
2139

PHYSICAL REVIEW A, VOLUME 65, 062319
Limits to clock synchronization induced by completely dephasing communication channels
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Clock synchronization procedures are analyzed in the presence of imperfect communications. In this context
we show that there are physical limitations, which prevent one from synchronizing distant clocks when the
intervening medium is completely dephasing, as in the case of a rapidly varying dispersive medium.
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INTRODUCTION

There are two main kinds of protocols for achieving clo
synchronization. The first is the ‘‘Einstein synchronizati
protocol’’ @1# in which a signal is sent back and forth b
tween one of the clocks~say Alice’s clock! and the other
clocks. By knowing the signal speed dependence on the
termediate environment, it is possible to synchronize all
clocks with Alice’s. The other main protocol is the ‘‘Edding
ton slow clock transfer’’@2#: after locally synchronizing it
with hers, Alice sends a clock~i.e., a physical system tha
evolves in time with a known time dependence! to all the
other parties. The clock’s transfer must of course be perfe
controllable, as one must be able to predict how the cl
will react to the physical conditions encountereden route,
which may shift its time evolution. Moreover, since any a
celeration of the transferred clocks introduces a delay
cause of relativistic effects, one must suppose that the tr
fer is performed ‘‘adiabatically slowly,’’ i.e., such that a
accelerations are negligible. Notice that the above proto
can be implemented using only classical resources: pec
quantum features such as entanglement, squeezing, etc
not needed. In what follows, such synchronization schem
will be referred to as ‘‘classical protocols.’’

A recently proposed quantum clock synchronization p
tocol @3# was found@4# to be equivalent to the Eddingto
slow clock synchronization. The application of entanglem
purification to improve quantum clock synchronization in t
presence of dephasing was attempted without success in@5#.
One might think there were other ways to implement a s
chronization scheme that employs quantum features suc
entanglement and squeezing, but this paper shows that th
not the case. In fact, it will be shown that quantum mech
ics does not allow one to synchronize clocks if it would n
be possible to also employ one of the classical protoc
which one can always employ if the channel is perfect o
its characteristics are controllable. However, the relevanc
quantum mechanics to the clock synchronization proced
should not be underestimated, since there exist schemes
exploit quantum mechanics to achieve a~classically not al-
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lowed! increase in the accuracy of classical clock synchro
zation protocols, such as the one obtainable exploiting
tangled systems@6–8#.

The presented discussion also takes into account the
sibility that the two distant parties who want to synchroni
their clocks~say Alice and Bob! and who are localized in
space can entangle their systems by exchanging a ce
number of quantum states, and the possibility that they m
employ the ‘‘wave function collapse’’@3#, through postselec-
tion measurements. The intuitive idea behind the proof is
follows. To synchronize clocks, Alice and Bob must e
change physical systems such as clocks or pulses of light
include timing information. But any effect, such as rapid
varying dispersion, that randomizes the relative phases
tween energy eigenstates of such systems completely
stroys the timing information. Any residual information, su
as entanglement between states with the same energy, ca
be used to synchronize clocks as shown below.

The paper is organized as follows. In Sec. I the analy
framework is established. In Sec. II the clock synchroni
tion procedure is defined and the main result is derived
particular, in Sec. II A the exchange of quantum informati
between Alice and Bob is analyzed and in Sec. II B t
analysis is extended to include partial measurements
postselection schemes in the synchronization process.

I. THE SYSTEM

Assume the following hypotheses that describe the m
general situation in which two distant parties communic
through a noisy environment:

~1! Alice and Bob areseparateentities that initially are
disjoint. They belong to the same inertial reference fram
and communicate by exchanging some physical system.

~2! The environment randomizes the phases between
ferent energy eigenstates of the exchanged system whi
transit.

From these hypotheses it will be shown that Alice a
Bob cannot synchronize their clocks.

