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Demonstration of a simple technique for determining the M���#
of a holographic substrate by use of a single exposure

H. N. Yum and P. R. Hemmer

Department of Electrical Engineering, Texas A&M University, College Station, Texas 77843

R. Tripathi, J. T. Shen, and M. S. Shahriar

Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208
Received January 28, 2004

We propose and demonstrate a simple technique for determining the M�# parameter of a holographic recording
material. In this method, divergent object and reference beams are used to produce a spatially varying index
modulation. One can analyze the resultant diffraction pattern to find M�# by using only a single grating;
existing techniques require many gratings. © 2004 Optical Society of America
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The dynamic range of a holographic medium is an im-
portant parameter for determining storage density and
diffraction efficiency of holographic memory systems
and holographic beam combiners.1 – 4 In these appli-
cations, many holographic gratings are multiplexed in
the medium at the same spatial location. M�# is a
parameter that defines the dynamic range of the holo-
graphic medium; it is essentially p�2 times the ratio
of the maximum achievable index modulation and the
index modulation that corresponds to a unity diffrac-
tion eff iciency grating. The existing techniques4 – 8 for
measuring M�# require one to write many holograms
on the material. Here we discuss a technique to de-
termine M�# for a holographic recording material that
is potentially simpler, and we present simulated and
experimental results for a photopolymer-based holo-
graphic recording medium.

Typically, illumination of a holographic sub-
strate with a spatially periodic, sinusoidal inten-
sity pattern produces a periodic index modulation
n�x� � n0 1 n0 cos�Kx�, where n0 is the spatially aver-
aged index of refraction of the medium, n0 is the index
modulation depth, and K represents the wave number
of the grating. When a laser beam of wavelength l

illuminates this grating at the Bragg angle, diffraction
efficiency h is given by9
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where I0 is the input intensity, Id is the diffracted in-
tensity, d is the thickness of the substrate, and a is
the obliquity factor determined by the orientation of
the grating. A characteristic scale for the index modu-
lation is nc � l��2ad�, so h becomes
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, h � 1 , n0 � nc. (2)

In many situations the modulation depth4 can be mod-
eled as

n0 � nm
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where t is the exposure time, t̃ is a time constant that
depends on the material sensitivity and the intensity of
the writing laser beams, and nm is the maximum index
modulation. A convenient way to quantify the value
of nm is through the use of M�#, which can be defined
as M�# � �pnm���2nc�. For notational convenience we
define a scaled version of this expression: Q � nm�nc,
such that M�# � �p�2�Q. When Q is an integer, it
represents essentially the maximum number of orthog-
onal, unit diffraction efficiency gratings that can ide-
ally be written in a given spatial location.

Consider a situation in which N equalized diffrac-
tion efficiency gratings are multiplexed on a single
substrate by use of the Bragg (angle or wavelength)
orthogonality condition. For N ..Q the diffraction
efficiency for each grating can be approximated by
h � �p2�4� �Q�N�2.4,5 More generally, if the diffrac-
tion eff iciencies of the gratings are not identical, it is
possible to define and measure M�# of the material
from the relation4,5

Q �
NX
i�1

p
hi , hi ,, 1 . (4)

Although one can measure M�# by using one exposure
in certain cases,5,7 in general to measure M�# by this
approach may require one to write many holograms.
As an alternative method, one can also use the fact
that the diffraction eff iciency of a single grating in the
small index-modulation limit is a quadratic function (to
first order) of the exposure time, described by

h�t� � Q2
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which follows directly from Eqs. (2), (3a), and (3b).
M�# can thus be determined from the curve that
defines the diffraction eff iciency of a single hologram
as a function of exposure time. This method also
requires recording many successive holograms with
different exposures on the holographic substrate.4

In this Letter we offer a potentially simpler ap-
proach to determining M�# from a single recording on
the holographic medium. To illustrate this method
we first combine Eqs. (2) and (3a) to express the
diffraction eff iciency as a function of time:
© 2004 Optical Society of America
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Now, according to the generalized optical pumping
model,4 the saturation rate �t̃21� depends linearly
on the intensity of the radiation for writing the
grating: t̃21 � bĨ , where b is the sensitivity of
the medium and Ĩ is the amplitude of the intensity
modulation, defined as

I � Ĩ �1 1 cos�KGx�� , (6b)

where KG is the grating vector. For typical values of
Ĩ used, the value of b can be assumed to be a constant.
If the value of Ĩ depends on position r as well, we can
write

h�t,r� � sin2
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Specifically, let us consider a situation when two
equal-intensity, coherent Gaussian beams write a grat-
ing in a holographic medium. The intensity distribu-
tion will be

