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Abstract

We present a mathematical model of coherent and incoherent beam combination in a thick hologram. We also

derive the formulae relating the read and write angles to the read and write wavelengths for the combiner. Furthermore,

we present a new technique for determining the M#, and establish that the M# required for a coherent combiner is

substantially less than that needed for an incoherent one.
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1. Introduction

Lasers have rapidly found use in many indus-

trial and consumer settings. A majority of the

applications make use of small, reliable, inexpen-

sive diode lasers. The cost of low power lasers has
been drastically reduced, thereby increasing de-

mand and applications. High power lasers, how-

ever, have not experienced the same cost

reduction. Many new applications and improve-

ments to existing technologies would be possible

with less expensive higher power lasers. One way

to deal with this shortage is to combine multiple

low power diode lasers into a single beam [1–6].

Gratings in a thick hologram [7–10] can be of help

in this regard. In particular, an incoherent holo-
graphic beam combiner (HBC) can be used to

combine the output from many lasers into a singe-

aperture, diffraction-limited beam. The beams can

be combined coherently as well. A coherent HBC

can be used as a multiport splitter/combiner in

architectures where a master oscillator is first split

into many copies, and recombined after amplifi-

cation, for example. A coherent HBC is also a
critical element in a super-parallel holographic
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optical correlator [11]. The principle behind the

HBC is based on the storage of multiple holo-

graphic gratings in the same spatial location. In-

coherent beam combination is particularly suited

to thick holograms due to the narrow spectral se-

lectivity of the gratings. In order to limit cross talk
between an incident beam and other gratings, a

minimum wavelength separation Dk is required.

Other diffractive beam combiners, such as blazed

gratings can typically achieve a Dk greater than 1.5

nm [1]. In contrast, a thick holographic plate can

easily achieve Dk on the order of 0.05 nm [12]. The

maximum number of lasers that can be combined

for a given application is therefore potentially
much larger.

The paper is organized as follows. In Section 2,

we present an analysis of the coherent HBC via

multi-wave mixing in a thick hologram. Here, we

follow the model used by Kogelnik [13], although

the results presented here represent a non-trivial

extension of this work as well as other analyses of

this type [14–17]. In Section 3, we extend this
analysis to model the incoherent HBC. In Section

4, we formulate explicitly the constraints imposed

on the read and write angles for the situation

where the read and write wavelengths differ. In

Section 5, we establish the values of the so-called

M# required for both type of combiners, and

present a new technique for determining the value

of the M# [18–21].

2. Coherent beam combination

Fig. 1 illustrates the basic model used in this

analysis. For simplicity we consider first the com-

bination of two read beams incident on a holo-

gram with two gratings. We will then extrapolate
the result for N beams and N gratings. A further

simplification is the assumption that the index of

refraction is the same throughout the system. This

model is used merely to simplify the notation. In

reality the input and output angles would have to

take into account refraction at the entrance and

exit surfaces.

The scalar wave equation for this system can be
written as

r2Eðx; zÞ þ k2Eðx; zÞ ¼ 0; ð1Þ

where k is the wavenumber and E is the electric
field describing all the oscillatory fields at the de-

generate frequency, x. Here, we assume the field to

be TE polarized. An extension to TM or arbitrary

polarization can be made in the same manner as

illustrated in [13]. We also assume that the field

does not vary in the y direction, and express the

field as the sum of the input (R1 and R2) and the

output (S) waves

Eðx; zÞ ¼ R1ðzÞe�i~qq1�~xx þ R2ðzÞe�i~qq2�~xx þ SðzÞe�i~rr�~xx: ð2Þ
The wavevectors for each of these beams are as-
sumed to be of the same magnitude

q2
1 ¼ q2

2 � b2; ð3Þ
r2 ¼ b2: ð4Þ
We also assume Bragg matching for each input
beam

~rr ¼~qq1 � ~KK1 ¼~qq2 � ~KK2; ð5Þ
where ~KK1 and ~KK2 are the grating vectors.