In Sec. I A we explain the first hypothesis by giving i
formal consequences. In Sec. I B we analyze the second
pothesis and explain how it describes a dephasing chan

A. First hypothesis

The first hypothesis states the problem and ensures
initially Alice and Bob do not already share any kind
©2002 The American Physical Society19-1
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system that acts as a synchronized clock. Byseparatewe
mean that at any given time Alice and Bob cannot gain
cess to the same degrees of freedom and there is no d
interaction between Alice’s and Bob’s systems. This can
described by the following properties of the system’s Hilb
space and Hamiltonian. At timet the Hilbert space of the
global system can be written as

H5HA~ t ! ^ HC~ t ! ^ HB~ t !, ~1!

where the Hilbert spaceHA(t) refers to the system on whic
Alice can operate at timet, HB(t) refers to Bob’s system
and HC(t) describes the systems on which neither of th
can operate. The time dependence in Eq.~1! does not imply
that the global Hilbert space changes in time, but it refers
the possibility that a system that was previously under
ice’s influence has been transferred to Bob~or vice versa!,
after a transient time at which it cannot be accessed by an
them. Since informationmust be encoded into a physica
system, this mechanism describes any possible commun
tion between them. Moreover, the Hamiltonian of the syst
can be written as

H~ t !5HA~ t !1HB~ t !1HC~ t !, ~2!

where the time dependentHA(t) andHB(t) evolve the states
in HA and HB under the control of Alice and Bob, respe
tively, while HC(t) evolves the system in transit betwee
them when it is not accessible. As a consequence of Eq.~1!,
at timet the three terms on the right side of Eq.~2! commute,
since they act on different Hilbert spaces. For the same
son any operator under the influence of Alice at timet com-
mutes with all Bob’s operators at the same time. A sim
example may help explain this formalism. Consider the s
ation in which the system is composed of three 1/2 s
particles~qubits!. A possible communication is then modele
by the sequence

i.e., initially Alice’s Hilbert spaceHA contains spins 1 and 2
and Bob owns only spin 3. Alice then encodes some in
mation on spin 2~eventually entangling it with spin 1!, and
sends it to Bob. There will be a time interval in which no
of them can access spin 2, and this situation correspond
having spin 2 belonging toHC . Finally, Bob receives spin 2
and his Hilbert spaceHB describes both spins 2 and 3. N
tice that the form of the Hamiltonian in Eq.~2!, where no
interaction terms are present, allows each of them to act,
given timet, only on the spins that live in their own Hilber
space at timet. An analogous description applies also
more complicated scenarios, such as the exchange of
pulses. In this case, causality constraints allow Alice and B
to act only on localized traveling wave modes of the elect
magnetic field. Thus, also here, it is possible to define
traveling system Hilbert spaceHC that factorizes as in Eq
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~1!. From the above example, it is easy to see that in e
communication exchange it is possible to define adeparture
time ts after which the sender cannot act anymore on
system in transit, and anarrival time t r before which the
receiver cannot yet act on such system. It is between th
two times that the exchanged system belongs toHC .

In hypothesis 1 by initiallydisjoint we mean that Alice
and Bob do not share any information prior to the first co
munication exchange. In particular this means that, bef
they start to interact, the state of the system factorizes a

uC&5uf&A^ uw&B , ~3!

i.e., the initial state is not entangled and they do not sh
any quantum information. Hereuf&A is the state of Alice’s
system evaluated at the time at which she starts to act, w
uw&B is the state of Bob’s system evaluated at the time
which he starts to act. For ease of notation, the tensor pr
uct symbol^ will be omitted in the following except when
its explicit presence helps comprehension.

B. Second hypothesis

The second hypothesis imposes limitations to the inf
mation retrieved from the exchanged signal. The dephas
of the energy eigenstates describes the nondissipative n
present in most nonideal communication channels and
plies a certain degree of decoherence in any quantum c
munication between Alice and Bob. Defineue,d& as the
eigenstate relative to the eigenvalue\ve of the free Hamil-
tonian of the exchanged systemC. The labeld takes into
account possible degeneracy of such eigenstate. We as
that during the travel, when neither Alice nor Bob can co
trol the exchanged system inHC , the statesue,d& undergo
the transformation

ue,d&→e2 iweue,d&, ~4!

where the random phaseweP@0,2p# is independent ofd.
The channel dephasing arises when different energy eig
states are affected by different phase factorswe . For this
reason the dephasing is characterized by the joint probab
functionpe(we ,we8) that weights the probability that the en
ergy levelsue,d& and ue8,d& are affected by the phaseswe
andwe8 , respectively. The parametereP@0,1# measures the
degree of decoherence in the channel. In particular,e51
describes the case of complete decoherence, where
phases relative to different energy eigenstates are comple
uncorrelated, namelype(we ,we8) is a constant. On the othe
hand,e50 describes the case of no decoherence, where e
energy eigenstate acquires the same phase, na
pe(we ,we8)→d(we2we8)/2p. Written in the energy repre
sentation, the channel density matrix%c evolves, using Eq.
~4!, as

