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Abstract

Recently, we have shown theoretically [M.S. Shahriar, P. Pradhan, J. Morzinski, Phys. Rev. A 69 (2004) 032308] as well as experi-
mentally [G. Cardoso, P. Pradhan, J. Morzinski, M.S. Shahriar, Phys. Rev. A 71 (2005) 063408] how the phase of an electromagnetic
field can be determined by measuring the population of either of the two states of a two-level atomic system excited by this field, via the
so-called Bloch–Siegert oscillation resulting from the interference between the co- and counter-rotating excitations. Here, we show how a
degenerate entanglement, created without transmitting any timing signal, can be used to teleport this phase information. This phase-
teleportation process may be applied to achieve wavelength locking of remote oscillators.
� 2006 Elsevier B.V. All rights reserved.

PACS: 03.67.�a; 03.67.Hk; 03.67.Lx; 32.80.Qk
The task of synchronizing a pair of oscillators that are
separated in space is important for many practical applica-
tions, such as the global positioning system (GPS) [3] and
the very large base interferometry (VLBI) [4]. Convention-
ally, this is performed by transmitting timing signals
between the oscillators. Consider first the ideal situation
where the intervening medium is stable and fully character-
ized. The accuracy of the synchronization process is then
limited by the uncertainty in the timing signal. The best
result achievable is limited by the signal to noise ratio
(SNR). It is generally possible in most cases to eliminate
sources of systematic noise, so that the fundamental con-
straint is the shot noise limit (SNL). In principle, specially
prepared quantum states can reduce the effective noise
below the SNL. However, since the level of signal in this
case is typically much weaker, the actual SNR achievable
this way is far below what can be achieved using classical
states. Most of the recent proposals [5–9] for achieving
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improved oscillator synchronization (OS) using quantum
processes suffer from the same constraint, so that in prac-
tice they are inferior to classical approaches. Thus, given
the current state of technology, quantum mechanical effects
is not likely to help in the process of OS under the ideal
situation.

In a real-life application such as in the field of GPS, the
density of the intervening medium fluctuates randomly,
leading to a corresponding fluctuation in the time needed
for a signal to travel between the oscillators. Under this
condition, it is fundamentally impossible to synchronize
the oscillators to an accuracy higher than the correspond-
ing fluctuation in the travel time. This follows from the
principle of special relativity, which is built on the axiom
that there exists a maximum speed – namely, the speed of
light in vacuum – at which information can propagate.
As such, the notion of oscillator synchrony is defined with
respect to the time it takes for light to traverse the distance
between the oscillators. It then follows that if this travel
time itself is fluctuating, then the oscillator synchrony is
undefined, and cannot be achieved on the timescale of
the fluctuation. One can define and establish only an
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Fig. 1. Schematic illustration of the basic protocol for phase locking two
remote oscillators, one with Alice (A), and the other with Bob (B), without
transmitting an oscillator signal directly. The model energy levels can be
realized, for example, using the metastable hyperfine Zeeman sublevels of
87Rb atoms, as shown in the figure and described in the text.

350 M.S. Shahriar et al. / Optics Communications 266 (2006) 349–353
average synchrony, valid only for timescales longer than
that of the fluctuation. In all situations of practical interest,
OS always implies the achievement of this average syn-

chrony. This conclusion also holds for the clever technique
demonstrated by Ma et al. [10].

An alternative way to improve the average synchrony
is through frequency locking. Specifically, consider a typ-
ical application where each oscillator is locked to a meta-
stable atomic transition. Most of the recent proposals
about oscillator synchronization, including the Jozsa pro-
tocol [9], make the assumption that each oscillator con-
tinues to operate at some ideal transition frequency. In
practice, however, this is not the case. The frequency
of each oscillator undergoes shifts and drifts due to a
host of reasons. These fluctuations lie at the heart of
oscillator asynchrony. As such, minimizing the relative
drifts in the frequencies is perhaps the most effective
way to minimize the error in OS. This approach opens
up new possibilities for exploring whether quantum
mechanical effects may outperform classical approaches.
In this paper, we propose a new technique for locking
the wavelengths of two distant oscillators, via phase
teleportation.

