  P(¢e,Per) = 8(@e— @er)/27. Written in the energy repre-
interaction terms are present, allows each of them to act, atgentation, the channel density matgyx evolves, using Eq.
given timet, only on the spins that live in their own Hilbert (4), as
space at timet. An analogous description applies also to
more complicated scenarios, such as the exchange of light _ ~i(@e—e’)
pulses. In this case, causality constraints allow Alice and Bob e z PeQ°Pe'_)§ © Pe@cPer,
to act only on localized traveling wave modes of the electro-
magnetic field. Thus, also here, it is possible to define avhere P,=X4|e,d)(e,d| is the projection operator on the
traveling system Hilbert spack that factorizes as in Eq. channel eigenspace of enerfjw.. Taking into account the
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stochasticity of the evolutiof¥), the right-hand term of Eq. T4
(5> must be weighted by the probability distribution - 5 )
P @e,®er), resulting in ; : T4
B
Qc_’z/ 55;2/ PchPe’v (6) |_9_)t0H_e ; CTI 9 % t
- A : :
4 1 1 1 1
where ; ; : : B ﬁ
21 2w . >
8= fo dee fo dePe(@e.0er)e (e ¢e) (7) B

. (e ) FIG. 1. Comparison between the time% and 75 of Alice and
The width of the functiond., decreases withe, so that g clocks. The center line represents the “absolute” time as

5&;,:0) is independent of ande’ and the state is unchanged, measured by an external clock. The small circles represent the times

while 5((;;1) is the Kroneckers and the state suffers from o©f events that take place on Alice’s side, while the crosses represent
those on Bob’s side. The upper line is the time as measured by

decoherence in the energy eigenstate basis. oo _ ! Tieds
The dephasing process of Hd) can be derived assuming Alice’s clock: she only has direct access to the proper time intervals
such aSTf. Analogously, the lower line represents Bob’s proper

; ; ; — 4o ’
a Otlme dependent HamlltonlaHC(t) ~ H9+ H.C(t)’ where time. To achieve clock synchronization, Alice and Bob need to re-
c is the f_ree evolutlor_l of the_sys.tem with elgenstdmd) cover a connecting time interv&CTI) such as the one shown.
andH((t) is a stochastic contribution that acts on the system
in a small time intervabt by shifting its energy eigenvalues
by a random amount,, such thatv.é6t= ¢, . In fact, in the
limit 6t—0, the evolution of the exchanged system is de

the signal travel time or in the exchanged clock prove to be
fatal. One might think that by exploiting the apparently non-
. ‘local properties of quantum mechani@sg., entanglement
scribed by these limits can be overcome. In the following sections we
will show that this is not the case.

Uc(t, ,tS)ZEX% _iz Pl we(ty =ty +@el (8)

Il. CLOCK SYNCHRONIZATION
wherefi w, is the energy eigenvalue of the exchanged system . , L
relative to the eigenvectde,d) andt, andt, are the ex- In thls_sectlon we analyze the clock synchror_uzatlon
changed system’s arrival and departure times, respectivelychemes in detail and show the effect of a dephasing com-

introduced in Sec. | A9]. Notice that fore, independent of ~Mmunication channel. _ 5
e (which corresponds to the case-0), U reduces to the How does synchronization take place? Detlgm'zmdtO as

deterministic free evolution operator éxg(i/A)H2(t —t)] the initial times of Alice and Bob’s clocks as measured by an
apart from an overall phase term e external clock(Of course, since they do not have a synchro-
. . . B
It might be interesting to consider the simpler case inniZéd clock to start with, they cannot meastfeand g .)

which the random phase, can be written aso.0 with the Alice and Bob will be able to synchronize their clodkeind

random termd independent o. In this case, Eq(8) sim- ~ only if they can recover the quantity—t;, or any other
plifies to time interval that connects two events that happen one on

Alice’s side and the other on Bob’s side. Each of them has
i access to the times at which events on her/his side happen
Uc(t, :ts)zeXF{_gHg(tr_ter 0)|- (9  and can measure such events only relative to their own
clocks. We will refer to these quantities as “proper time in-

