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Ultrafast holographic Stokesmeter for polarization imaging in
real time
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We propose an ultrafast holographic Stokesmeter using a volume holographic substrate with two sets of two
orthogonal gratings to identify all four Stokes parameters of the input beam. We derive the Mueller matrix of
the proposed architecture and determine the constraints necessary for reconstructing the complete Stokes vec-
tor. The speed of this device is determined primarily by the channel spectral bandwidth (typically 100 GHz),
corresponding to a few picoseconds. This device could be useful in high-speed polarization imaging. © 2004
Optical Society of America
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Polarimetric imaging1 – 3 takes advantage of the fact
that a given object emits and scatters light in a
unique way depending on its polarimetric signature.
Identifying the polarimetric signature is equivalent to
identifying the scattered Stokes vector.4,5 An active
polarimetric sensor is used in applications such as
target recognition, vegetation mapping, pollution mon-
itoring, geological surveys, and medical diagnostics.6 – 9

Current polorization imaging systems include
mechanical quarter-wave plate–linear polarizer com-
binations,10 photodetectors with polarization f iltering
gratings etched onto the pixels, and liquid-crystal
variable retarders. The speed of the mechanical
sensor is limited because each Stokes parameter is
determined sequentially and the wave plate–polarizer
combination must be reoriented precisely between
parameters. The etched photodetector systems
cannot resolve the complete Stokes vector at this
time. The liquid-crystal retardation is similar to
the mechanical sensor but with a liquid–crystal
display replacing the wave plates and polarizers.
This method is still sequential and is restricted by
the time it takes the display to reorient itself, typi-
cally of the order of 100 ms�scan. This limits the
throughput to �10 Hz. To examine the advantages
of the proposed architecture and to quantify its speed,
we examine each component (see Fig. 1). A typical
thick hologram ��1 mm� has a channel bandwidth
of the order of 1 nm (and an angular bandwidth of
�1 mrad), corresponding to an optical response time
of �10 ps. The signal manipulation can be accom-
plished with precalibrated f ield-programmable gate
arrays or programmable logic arrays and does not re-
quire real-time processing. These devices perform at
approximtely the speed of the logic gates, typically of
the order of 1 ns. The detector array response time is
determined in part by the desired signal-to-noise ratio
(SNR). The SNR is proportional to

p
hIt, where h is

the quantum eff iciency, I is the intensity, and t is the
0146-9592/04/030298-03$15.00/0
average time. For a typical SNR of 10, the response
time is then given by the detector-specific parameters
and the amount of light ref lected by the target. It
should be noted that the constraints imposed by a
given SNR and the detector array are common to all
the methods discussed here. The advantage of our
design is that it can determine the complete Stokes
vector in parallel, so that the detector and not the
sensor is the limiting factor in determining the speed
of the device.

The architecture is shown in Fig. 1. The incom-
ing image is split into two copies by use of a beam
splitter. The first beam is diffracted into two beams
by use of two multiplexed holographic gratings. The
second beam passes through a quarter-wave plate
before diffracting from a similar set of multiplexed
holographic gratings. The diffracted beams are
projected onto four CCD arrays. Their intensities are
summed with predetermined weights to compute each
component of the Stokes vector. These weighting
factors are determined by use of the parallel and per-
pendicular polarization components of diffraction to
formulate the Mueller matrix that describes the trans-
formation of the initial Stokes parameters by grating
diffraction. This design takes advantage of the fact

Fig. 1. Schematic of the holographic Stokesmeter.
© 2004 Optical Society of America
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that a hologram is sensitive to the polarization of
the incident light, and the weighting factors can be
determined analytically by use of a Mueller matrix
analysis of the architecture.

For an arbitrary image pattern the diffraction
efficiencies also depend on the range of spatial
frequencies. Here we restrict our analysis to the
simple case of a plane wave incidence, which can be
extended easily to analyze the general case. Figure 2
illustrates the progression of the light through a
thick hologram. This process is represented math-
ematically by a series of Mueller matrices11,12 that
describe the transformation of the input Stokes
vector Si. The Stokes vector SFS of the transmitted
beam through the front surface of the hologram is
SFS � MFSSi, where MFS11 � MFS22 � tjj2 1 t�

2,
MFS12 � MFS21 � t�

2 2 tjj2, and MFS33 � MFS44 �
2tjjt�. MFS is the Mueller matrix for the transmis-
sion from the front surface and tk and t� are the
Fresnel transmission coeff icients corresponding to
the components of linearly polarized light parallel
and perpendicular to the plane of incidence. One can
describe the Mueller matrix for the exit surface of the
hologram in the same manner.

To construct the Mueller matrix for the grating it-
self, MH in Fig. 2, we describe the amplitude of the
diffracted beam for parallel and perpendicular inci-
dence in a manner analogous to the Fresnel ref lection/
transmission case. For our purposes here we need to
describe only the diffracted beam and not the trans-
mitted component. The relevant parameters are illus-
trated in Fig. 3:

⇀
Ui is the input beam and

⇀
Uo is the

output beam, where ûi and ûo are the respective po-
larization vectors normal to the direction of propaga-
tion; K is the grating vector, which makes an angle f

with the z axis. We note that the amplitude of the dif-
fracted beam is given by13
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Here, n0 is the index modulation depth. For the spec-
tral cases of polarizations parallel and perpendicular
to the plane of incidence, the dot product in Eqs. (1)
can be simplif ied as
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The Mueller matrix for the hologram �MH � and the
transformation of the Stokes vector Si are given
by SH � MHSi, where MH11 � MH22 � ujj