The process underlying this technique is the so-called
Bloch–Siegert Oscillation (BSO), which results from an
interference between the co- and counter-rotating parts
of a two-level excitation. Recently, we have analyzed the
basic features of the BSO theoretically [1], in the context
of how it may affect the accuracy of the rotation of a
quantum bit. We have also observed the key feature of
the BSO using an atomic beam [2], showing specifically
that the excited state population of a two-level system dri-
ven by a strong microwave field reveals an oscillation that
is in phase with the second harmonic of the driving field.
In applying the BSO to the task of frequency locking, the
phase variation of an oscillator is first mapped by Alice
(keeper of the first oscillator) to the wave-functions of
an array of atoms, by making use of the fact that the
amplitude of the excited state (as well as that of the
ground state) depends explicitly on the phase of the driv-
ing field. The maximum number of atoms needed to
encode the phase variation can be very small, and is given
by the Nyquist sampling criterion. Distant entanglement,
produced using an asynchronous technique [11], is used
to teleport the quantum state of each of these atoms to
a matching atom with Bob (keeper of the second oscilla-
tor). Bob can thus recreate the exact phase variation of
Alice’s oscillator locally, and compare with the same for
his oscillator. We discuss the potential constraints and
advantages of this approach after presenting the scheme
in detail.

Consider first a situation where Alice and Bob each has
an atom that has two degenerate ground states (j1i and
j2i), each of which is coupled to a higher energy state
(j3i), as shown in Fig. 1. We assume the 1–3 and 2–3 tran-
sitions are magnetic dipolar, and orthogonal to each
other, with a transition frequency x. For example, in
the case of 87Rb, j1i and j2i correspond to 52P1/2:jF = 1,
mF = �1i and 52P1/2:jF = 1, mF = 1i magnetic sublevels,
respectively, and j3i corresponds to 52P1/2:jF = 2, mF =
0i magnetic sublevel [2]. Left and right circularly polarized
magnetic fields, perpendicular to the quantization axis, are
used to excite the 1–3 and 2–3 transitions, respectively. We
take x to be the same as the oscillator frequency xc.

We assume that Alice and Bob’s fields at x have the
form BA = BA0 cos(xt + /) and BB = BB0 cos(xt + v),
respectively. The origin of the time variable, t, is therefore
arbitrary, and does not affect the phase difference, X �
(/ � v). The oscillators are assumed to be in phase if
X = 0, so that if Bob determines that at some instant his
magnetic field is maximum and positive in some direction
rB, then Alice will also find her magnetic field to be maxi-
mum and positive in some direction rA at the same instant.
As long as Alice and Bob agree on this definition of phase-
locking, and use the same definitions all the time, then rB

and rA do not have to be the same. During the magnetic
resonance excitations, the value of any dc magnetic field
will be assumed to be vanishing. Symmetry then dictates
that any physical observable will be independent of the
choice of the quantization axis, as long as it is perpendicu-
lar to rA for Alice, and perpendicular to rB for Bob. In
order to describe our protocol, we now summarize briefly
the theory behind the Bloch–Siegert oscillation that occurs
when a two-level interaction is considered without the
rotating wave approximation (RWA) [12–16], and is pre-
sented in greater detail in Ref. [1]. We also describe the
condition for the time reversal of an arbitrary evolution
under this condition, another necessary element of our
protocol.

We consider an ideal two-level system where a ground
state j1i is coupled to a higher energy state j3i. We assume
that the 1–3 transition is magnetic dipolar, with a transition
frequency x, and the magnetic field is of the form
B = B0 cos(xt + /). In the dipole approximation, the Ham-
iltonian can be written as

Ĥ ¼ eðr0 � rzÞ=2þ gðtÞrx; ð1Þ
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where g(t) = �go[exp(ixt + i/) + c.c.]/2, ri are the Pauli
matrices, and e = x corresponding to resonant excitation.
The state vector is written as

jnðtÞi ¼
C1ðtÞ
C3ðtÞ

� �
: ð2Þ

We perform a rotating wave transformation by operat-
ing on jn(t)i with the unitary operator Q̂ ¼ ðr0 þ rzÞ=
2þ expðþixt þ i/Þðr0 � rzÞ=2: The Schroedinger equation

then takes the form (setting �h = 1): oj~nðtÞi
ot ¼ �i ~HðtÞj~nðtÞi,

where the effective Hamiltonian is given by

~H ¼ aðtÞrþ þ a�ðtÞr�; ð3Þ
with a(t) = �g0[exp(�i2xt � i2/) + 1]/2, and the rotating
frame state vector is

j~nðtÞi � Q̂jnðtÞi ¼
~C1ðtÞ
~C3ðtÞ

" #
: ð4Þ

The general solution, without RWA, to (4) can be writ-
ten in the form

j~nðtÞi ¼
X1

n¼�1

an

bn

� �
expðnð�i2xt � i2/ÞÞ; ð5Þ

with the couplings described by

a
�

n ¼ i2nxan þ ig0ðbn þ bn�1Þ=2; ð6aÞ

b
�

n ¼ i2nxbn þ ig0ðan þ anþ1Þ=2: ð6bÞ

We consider g0 � g0ðtÞ ¼ g0Mð1� e�t=sswÞ to have a
slower time-dependence compared to other characteristic
timescales such as 1/x and 1/g0M, where g0M is the peak
value of g0 and ssw is the switching time. Under this condi-
tion, one can solve these equations by employing the
method of adiabatic elimination, which is valid to first
order in g � (g0/4x). As derived in Refs. [1,2], the solutions
are