This last situation depicts the case in which all signals extervals” (PTls). For Alice such quantities are defined &5
changed between Alice and Bob are delayed by an am@unt Itf\—té\, wheretJA is the time at which thgth event took
As an example consider light signals that encounter a meplace as measured by the external clock. Analogously for
dium with unknown(possibly varying refractive index or a Bob we define his PTl asc=tf—t5 . If Alice and Bob share
traveling “clock” that acquires an unpredictable delay. Thethe data regarding their own PTIs, they cannot achieve syn-
situation described by E@8) is even worse, since not only chronization: they need also a “connecting time interval”
may such a delay be present, but also the wave function iCTI), i.e., a time interval that connects an event that took
the system is degraded by dispersion effects. In both caseglace on Alice’s side with an event that took place on Bob’s
the information on the transit timg —ts that may be ex- side as shown in Fig. 1.
tracted fromU(t, ,ts) depends on the degree of randomness Within this framework, consider the case of Einstein’s and
of ¢.. In particular, if o, is a completely random quantity Eddington’s clock synchronizations. In the Einstein clock
(i.e., for e=1), no information on the transit time can be synchronization the PTls on Alice’s side are the two times at
obtained. which she sent and received back the signal she sends Bob.
This, of course, prevents the possibility of using classicaBob’s PTlI is the time at which he bounces back the signal to
synchronization protocols, where unknown delays in eitheAlice. The CTI in this case measures the time difference
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bounces the signal back.” The protocol allows Alice to re-

cover the CTI by simply dividing by two the time difference
between her two PTIs. The analysis of Eddington’s slow toB Dephasing
clock transfer is even simpler. In this case Bob’s PTI is the :

time at which Bob looks at the clock Alice has sent him after

synchronizing it with hers. The CTl is, for example, the time i }VKA 5 ﬁ

between the events “Alice sends the signal” and “Bob T4
< 3
T

t

S

difference between the event “Bob looks at the clock sent by - . T

Alice” and “on Alice’s side it is noon”: Bob can recover it 1B

just looking at the time shown on the clock he received from

Alice. FIG. 2. Alice sends Bob a message encoded into a quantum
In this paper we show that in the presence of a dephasingystemC at timet% (her proper timers) and Bob receives it at time

communication channéhs described in hypothesis, Zhere 2 (his proper timer?). During the travel the systei@ undergoes

is no way in which Alice and Bob may achieve a CTI. The dephasing.

best that they can do is to collect a series of PTIs related to

different events and a collection of CTI transit times cor- U(t,00=U(t,t")U(t’,0), (12
rupted by the noisy communication line: clock synchroniza-
tion is thus impossible. and the commutativity of the operators that act on the dis-

tinct spaces of Alice and Bob. It is easy to show thattfor

A. Timing information exchange <t$tr5 the state of the system is given by

In this section we analyze the exchange of quantum infor- |W(t))= Ub(t,tg)Ua,(t,tQ)Uc(t,té)Ua(tQ 'té)|\p>,
mation between Alice and Bob in the presence of dephasing. (12
Starting from the stat¢¥) of Eq. (3), Alice’s and Bob
begin to act on their systems at two tim@isat are not nec- whereU,(t,t") is the evolution operator in spaéé, and
essarily the samein order to get ready for the information
transfer. Without loss of generality one can assume that these |W)=U,4(t5,0)Ux(t5,0) ¥ (0)) (13
two times coincide with their own time origins, i.¢f and
t5. This means that, at those two times, they introduce tim
dependent terms in the system Hamiltonian

és the initial state as far as Alice and Bob are concerned,
defined in Eq(3). By hypothesis 1 this state does not contain
any usable information otf} andt§ . In Eqg.(12) notice that

Ho—HA(D)=HR+HA(t—t7), up to timet% the systemg+, and M, are evolved together
(10) by U,. Analogously, fortztrB after Bob has received the
0 Hg(t)=HS+H(t—t8) system Alice sent him, one has
W (1)) =Ua (t,t)Up (1,t2) [P (t2)). (14)

whereH3 andHg are the free Hamiltonians of Alice’s and
Bob's systems andH,(t—t§) and Hy(t—tg) characterize  Joining Eqs(12) and(14), it follows

the most general unitary transformations that they can apply

to their systems. These last terms are null ferty and t |W(t))=Up (t,tP)Up(t2 15U (415 U(tE D)
<t53 (when they have not yet started to act on their sysiems