Using phase matching terms, in the slowly

varying envelope approximation (SVEA) [22], the

wave equation reduces to

CR1
oR1

oz
¼ �ij1S; ð6Þ

CR2
oR2

oz
¼ �ij2S; ð7Þ

CS
oS
oz

¼ �ij1R1 � ij2R2;

Fig. 1. Schematic illustration of the combination of two mu-

tually coherent input beams into a single output beam.
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where

CS ¼ cosX; ð8Þ
CRj ¼ cos hj; ð9Þ

jj ¼
pnj
k

; j ¼ 1; 2: ð10Þ

Here, n1 and n2 are the amplitudes of the index

modulations, defined by

nðx; zÞ ¼ n0 þ n1 cos~KK1 �~xxþ n2 cos~KK2 �~xx: ð11Þ
Using boundary conditions that R1ð0Þ ¼ r1 (com-
plex), R2ð0Þ ¼ r2 (complex), Sð0Þ ¼ 0, the solutions

to these equations, evaluated at the exit surface,

become

R1ðdÞ ¼ j2Aþ j1CR2B � cosða0dÞ; ð12Þ
R2ðdÞ ¼ j1Aþ j2CR1B � cosða0dÞ; ð13Þ
SðdÞ ¼ �iC � sinða0dÞ; ð14Þ

where

A ¼ CR1j2r1 � CR2j1r2
CR1j2

2 þ CR2j2
1

; ð15Þ

B ¼ j1r1 þ j2r2
CR1j2

2 þ CR2j2
1

; ð16Þ

C ¼ ðj1r1 þ j2r2Þ �
CR1CR2

CSðCR1j2
2 þ CR2j2

1Þ

� �1=2

;

ð17Þ

a0 ¼
CR1j2

2 þ CR2j2
1

CR1CR2CS

� �1=2

: ð18Þ

These equations are formulated in a way such that
the energy flow is conserved in the z-direction [13]

CR1 R1j j2 þ CR2 R2j j2 ¼ CS Sj j2: ð19Þ
The intensity of the diffracted beam is Id ¼ F jSj2
where the obliquity factor, F, is given by

F ¼ r21 þ r22 � jR1ðdÞj2 � jR2ðdÞj2

jSðdÞj2
: ð20Þ

The diffraction efficiency, g, is given by g �
Id=ðr21 þ r22Þ, where g ¼ 1 corresponds to the situ-

ation where the intensity of R1 and R2 fall to zero

at the output, indicating that all of the incident

power has been transferred to the diffracted
beams.

One possible condition for achieving g ¼ 1 is

d ¼ p=2a0 and

r1
r2

¼ j1

j2

� CR2

CR1
: ð21Þ

For symmetry, one can then infer that the general

condition for g ¼ 1 with n input beams is

CR1 � r1
j1

¼ CR2 � r2
j2

¼ CR3 � r3
j3

¼ � � � ¼ CRn � rn
jn

ð22Þ

and

d ¼ p
2
�

ffiffiffiffiffiffi
CS

p
�

Xn

j¼1

j2
j

CRj

" #�1=2

ð23Þ

The results show that it is possible to combine N

mutually coherent beams with 100% efficiency,

provided some constraints are met. The most im-

portant requirement is that all of the input beams be

in phase at the interface. We also note that the in-

dividual index modulation necessary for achieving
100% diffraction for N beams is less than the mod-

ulation necessary to produce 100% diffraction of a

single beam, as illustrated in Section 5. In the next

section we investigate how this requirement differs

for combining mutually incoherent beams [23].

3. Combining mutually incoherent beams

Fig. 2 illustrates the case for combining mutu-

ally incoherent beams. The equations here are

considerably simpler, so that we can deal with the
N beams explicitly. As before, we begin with the

wave equation

r2Eðx; zÞ þ k2Eðx; zÞ ¼ 0; ð24Þ

Eðx; zÞ ¼
XN
j¼1

RjðzÞe�i~qqj�~xx
�

þ SjðzÞe�i~rrj�~xx
	
: ð25Þ

We assume Bragg matching for each beam, so that
~rr1 ¼~rr2 ¼ � � � ¼~rrj �~rr, q2

j ¼ r2 ¼ b2, and ~rr ¼
~qqj � ~KKj. In general, the wave mixing equations are

not mutually independent. This can be seen easily
by considering the following physical situation.