%c5(
ee8

Pe%cPe8→(
ee8

e2 i (we2we8)Pe%cPe8 , ~5!

where Pe5(due,d&^e,du is the projection operator on th
channel eigenspace of energy\ve . Taking into account the
9-2
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stochasticity of the evolution~4!, the right-hand term of Eq
~5! must be weighted by the probability distributio
pe(we ,we8), resulting in

%c→(
ee8

dee8
(e) Pe%cPe8 , ~6!

where

dee8
(e)

5E
0

2p

dweE
0

2p

dwe8pe~we ,we8!e
2 i (we2we8). ~7!

The width of the functiondee8
(e) decreases withe, so that

dee8
(e50) is independent ofe ande8 and the state is unchange

while dee8
(e51) is the Kroneckerd and the state suffers from

decoherence in the energy eigenstate basis.
The dephasing process of Eq.~4! can be derived assumin

a time dependent HamiltonianHC(t)5HC
o 1HC8 (t), where

HC
o is the free evolution of the system with eigenstatesue,d&

andHC8 (t) is a stochastic contribution that acts on the syst
in a small time intervaldt by shifting its energy eigenvalue
by a random amountne , such thatnedt5we . In fact, in the
limit dt→0, the evolution of the exchanged system is d
scribed by

UC~ t r ,ts!5expH 2 i(
e

Pe@ve~ t r2ts!1we#J , ~8!

where\ve is the energy eigenvalue of the exchanged sys
relative to the eigenvectorue,d& and t r and ts are the ex-
changed system’s arrival and departure times, respectiv
introduced in Sec. I A@9#. Notice that forwe independent of
e ~which corresponds to the casee50), UC reduces to the
deterministic free evolution operator exp@2(i/\)HC

o(tr2ts)#,
apart from an overall phase term.

It might be interesting to consider the simpler case
which the random phasewe can be written asveu with the
random termu independent ofe. In this case, Eq.~8! sim-
plifies to

UC~ t r ,ts!5expF2
i

\
HC

o ~ t r2ts1u!G . ~9!

This last situation depicts the case in which all signals
changed between Alice and Bob are delayed by an amouu.
As an example consider light signals that encounter a
dium with unknown~possibly varying! refractive index or a
traveling ‘‘clock’’ that acquires an unpredictable delay. T
situation described by Eq.~8! is even worse, since not onl
may such a delay be present, but also the wave functio
the system is degraded by dispersion effects. In both ca
the information on the transit timet r2ts that may be ex-
tracted fromUC(t r ,ts) depends on the degree of randomne
of we . In particular, if we is a completely random quantit
~i.e., for e51), no information on the transit time can b
obtained.

This, of course, prevents the possibility of using classi
synchronization protocols, where unknown delays in eit
06231
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the signal travel time or in the exchanged clock prove to
fatal. One might think that by exploiting the apparently no
local properties of quantum mechanics~e.g., entanglement!,
these limits can be overcome. In the following sections
will show that this is not the case.

II. CLOCK SYNCHRONIZATION

In this section we analyze the clock synchronizati
schemes in detail and show the effect of a dephasing c
munication channel.

How does synchronization take place? Definet0
A andt0

B as
the initial times of Alice and Bob’s clocks as measured by
external clock.~Of course, since they do not have a synch
nized clock to start with, they cannot measuret0

A and t0
B .!

Alice and Bob will be able to synchronize their clocksif and
only if they can recover the quantityt0

A2t0
B , or any other

time interval that connects two events that happen one
Alice’s side and the other on Bob’s side. Each of them h
access to the times at which events on her/his side hap
and can measure such events only relative to their o
clocks. We will refer to these quantities as ‘‘proper time i
tervals’’ ~PTIs!. For Alice such quantities are defined ast j

A

5t j
A2t0

A , wheret j
A is the time at which thej th event took

place as measured by the external clock. Analogously
Bob we define his PTI astk

B5tk
B2t0

B . If Alice and Bob share
the data regarding their own PTIs, they cannot achieve s
chronization: they need also a ‘‘connecting time interva
~CTI!, i.e., a time interval that connects an event that to
place on Alice’s side with an event that took place on Bo
side as shown in Fig. 1.