A A
Notice that according to Ed1), also the domains dff 5(t) _ XUa(ts,to) V). _ _(15)_
andHg(t) may depend on time. The time dependence of Alice’s and Bob’s Hamiltonians

Suppose first that Alice is going to send a signal to Bob.(10) allows to write their unitary evolution operators as func-
Definet? the departure time at which Alice sends a messag8ions of their PTls, i.e.,
to Bob encoding it on a system described by the Hilbert

spaceH, . This implies that the system she has access to will U, (t',t") :gﬁ{ - I—ft,dt[ngL H(t—th)]

beH, up tots andH, afterward, so that{,="H, ®@H,. In ile

the same way, defining’ as the arrival time on Bob’s side, i o

we may introduce a spadk, = H,® H, that describes the =§Y;{ — —f Ldt[HY+ H;(t)]}

Hilbert space on which Bob acts aftet. The labelA on t4 h) i

refers to the fact that the event of sending the message hap- — U (A A (16

pens locally on Alice’s side, so in principle she can measure

: A
such a quantity as referred to her clock as the FIFtS  \nareq—a.a’ and the arrow indicates time ordering in the

A . . . , . .
fto . l;Analogous consgjeraBnonB applies to Bob’s receivingexpansion of the exponential. Analogously
timet; and Bob’s PTIr, =t/ —t;.

Consider the situation of Fig. 2 in which, for explanatory Uﬁ(t’,t”)EUB( '8, 7'B), (17)
purposests<t§<th<tP. Start from the group property of
the time evolution operators with 8=Db,b’. Now Eq.(15) can be rewritten as
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W (1)) = Ub'(TBJrB)Ub(TrByO)Ua'(fA,T’:)Uc(t? até) B. Postselection schemes
_ Allow Alice and Bob to make partial measurements on
X Uq(75,0)[W). (18 their systems. The global system evolution is no longer uni-
tary, since the measurements will project part of the Hilbert
Notice that the staté¥(t)) in Eq. (18) depends ony, t5, space into the eigenstates of the measured observable. The

t2, andt® through PTIs and through the terbi (t%,t5), ~ communication of the measurement results permits the

defined in Eq.(8). As already discussed in the precedingimplementation of postselection schemes. We will show that
section, the random phasg present in Eq(8) prevents Bob ~ also in this case, Alice and Bob cannot synchronize their
from recovering the CTI transit timéa—tﬁ. clocks in presence of dephasing in the communication

This example may be easily generalized to the case dfhannel.

multiple exchanges. Definé andt the times at which the ~__ USiNg the Naimark extensiofil0], one can assume the
last change in Alice and Bob’s Hilbert space took place, i Projective-type measurement as the most general. Suppose

the last time at which they either sent or received a signaliNatAlice performs the first measurement at tifeon a part

Expressing it in terms of the PTIﬁ$=tﬁ—t§ and Tﬁ=tﬁ of her system. Definé{A1 the Hilbert space that describes
—tB, the state of the system is then such a system, so that,="Ha ®H, is the Hilbert space of
Alice. The state of the system after the measurement for

o m > >t fi h -
|\P(t)>:UA(’TA,Tﬁ)UB(TB,TE)UC(t,thNT), (19) Chénng(;Tg before any other measurement or SyStem ex

whereA, B, andC refer, respectively, to the Hilbert spaces of W (1)) =U(t,tH) P(A)|[W(th)), (21
Alice, Bob, and the exchanged system at timendt,, is the

last time at which the Hilbert space of the exchanged systefyhere| W (t4)) is given in Eq.(19) and the global evolution
was modified. As can be seen by iterating EiB), the state  gperator is

vector |¥) in Eq. (19 depends only on PTIs and on the o o

transit times of the systems Alice and Bob have exchanged. U(t,th) =U(, ) Ug(7Bth—t5)Uc(t,th) (22
To show that the statpP'(t)) of Eq. (19) does not contain

useful information to synchronize their clocks, suppose thatvith Tﬁ}]zt{;—té. In Eg.(21) the measurement performed by