Consider, for example, the diffraction of input

beam R1. It scatters off grating K1, producing an

output beam in the direction of the bold arrow. As
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soon as this beam acquires a non-vanishing am-

plitude, it will then diffract off gratings K2;K3; . . . ;
KN , producing additional beams in the direction

parallel to beams R2;R3; . . . ;RN , respectively. This

difficulty can be solved by requiring that each

beam differs in wavelength from its neighbors by at
least an amount DkCS big enough to suppress this

undesired coupling. In order to determine the

minimum value of the channel spacing, DkCS, we

recall from Kogelnik [13] that the full-width half-

maximum (FWHM) wavelength selectivity of

transmission holograms is given by

DkFWHM 
 CotðhÞ � ðK=dÞ � k; ð26Þ
where h is the Bragg angle, K is the grating peri-

odicity, d is the sample thickness, and k is the read

wavelength. (This equation is true for the case

where the input and output beams are symmetric.

In Fig. 2, this applies strictly to beam 1 only;

however, if the other beams are close to this beam,
then the deviation from this result is negligible.)

Consider, for example, the case where the first

grating is written at �30�, using a 514 nm source.

The value of DkFWHM for a read wavelength of 980

nm, for example, is then 0.05 nm for d ¼ 2 mm. In

the rest of this discussion, we assume that

DkCS > DkFWHM [24].

As such, we can now assume that the wave
equations are mutually independent, so that for

each input beam (j ¼ 1; 2; . . . ;N ) we can write

CRjoRj=oz ¼ �ijjSj, CSoSj=oz ¼ �ijjRj where

CRj ¼ cos hj; ð27Þ
CS ¼ cosX; ð28Þ

jj ¼
pnj
k

; ð29Þ

nðx; zÞ ¼ n0 þ
XN
j¼1

nj � cos~KKj �~xx; ð30Þ

Using the boundary conditions Rjð0Þ ¼ rj,
Sjð0Þ ¼ 0 we determine the amplitudes of the fields
at the output

RjðdÞ ¼ rj cosðajdÞ; ð31Þ

SjðdÞ ¼ �irj

ffiffiffiffiffiffiffi
CRj

CS

r
� sinðajdÞ; ð32Þ

aj dð Þ ¼ jj �
ffiffiffiffiffiffiffiffiffiffiffiffi
1

CRjCS

s
: ð33Þ

The intensity in the jth diffracted beam is Idj ¼
FjjSj � ðdÞj2 where the obliquity factor Fj, is given

by

Fj ¼
r2j � jRjðdÞj2

jSjðdÞj2
¼ CS

CRj

����
����: ð34Þ

The diffraction efficiency, gj, is given by gj ¼
Id=jrjj2 ¼ sin2 ðaj � dÞ The total diffraction effi-

ciency is given by

g ¼
XN
j¼1

gj

N
: ð35Þ

The condition for achieving a 100% efficient beam
combination is g ¼ N which requires gj ¼ 1 for

each j. This means we must have aj ¼ ðp=2Þ � ð1=dÞ
for each j, which in turn requires

j2
j

CRj
¼ p2 � CS

4d2
: ð36Þ

The value of CS is determined from the Bragg

matching condition

CS ¼ cosðhjÞ �
~KKj �~zz

b
; ð37Þ

which, by construction, is the same for each j. The

condition for 100% diffraction efficiency for N

beams is therefore the same as that for 100% dif-

fraction efficiency for each beam individually.

Fig. 2. Schematic illustration of the combination of N mutually

incoherent input beams into a single output beam.
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4. Differing write and read wavelengths

Many holographic materials, though efficient in

reading at many wavelengths, are particularly

sensitive to a narrow band of wavelengths during
writing. Therefore one may need to write and read

holograms at different wavelengths. The following

parameters are assumed to be given as inputs: the

values of the read wavelengths kR1 and kR2, the

write wavelength kW, the mean index of the holo-

graphic substrate, the thickness thereof, and the

amplitude of the index modulation for each grat-

ing. The equations are used to determine the fol-
lowing output parameters: the angles hW1 and hW2

(for both reference and object beams) used for

writing the holograms, and the angles at which the

lasers at kR1 and kR2 have to be applied to the beam

combiner (i.e., the Bragg angles). The desired

output angle hS of the combined beam can be

treated as a given input or as an output to be de-

termined depending on the desired degree of cross-
talk suppression. This is because the value of

DkFWHM depends on this angle, in addition to other

parameters that are assumed to be given [13,25]. In

the following discussion we show the relationship

between the write angles and read angles when

different wavelength lasers are employed for each

step.