Within this framework, consider the case of Einstein’s a
Eddington’s clock synchronizations. In the Einstein clo
synchronization the PTIs on Alice’s side are the two times
which she sent and received back the signal she sends
Bob’s PTI is the time at which he bounces back the signa
Alice. The CTI in this case measures the time differen

FIG. 1. Comparison between the timestA andtB of Alice and
Bob’s clocks. The center line represents the ‘‘absolute’’ time
measured by an external clock. The small circles represent the t
of events that take place on Alice’s side, while the crosses repre
those on Bob’s side. The upper line is the time as measured
Alice’s clock: she only has direct access to the proper time interv
such ast j

A . Analogously, the lower line represents Bob’s prop
time. To achieve clock synchronization, Alice and Bob need to
cover a connecting time interval~CTI! such as the one shown.
9-3
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GIOVANNETTI, LLOYD, MACCONE, AND SHAHRIAR PHYSICAL REVIEW A 65 062319
between the events ‘‘Alice sends the signal’’ and ‘‘Bo
bounces the signal back.’’ The protocol allows Alice to r
cover the CTI by simply dividing by two the time differenc
between her two PTIs. The analysis of Eddington’s sl
clock transfer is even simpler. In this case Bob’s PTI is
time at which Bob looks at the clock Alice has sent him af
synchronizing it with hers. The CTI is, for example, the tim
difference between the event ‘‘Bob looks at the clock sent
Alice’’ and ‘‘on Alice’s side it is noon’’: Bob can recover it
just looking at the time shown on the clock he received fr
Alice.

In this paper we show that in the presence of a depha
communication channel~as described in hypothesis 2!, there
is no way in which Alice and Bob may achieve a CTI. Th
best that they can do is to collect a series of PTIs relate
different events and a collection of CTI transit times co
rupted by the noisy communication line: clock synchroniz
tion is thus impossible.

A. Timing information exchange

In this section we analyze the exchange of quantum in
mation between Alice and Bob in the presence of dephas

Starting from the stateuC& of Eq. ~3!, Alice’s and Bob
begin to act on their systems at two times~that are not nec-
essarily the same!, in order to get ready for the informatio
transfer. Without loss of generality one can assume that th
two times coincide with their own time origins, i.e.,t0

A and
t0
B . This means that, at those two times, they introduce t

dependent terms in the system Hamiltonian

HA
o→HA~ t ![HA

o1HA8 ~ t2t0
A!,

~10!
HB

o→HB~ t ![HB
o1HB8 ~ t2t0

B!,

whereHA
o and HB

o are the free Hamiltonians of Alice’s an
Bob’s systems andHA8 (t2t0

A) and HB8 (t2t0
B) characterize

the most general unitary transformations that they can ap
to their systems. These last terms are null fort,t0

A and t
,t0

B ~when they have not yet started to act on their system!.
Notice that according to Eq.~1!, also the domains ofHA(t)
andHB(t) may depend on time.

Suppose first that Alice is going to send a signal to B
Definets

A the departure time at which Alice sends a mess
to Bob encoding it on a system described by the Hilb
spaceHc . This implies that the system she has access to
beHa up to ts

A andHa8 afterward, so thatHa5Ha8^ Hc . In
the same way, definingt r

B as the arrival time on Bob’s side
we may introduce a spaceHb85Hb^ Hc that describes the
Hilbert space on which Bob acts aftert r

B . The labelA on ts
A

refers to the fact that the event of sending the message
pens locally on Alice’s side, so in principle she can meas
such a quantity as referred to her clock as the PTIts

A5ts
A

2t0
A . Analogous consideration applies to Bob’s receivi

time t r
B and Bob’s PTIt r

B5t r
B2t0

B .
Consider the situation of Fig. 2 in which, for explanato

purposes,t0
A,t0

B,ts
A,t r

B . Start from the group property o
the time evolution operators
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U~ t,0!5U~ t,t8!U~ t8,0!, ~11!

and the commutativity of the operators that act on the d
tinct spaces of Alice and Bob. It is easy to show that forts

A

<t<t r
B the state of the system is given by

uC~ t !&5Ub~ t,t0
B!Ua8~ t,ts

A!Uc~ t,ts
A!Ua~ ts

A ,t0
A!uC&,

~12!

whereUx(t,t8) is the evolution operator in spaceHx and

uC&[Ua~ t0
A,0!Ub~ t0

B,0!uC~0!& ~13!

is the initial state as far as Alice and Bob are concern
defined in Eq.~3!. By hypothesis 1 this state does not conta
any usable information ont0

A and t0
B . In Eq. ~12! notice that

up to timets
A the systemsHc andHa8 are evolved togethe

by Ua . Analogously, fort>t r
B after Bob has received th

system Alice sent him, one has

uC~ t !&5Ua8~ t,t r
B!Ub8~ t,t r

B!uC~ t r
B!&. ~14!