(say Bob performs a measurement at tim&he state he has Alice on |xp(t§\)> is described by the projection operator
access to is given by

1
pe(1)=Tracl | W ()W W ()] P(Al)lt#)EW(I@Al(d)I@le)lw, (23

Al

_11.(-B B O\/ 10T B B
=Us(7, 1) Tracl [W)(¥[1Us( ), (20) wherel, is the identity on, , |¢)a, € Ha, is the eigen-

where The is the partial trace oveH andH, and where state relative to Alice’s measurement reslt Notice that

the cyclic invariance of the trace and the commutativity oquS'(Zl_z3 take into account the postselection scheme in

operators acting on different Hilbert space has been use&Yh'Ch Alice communlcgtes her measurement result to Bob,
The statepg(t) does not depend on®. The only informa- since the operatod(t,t;,) can depend on Alice’s measure-

tions relevant to clock synchronizatidthat connect events MeNt resulté. Using again the commutation properties be-
on Alice’s side to events on Bob's sidthat may be recov- tween operators that act on different spaces,(Ef). simpli-

ered are the CTI transit times of the exchanged systeméi.es o
However, in the case of complete dephasirg-(), these

quantities are irremediably spoiled by the random phases as [ (1)) =Ug(7®, ) Uc(t,t) Ua(7, 7h)
discussed previously. _ —
Up to now we have shown that by exchanging physical XP(ADUA(Th. )| ¥). (24)

systems and performing a measurement, Alice and Bob can-

not recover sufficient information to synchronize their clocksEquation(24) shows that even though the partial measure-
if the environment is completely dephasing. In other Words,ment introduces a nonunitary evolution term, this allows Al-
Alice can always encode some information on the system shige to encode in the state only information about her Pyl
sends Bob, but any operation she does, will always be reand nothing on the absolute tinté (as measured by an
ferred to her PTI and will thus be useless to Bob if he ignoreexternal clock or on any CTI. In fact, the same consider-
any CTI. That is equivalent to say that Alice may alwaysations of Eq(20) apply and no information relevant to clock
send Bob some photographs of her clock, but Bob will havesynchronization can be extracted from the stgté). The

no use of them, since he cannot arrange them relative to hfermalism introduced also allows one to consider the situa-
own time axis. A better strategy could be to measure onlytion in which Alice does not look at her resulfsr does not
part of their systems and employ postselection schemes. Aommunicate them to Bobin this case, in Eq(24) one must
will be shown in the following section, even in this case all perform the sum on all the possible measurement results
their efforts are in vain if hypothesis 2 applies. weighted by their outcome probability.
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In the most general scenario Alice and Bob will perform In fact, if one relaxes the hypotheses of channel dephasing,
multiple partial measurements, communicate by exchanginthen it is possible to also achieve classical clock synchroni-
physical systemsgas analyzed in the preceding secjioand  zation.
again perform partial measurements. By iterating &)
one can show that none of these efforts allows them to ex-
tract any CTI. CONCLUSION

Before concluding, it is worth commenting on how the
guantum clock synchronization scheme proposed in [3éf.
is related to our analysis. In Ré8], the authors assume as a
starting point that Alice and Bob share an entangled state (ﬁ
the form

In conclusion, a definition of clock synchronization was
given and it was shown that, under some very general hy-
otheses that preclude the possibility of employing classical
rotocols, such a synchronization is not possible. This does

not imply that quantum mechanics may not be exploited in

the clock synchronization procedures, but it may be limited

Ix)=2, xabla)|b), (250 only to enhancing classical clock synchronization protocols
ab [6-8]. Indeed, we have shown elsewhéBd that quantum

where |a) and |b) are energy eigenstates of Alice’s and mechanics may bg used to cancel the effect of dispersion in
clock synchronization.

Bob’s systems, respectively, and where the sum on the in:
dexesa andb runs over nondegenerate eigenstates. From the

considerations given in the present section, one can show ACKNOWLEDGMENTS
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