Fig. 3 illustrates the basic writing geometry.
Consider the process for writing the first grating,

using beams W1 (reference) and W2 (object) with

laser beams of wavelength kW (e.g. 514.5 nm). We

choose the first read wavelength kR1 (e.g. 980 nm)

and the desired angle of diffraction hS . These two

choices plus the chosen writing wavelength will

determine the first two writing angles hW1 and hW2.

If read by a laser beam also at kW, the read beam
will diffract efficiently only if it is Bragg matched,

i.e., incident at the same angle as W2, and will

produce a diffracted beam on the other side par-

allel to the reference beam W1. When read by laser

beam O1 at kR1 the Bragg incidence angle as well as

the diffracted angle hS is larger.

Consider next the process for writing the second

grating, using a new pair of beams with kW (W0
1

and W0
2 from Fig. 3). Our goal is to choose the

incident angles for these two beams such that when

this hologram is read by a laser beam O2 at the

second read wavelength of kR2 the diffracted beam

will emerge at the same angle hS . We choose the
angular distance between the first and the second

read beams d (see Fig. 4), as well as the wavelength

of the second read beam, O2. These constraints

yield a new pair of writing angles, h0
W1 and h0

W2, for

the beams W0
1 and W0

2, respectively, in Fig. 3.

Explicit analysis shows that these two angles are

given by

h0
W1 ¼ sin�1 nW � sin sin�1 nR

nW
� kW

kR


�


� sin ~hhS

�
:::þ ~dd=2

	�
� ~dd=2

��
; ð38Þ

h0
W2 ¼ sin�1 nW � sin sin�1 nR

nW
� kW

kR


�


� sin ~hhS

�
:::þ ~dd=2

	�
þ ~dd=2

��
; ð39Þ

where we have defined

~hhS ¼ sin�1 sin hS

nR

� �
;

~dd ¼ sin�1 sin hS þ dð Þ
nR

� �
� sin�1 sin hS

nR

� �
;

d ¼ hOj � hOðjþ1Þ

nW � index at the writing wavelength;

nR � index at reading wavelength;

Fig. 3. Schematic illustration of the geometry for writing two

holograms at 514.5 nm. The angles of the writing beams are

chosen to ensure that when the holograms are read by lasers at

980 nm, the output beams overlap.
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kW � the writing wavelength;

kR � the reading wavelength:

We point out that these equations take into ac-

count the effect of holographic magnification when

the read wavelength is longer than the writing

wavelength and the effect of potentially different
indices of refraction at the read and write wave-

lengths.

One of the key issues for an HBC is the maxi-

mum number of beams that can be combined ef-

ficiently. This is determined by the so-called M# of

the medium. In the next section, we discuss the

actual constraint for both coherent and incoherent

combining.

5. M# for coherent and incoherent combining

Consider a situation where a single holographic

substrate has an average index of n0, before any

grating is written. The dynamic range of such a

medium is characterized by the so-called modula-
tion depth, defined as the amplitude n0 of a single

sinusoidal variation (e.g., in the x-direction) of this
index. The maximum achievable amplitude of n0 is
denoted n0sat. After a single grating is written, the

index becomes a function of x, and can be written

as

nðxÞ ¼ n0 þ n0 sinðkxÞ; n0 6 n0sat; ð40Þ

where k represents the wavenumber of the grating.

When this grating is illuminated by a laser beam of

wavelength k, the diffraction efficiency (ignoring

Fresnel reflection, which can be eliminated by anti-

reflection coating, for example, or can be taken
into account in the definition) is defined to be

g � Id
I0
; g6 1; ð41Þ

where I0 is the input intensity, and Id is the dif-

fracted intensity. The value of g is maximized (at

gm) when the angle of incidence and the input

wavelength satisfy the Bragg matching condition.