I �r� � 2I0 exp�22r2�v0
2� �1 1 cos���KG ? r���� ,

KG � K1 2 K2 , (8)

where K1 and K2 are the propagation wave vectors,
I0 is the intensity at the center of each beam, and
v0 is the Gaussian beam radius of each writing
beam. Comparing Eq. (8) with Eq. (6b), we find
that Ĩ � 2I0 exp�22r2�v0

2�. When this expression is
used in Eq. (7), the resultant diffraction eff iciency is
given by
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where f �r� � exp�22r2�v0
2
¥

and t � 1�2bI0. Across
the spatial profile of the writing beams, the value of
f �r� varies from 1 in the center for r � 0 to a value of
0 for r .. v0.

Now, if t�t � 5, for example, then, at r �
0, exp�2f �r� t�t� approaches zero. However, for
r .. v0, f �r� ,, 1�5 and 1 2 exp�2f �r� t�t� ap-
proaches unity. This argument holds for larger
values of t�t as well. Thus, for t�t $ 5, the quantity
1 2 exp�2f �r� t�t� varies monotonically from one to
zero. Therefore the total number of circular fringes
is of the order of Q�2 for t�t $ 5. Accordingly, we
note that for the proper exposure time one can be sure
to observe the full number of fringes. To be more
precise, let us express Q as follows:

Q � 2m 1 n 1 a , a , 1 , n � 0, 1 . (10)

In this notation a is the fractional part of Q and n
determines whether Q is odd or even. Consider f irst
the case n � 0 and a � 0. In this case, for t�t $ 5 the
number of full circular fringes equals m with a null at
the center. Consider next the situation in which n � 1
and a � 0. In this case the number of full circular
fringes will still be m, but there will be a peak at the
center. Finally, for a fi 0 the efficiency at the center
will have a dip if n � 1 and a peak if n � 0. The actual
value of the efficiency at the center reveals the value
of a.

We studied the phenomenon by using simulations.
Figure 1 shows the result for dependence of diffraction
efficiency on exposure time for an even-Q value ma-
terial with a plane-wave readout. This result shows

Fig. 1. Result of simulation showing the evolution of the
diffracted pattern as a function of holographic exposure for
an even-Q [m � 5, n � 0, a � 0, in Eq. (10)] value material
with a plane-wave readout beam. Normalized diffraction
efficiency is plotted versus radial distance.

Fig. 2. Result of simulation for the diffraction pattern for
fractional Q with a plane-wave readout beam [m � 5, n �
0, a � 0.2 in Eq. (10)]. Normalized diffraction efficiency
is plotted versus radial distance.

Fig. 3. Hologram writing and readout geometry.
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Fig. 4. Experimentally observed diffraction patterns.
As one reaches the optimum limit for holographic ex-
posure, the number of fringes that are visible in the
diffracted beam reaches a maximum. Exposure time T
is labeled in the top right corner of eadch graph. All
images are diffracted beams except for image 1, which is
the transmitted beam for T � 26 s.

the expected dark center for an even-Q material. Fig-
ure 2 shows the simulation result for diffraction for a
material with an odd-Q value plus a fractional part.
As expected, there is an intensity peak at the center of
the diffraction pattern and a dip that is due to the frac-
tional part. The value at the center yields the value
of fractional a as 0.2, resulting in a Q value of 11.2,
which corresponds to an M�# value of 17.584.

To show the principle of operation experimen-
tally, we used a dye-doped polymer material called
Memplex.10 This material has a Q value of 6, as
claimed by the manufacturer. Figure 3 shows the
combined setup for hologram writing and readout.
Writing was done with a frequency-doubled Nd:YAG
laser �l � 532 nm�, and readout was performed with
a He–Ne laser operating at 632.8 nm. This material
required baking after holographic exposure. During
this experiment, the exposure times were gradually
increased. After exposure, the material was baked
until the number of observable interference fringes
reached maximum. Figure 4 shows the results for a
series of exposures for the holographic substrate. It
shows that, as we reach the optimum limit for holo-
graphic exposure, the number of interference fringes
visible in the diffracted beam reaches a maximum
(three in this case). Thus the Q for our material is
�6. This value of Q yields an M�# of 9.42 for the
material.

We have proposed and demonstrated a simple
approach to determining the parameter M�# for any
holographic recording material. This easy-to-use
technique will be attractive for holographic data
storage when a priori knowledge about the storage
material is valuable in determining the storage den-
sity and the recording schedule for the holograms.

J. T. Shen’s e-mail address is jshen@ece.
northwestern.edu.
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