Joining Eqs.~12! and ~14!, it follows

uC~ t !&5Ub8~ t,t r
B!Ub~ t r

B ,t0
B!Ua8~ t,ts

A!Uc~ t r
B ,ts

A!

3Ua~ ts
A ,t0

A!uC&. ~15!

The time dependence of Alice’s and Bob’s Hamiltonia
~10! allows to write their unitary evolution operators as fun
tions of their PTIs, i.e.,

Ua~ t8,t9!5expQF2
i

\Et9

t8
dt@Ha

o1Ha8 ~ t2t0
A!#G

5expQF2
i

\Et92t0
A

t82t0
A

dt@Ha
o1Ha8 ~ t !#G

[Ūa~t8A,t9A!, ~16!

wherea5a,a8 and the arrow indicates time ordering in th
expansion of the exponential. Analogously

Ub~ t8,t9![Ūb~t8B,t9B!, ~17!

with b5b,b8. Now Eq. ~15! can be rewritten as

FIG. 2. Alice sends Bob a message encoded into a quan
systemC at timets

A ~her proper timets
A) and Bob receives it at time

t r
B ~his proper timet r

B). During the travel the systemC undergoes
dephasing.
9-4
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uC~ t !&5Ūb8~tB,t r
B!Ūb~t r

B,0!Ūa8~tA,ts
A!Uc~ t r

B ,ts
A!

3Ūa~ts
A,0!uC&. ~18!

Notice that the stateuC(t)& in Eq. ~18! depends ont0
A , ts

A ,
t0
B , and t r

B through PTIs and through the termUc(t r
B ,ts

A),
defined in Eq.~8!. As already discussed in the precedi
section, the random phasewe present in Eq.~8! prevents Bob
from recovering the CTI transit timet r

B2ts
A .

This example may be easily generalized to the case
multiple exchanges. Defineth

A and th
B the times at which the

last change in Alice and Bob’s Hilbert space took place, i
the last time at which they either sent or received a sig
Expressing it in terms of the PTIsth

A5th
A2t0

A and th
B5th

B

2t0
B , the state of the system is then

uC~ t !&5ŪA~tA,th
A!ŪB~tB,th

B!UC~ t,th!uC̄&, ~19!

whereA, B, andC refer, respectively, to the Hilbert spaces
Alice, Bob, and the exchanged system at timet, andth is the
last time at which the Hilbert space of the exchanged sys
was modified. As can be seen by iterating Eq.~18!, the state

vector uC̄& in Eq. ~19! depends only on PTIs and on th
transit times of the systems Alice and Bob have exchang
To show that the stateuC(t)& of Eq. ~19! does not contain
useful information to synchronize their clocks, suppose t
~say! Bob performs a measurement at timet. The state he has
access to is given by

rB~ t !5TrAC@ uC~ t !&^C~ t !u#

5ŪB~tB,th
B!TrAC@ uC̄&^C̄u#ŪB

†~tB,th
B!, ~20!

where TrAC is the partial trace overHC andHA and where
the cyclic invariance of the trace and the commutativity
operators acting on different Hilbert space has been u
The staterB(t) does not depend ontA. The only informa-
tions relevant to clock synchronization~that connect events
on Alice’s side to events on Bob’s side! that may be recov-
ered are the CTI transit times of the exchanged syste
However, in the case of complete dephasing (e51), these
quantities are irremediably spoiled by the random phase
discussed previously.