According to the wave-mixing (i.e., non-pertur-
bative) theory of such a grating, the value of gm

(bounded by unity by definition) varies sinusoi-

dally in the following manner: gm ¼ sin2 ðn0nkdÞ,
where d is the thickness of the substrate and n is a

constant determined by the orientation of the

grating [13]. This expression can be rewritten as

gm ¼ sin2 pn0

2nc

� �
; nc �

p
2nkd

; ð42Þ

where nc represents a characteristic scale for the

index modulation amplitude. The diffraction effi-

ciency reaches the largest possible value – unity –

when the amplitude of the index modulation is an

odd-integer multiple of nc:

gm ¼ 1 when n0 ¼ ð2M þ 1Þnc; M ¼ 1; 2; 3; . . .

ð43Þ
This is illustrated in Fig. 5. It is important to note

here that gm does not increase monotonically with

the grating amplitude, n0.
In a given substrate, the deepest grating that

can be formed is determined by the material pa-

rameters. In general, for most material, the maxi-
mum achievable density, qm, of the photo-sensitive

ingredient limits the value of n0sat. The parameter

M# can be defined simply as

M# � p
2

n0sat
nc

: ð44Þ

This definition is also illustrated in Fig. 5, which

shows the value n0sat indicated by the dotted ver-

tical line. This case corresponds to M# 
 ðp=2Þ
6:75. Thus in general, M# represents the double of

the number of full oscillations achievable on the

Fig. 4. Illustration of the geometry for reading the two holo-

grams, the first one (O1) at 980 nm and the second (O2) at 980

nm+Dk. Both beams will be diffracted at the same exit angle,

hS .
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gm vs. n0=nc curve. According to this definition, it

follows that the value of M# is linearly propor-

tional to the density q of the photo-sensitive

agent, and the thickness d of the substrate: M# /
qd. In practice, both q and d are limited by

practical considerations, such as the requirement

of volume homogeneity and low scattering, thus
limiting the maximum value of M# for a given type

of material.

In order to illustrate further the meaning of this

definition, consider for example a situation where

M# ¼ ðp=2ÞN , so that for a single grating one

could achieve n0 ¼ Nnc (yielding a null value of the

diffraction efficiency if N is even, and a unity value

if N is odd). This would use up all the active
photo-sensitive elements, by definition. However,

one could choose to write N independent grating

(superimposed, but with orthogonal Bragg condi-

tions), each using only a (1/N)th of the active ele-

ments. Therefore, for each grating we would have

n0 ¼ nc, and the diffraction efficiency of each

grating would be unity. As such, the M# can be

viewed as the maximum number of unity effi-
ciency, orthogonal, superimposed gratings one can

write in a single substrate.

The plot shown in Fig. 5 is useful for illustrating

the concept of the M#. However, since it is difficult

to measure n0 directly, such a plot can not be

generated easily. Instead, one can determine M#

indirectly by writing many weak holograms

[19,20]. Here, we first review (for comparison) this

approach, and then offer a new method which is

potentially simpler under certain circumstances.

Consider a situation where N identical gratings
are written in a single substrate. The gratings are

superimposed on one another, but are also or-

thogonal to one another. The orthogonality means

that if we illuminate the grating at a given fixed

angle and tune the input frequency, only one

grating will diffract at a particular frequency. That

is, there will be a unique frequency corresponding

to each grating. Assuming further that each grat-
ing is very weak, one can express the diffraction

efficiency of each grating as gm;0 
 ðp2=4Þðn00=ncÞ
2

where n00 is the amplitude of each grating. Let us

now define

M#used � ðNn0=ncÞ: ð45Þ

Note that M#used represents the fact that the N
gratings have potentially used up only a part of the

total amount of active elements in the medium:

Nn00 6 n0m. This in turn implies that M#used 6M#.