2 1 u�
2,

MH12 � MH21 � u�
2 2 ujj

2, and MH33 � MH44 � 2ujju�.
For the architecture proposed above, we must
describe the diffraction amplitudes from two mul-
tiplexed gratings. These gratings must be specifi-
cally designed so that they have the same Bragg
angle uB . Following our previous analysis,14 we can
design two orthogonal gratings such that they each
share the same Bragg angle. The amplitude of the
diffracted beam from the jth grating is given as

Uo

Ui
�d�j � 2i

kj �ûi ? ûoj �
cos�uoj �j0

sin�j0d� for j � 1, 2 ,
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We can evaluate the parallel and perpencidular polar-
ization cases as in Eqs. (2) and obtain the proper coef-
ficients ujj and u�.

The proposed architecture can now be completely
analyzed by use of the Mueller matrices found above.
The Mueller matrix for one grating of the hologram
is Mt � MES ? MH ? MFS where MFS is the matrix
for the front surface and MES is the matrix for the
exit surface. Using MES, MH, and MFS, we find that
the transformation of the input Stokes vector is given
by Mt11 � Mt22 � A 1 B, Mt12 � Mt21 � A 2 B, and
Mt33 � Mt44 � 2

p
AB, where A � tFS�

2u�
2tES�

2 and
B � tFSk2uk

2tESk
2. This equation shows the Stokes

vector that is diffracted from one grating. The second
grating will produce an equation of the same form but
with different grating coeff icients u. Both equations
have the same Stokes vector as input, but because
grating parameters u differ, they will produce differ-
ent output. Note that using intensity detectors, and

Fig. 2. Interaction with the hologram viewed in three
sections.

Fig. 3. Diffraction from a thick, slanted grating.
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given the form of the Mueller matrix in the Stokes
vector equation, we can determine only the first two
Stokes parameters. To determine the other Stokes
parameters, one must have a Mueller matrix with
nonzero off-diagonal elements in the third and fourth
columns. This can be achieved, for example, by a
rotation of the holographic grating about the z axis
and by a similar rotation of the polarization axis of
the incident light. This rotation Rz is described by
the following Mueller matrix:

MRz �g� �

2
664

1 0 0 0
0 cos 2g 2sin 2g 0
0 sin 2g cos 2g 0
0 0 0 1

3
775 . (4)

This rotation allows us to find two equations for the
two beams diffracted by the f irst set of multiplexed
gratings:

It1 � Ii�A1 1 B1� 1 �Qi cos�2g1� 2 Ui sin�2g1��

3 �A1 2 B1� ,

It2 � Ii�A2 1 B2� 1 �Qi cos�2g2� 2 Ui sin�2g2��

3 �A2 2 B2� , (5)

where subscripts 1 and 2 denote the two separate grat-
ings. Angle g1 denotes the angle of rotation for grat-
ings 1 and 3. The next set of equations comes from
the beams that pass through the quarter-wave plate
and diffract from the third and fourth gratings. The
quarter-wave plate adds a p�2 phase shift that inter-
changes the U and V parameters of the Stokes vector:
cos�e� ! cos�e 1 p�2� � 2sin�e� and sin�e� ! sin�e 1

p�2� � cos�e�. The second set of equations is thus

It3 � Ii�A3 1 B3� 1 �Qi cos�2g1� 1 Vi sin�2g1��

3 �A3 2 B3� ,

It4 � Ii�A4 1 B4� 1 �Qi cos�2g2� 1 Vi sin�2g2��

3 �A4 2 B4� . (6)

Because the quarter-wave plate has changed U into V ,
we now have four equations that involve all four Stokes
parameters. We are required to measure the four dif-
fracted intensities to determine the Stokes parameters.
Grating coeff icients u and the Fresnel ref lection coeff i-
cients can be measured to f ind the A and B coefficients,
which in turn can be used to preweight the detector ar-
rays for the imaging process.

To determine the constraints on the device parame-
ters that are required to determine fully the complete
Stokes vector, we write Eqs. (5) and (6) together in ma-
trix form as It � M0Si, where M0 is the so-called mea-
surement matrix, Si is the input Stokes vector to be
solved for, and It represents the four measured inten-
sities. For our material parameters, an example mea-
surement matrix is given as
M0 �

2
664

0.24320 20.04187 0.23746 0
0.68596 20.03614 0.00637 0
0.28996 20.04897 0 20.27773
0.21291 0.11626 0 0.02050

3
775 .

(7)

We have verif ied numerically that this matrix deter-
mines the Stokes vector robustly for a range of input
values. No attempt was made to further optimize the
condition15,16 of the matrix, which requires an exhaus-
tive search through the parameter space and is subject
to further investigation.

We have proposed a polarization imaging architec-
ture using thick multiplexed holograms that has many
advantages over current polarimetric imaging tech-
niques. The analysis showing the principle of opera-
tion explicitly takes into account the polarization state
of the incident and diffracted wave fields. Transfor-
mation of initial Stokes parameters by grating diffrac-
tion is formulated by a Mueller matrix defined in terms
of diffracted amplitudes of planar and perpendicular
polarization components. A procedure has been out-
lined that uses two sets of rotated orthogonal gratings
and a quarter-wave plate to compute all four unknown
Stokes parameters required for polarimetric imaging.
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