Up to now we have shown that by exchanging physi
systems and performing a measurement, Alice and Bob
not recover sufficient information to synchronize their cloc
if the environment is completely dephasing. In other wor
Alice can always encode some information on the system
sends Bob, but any operation she does, will always be
ferred to her PTI and will thus be useless to Bob if he igno
any CTI. That is equivalent to say that Alice may alwa
send Bob some photographs of her clock, but Bob will ha
no use of them, since he cannot arrange them relative to
own time axis. A better strategy could be to measure o
part of their systems and employ postselection schemes
will be shown in the following section, even in this case
their efforts are in vain if hypothesis 2 applies.
06231
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B. Postselection schemes

Allow Alice and Bob to make partial measurements
their systems. The global system evolution is no longer u
tary, since the measurements will project part of the Hilb
space into the eigenstates of the measured observable.
communication of the measurement results permits
implementation of postselection schemes. We will show t
also in this case, Alice and Bob cannot synchronize th
clocks in presence of dephasing in the communicat
channel.

Using the Naimark extension@10#, one can assume th
projective-type measurement as the most general. Sup
that Alice performs the first measurement at timetm

A on a part
of her system. DefineHA1

the Hilbert space that describe

such a system, so thatHA5HA0
^ HA1

is the Hilbert space of

Alice. The state of the system after the measurement ft
.tm

A ~and before any other measurement or system
change! is

uC~ t !&5U~ t,tm
A !P~A1!uC~ tm

A !&, ~21!

whereuC(tm
A)& is given in Eq.~19! and the global evolution

operator is

U~ t,tm
A !5ŪA~tA,tm

A !ŪB~tB,tm
A2t0

B!UC~ t,tm
A ! ~22!

with tm
A5tm

A2t0
A . In Eq. ~21! the measurement performed b

Alice on uC(t1
A)& is described by the projection operator

P~A1!uc&[
1

uu^cuf&A1
uu ~ uf&A1

^fu ^ 1A0
!uc&, ~23!

where1A0
is the identity onHA0

, uf&A1
PHA1

is the eigen-

state relative to Alice’s measurement resultf. Notice that
Eqs. ~21–23! take into account the postselection scheme
which Alice communicates her measurement result to B
since the operatorU(t,tm

A) can depend on Alice’s measure
ment resultf. Using again the commutation properties b
tween operators that act on different spaces, Eq.~21! simpli-
fies to

uC~ t !&5ŪB~tB,th
B!UC~ t,th!ŪA~tA,tm

A !

3P~A1!ŪA~tm
A ,th

A!uC̄&. ~24!

Equation~24! shows that even though the partial measu
ment introduces a nonunitary evolution term, this allows A
ice to encode in the state only information about her PTItm

A

and nothing on the absolute timetm
A ~as measured by an

external clock! or on any CTI. In fact, the same conside
ations of Eq.~20! apply and no information relevant to cloc
synchronization can be extracted from the state~24!. The
formalism introduced also allows one to consider the sit
tion in which Alice does not look at her results~or does not
communicate them to Bob!: in this case, in Eq.~24! one must
perform the sum on all the possible measurement res
weighted by their outcome probability.
9-5
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In the most general scenario Alice and Bob will perfor
multiple partial measurements, communicate by exchang
physical systems~as analyzed in the preceding section!, and
again perform partial measurements. By iterating Eq.~24!
one can show that none of these efforts allows them to
tract any CTI.

Before concluding, it is worth commenting on how th
quantum clock synchronization scheme proposed in Ref.@3#
is related to our analysis. In Ref.@3#, the authors assume as
starting point that Alice and Bob share an entangled stat
the form

ux&5(
a,b

xabua&ub&, ~25!

where ua& and ub& are energy eigenstates of Alice’s an
Bob’s systems, respectively, and where the sum on the
dexesa andb runs over nondegenerate eigenstates. From
considerations given in the present section, one can s
that, in the presence of a dephasing channel, such a
cannot be obtained starting from the initial state given in E
~3! without introducing some stochastic phases in it. For t
reason, it cannot be obtained without relaxing hypothesi
such a protocol is then equivalent to classical protocols@4#.
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In fact, if one relaxes the hypotheses of channel dephas
then it is possible to also achieve classical clock synchro
zation.

CONCLUSION

In conclusion, a definition of clock synchronization wa
given and it was shown that, under some very general
potheses that preclude the possibility of employing class
protocols, such a synchronization is not possible. This d
not imply that quantum mechanics may not be exploited
the clock synchronization procedures, but it may be limit
only to enhancing classical clock synchronization protoc
@6–8#. Indeed, we have shown elsewhere@8# that quantum
mechanics may be used to cancel the effect of dispersio
clock synchronization.
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