The efficiency of each grating can now be ex-

pressed as gm;0 
 ðp2=4ÞðM#used=NÞ2 so that

M#used 
 N � ðp=2Þ ffiffiffiffiffiffiffiffi
gm;0

p
: ð46Þ

More generally, even if the diffraction efficiency of

each grating is not the same as the others, but is

small, we can show that

M#used 

p
2

XN
i¼1

ffiffiffiffiffiffiffi
gm;i

p
: ð47Þ

Experimentally, one can make N very large, so

that the very last grating written has a vanishing

diffraction efficiency. Under this condition, we get

M# 
 M#used 

p
2

XN
i¼1

ffiffiffiffiffiffiffi
gm;i

p
: ð48Þ

One of the problems with this approach is that

one has to write many holograms on the same

spot, and assume that there is no grating washout.

This assumption may not always be valid. We now

discuss a new approach that does not depend on

this assumption.

Fig. 5. Schematic illustration of the functional dependence of

the optimal (i.e., Bragg-matched diffraction efficiency) as a

function of the index modulation amplitude and M#. See text

for details.
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Consider the process of writing a grating, with a

light exposure W. In general, the amplitude of the

resulting grating, n0, may be modeled to depend on

W in the following manner [26]:

n0 ¼ n0sat 1½ � expð � bW Þ�; ð49Þ
where b is a constant determined by the sensitivity

of the medium. This model is based on the physical

picture that the hologram writing in most cases can

be viewed as an optical pumping process whereby

the active elements are transformed from one sta-

ble configuration to another stable one. In the limit
of small W b, one can express this relation as

n0 
 n0satðbW � b2W 2Þ: ð50Þ
Normalizing both sides by nc, and using Eq. (44),

we get

n0

nc

 M#

p=2
ðbW � b2W 2Þ: ð51Þ

In this limit, one can also approximate the Bragg-

matched diffraction efficiency of Eq. (42) by

gm 
 ðp2=4Þðn0=ncÞ2. Combining, we get

gm 
 M2
#ðb

2W 2 � 2b3W 3Þ: ð52Þ
Consider next the following quantities:

S1 � lim
W!0

o2gm

oW 2

� �
; S2 � lim

W!0

o3gm

oW 3

� �
: ð53Þ

It is easy to show that b ¼ �ðS2=6S1Þ and

M# ¼

ffiffiffiffiffiffiffiffiffiffi
18S3

1

S2
2

s
: ð54Þ

Consider now a situation where we have a large

set of identically prepared substrates (or, equiva-

lently, a large set of areas on a single substrate,

each of which can be used for writing a different

grating). We now write a single grating in each

substrate, with increasing duration of exposure,

W, to the writing beams. The diffraction efficiency
of each of these gratings can be measured experi-

mentally, generating the function gmðW Þ. The pa-

rameters in Eq. (53) can now be determined

directly, which in turn can be used to compute the

M# by using Eq. (54).

As mentioned above, an incoherent 1� N HBC

corresponds to writing N superimposed gratings

such that: (i) for a fixed input angle, there is a

unique frequency that will diffract efficiently from

a given grating, and (ii) the diffraction efficiency of

each grating is close to unity. In this case, it then

follows immediately that the material must satisfy

the following requirement:

M# PN : ð55Þ
For the coherent HBC, the gratings are not or-

thogonal in the same sense as in the section above.

Rather, in this case, the input beam diffracts effi-

ciently from each of the N gratings simultaneously.
As such, the diffraction efficiency of each grating

only has to have a maximum value of 1=N , which

is much less than unity for a large N . As shown

above, Eq. (48) still applies, so that the required

constraint is simply

M# P
p
2

ffiffiffiffi
N

p
: ð56Þ

Therefore, the requirement of a high M# is sub-

stantially relaxed for coherent combining. One can

also call upon reciprocity to see this result. When

used in reverse, this same volume hologram should

take a single coherent input beam and split it

equally into N components, each with 1=N th the

power and thus with an individual diffraction ef-
ficiency of 1=N .

6. Conclusion

We have presented a mathematical model that

reveals the critical parameters for high efficiency

beam combining volume holograms for coherent
and incoherent source beams. We have also de-

rived the explicit equations relating read and write

angles for these combiners. In addition, we have

shown that the M# requirement for an N beam

coherent combiner is substantially less than that

needed for an N beam incoherent combiner.
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