C1ðtÞ ¼ cosðg00ðtÞt=2Þ � 2gR � sinðg00ðtÞt=2Þ; ð7aÞ
C3ðtÞ ¼ ie�iðxtþ/Þ½sinðg00ðtÞt=2Þ þ 2gR� � cosðg00ðtÞt=2Þ�; ð7bÞ
where R � (i/2)exp[�i(2xt + 2/)] and g00ðtÞ ¼ 1=t

R t
0

g0ðt0Þ
dt0 ¼ g0½1� ðt=sswÞ�1 expð�t=sswÞ�. To lowest order in g
this solution is normalized at all times. Note that if Alice
were to carry this excitation on an ensemble of atoms
through for a p/2 pulse, and measure the population of
the state j3iA immediately (at t = s, the moment when
the p/2 excitation ends), the result would be a signal given
by [1 + 2g sin(2xs + 2/)]/2, which contains information re-
lated to the amplitude and phase of her field.

Next, we consider the issue of exact time reversal of such
an excitation. The Schroedinger equation (4) has the for-
mal solution

j~nðt2Þi ¼ exp �i

Z t2

t1

~Hðt0Þdt0
� �

j~nðt1Þi: ð8Þ

If the RWA is made, then ~H is time independent. In that
case, if one starts an evolution at t1, proceed for any dura-
tion T, then reverses the sign of ~H by shifting the phase of
the magnetic field by p, and continues with the evolution
for another duration T, then the system returns back to
the starting state. Here, however, RWA is not made, so
that ~H depends on time. Therefore, the exact reversal can
be achieved in this manner only if T = mp/x for any inte-
ger value of m [9,1,2].

Returning to the task at hand, our protocol starts by
using a scheme, developed earlier by us [11] to produce a
degenerate entanglement of the form jwi = (j1iAj2iB �
j2iAj1iB)/

p
2. Recalling briefly, in this technique, a pair

of entangled photons, produced by a parametric down con-
verter, for example, are transmitted to Alice and Bob, each
receiving one of the photons. The capturing process is
checked indirectly, using a quantum non-demolition mea-
surement. If the verification process confirms the capture
of the photons, then the quantum states of the atoms
remain undisturbed. Otherwise, the process is re-initialized
(placing each atom in state j1i) and repeated until it suc-
ceeds. An optically off-resonant Raman transition (with
one leg corresponding to a pump frequency, and the other
corresponding to one of the entangled photons) coupling
j1i to j2i is used by Alice as well as Bob to capture the pho-
tons, resulting in the entangled state shown above. Next,
Alice attenuates her field so that the counter-rotating term
in the Hamiltonian can be ignored (this assumption is not
essential for our conclusion, but merely simplifies the alge-
bra somewhat), and excites a p-pulse coupling j2iA to j3iA,
and then stops the excitation. The degree of attenuation is
such that the Rabi frequency is much less than the transi-
tion frequency, so that the RWA is valid. Similarly, Bob
uses a field, attenuated as above, to excite a p-pulse cou-
pling j2iB to j3iB, and then stops the excitation. Using dig-
ital communications over a classical channel, Alice and
Bob wait until they both know that these excitations have
been completed. The resulting state is then given by

jwðtÞi¼ ½j1iAj3iB expð�ixt� ivÞ� j3iAj1iB expð�ixt� i/Þ�=p2:

ð9Þ

The next step is for Alice to make a measurement along
the j1iA M j3iA transition. For this process, she chooses a
much larger value of g0, so that the RWA cannot be made.
The state she wants to measure is the one that would result
if one were to start from state j1iA, and evolve the system
for a p/2 pulse using this stronger g0

jþiA�
1ffiffiffi
2
p ½f1�2gRgj1iAþ ie�iðxtþ/Þf1þ2gR�gj3iA�; ð10Þ

where we have made use of (9). The state orthogonal to
j+iA results from a 3p/2 pulse

j�iA�
1ffiffiffi
2
p ½f1þ2gRgj1iA� ie�iðxtþ/Þf1�2gR�gj3iA�: ð11Þ

To first order in g, these two states are each normalized,
and orthogonal to each other. As such, one can re-express
the state of the two atoms in (9) as



Fig. 2. Schematic illustration of the process to be employed for remote
frequency locking. The top (bottom) array shows the atoms co-located
with and excited by Bob (Alice). The degree of correlation observed after
executing the frequency-locking protocol displays a spatial variation only
if the frequencies of Bob’s and Alice’s oscillators are different, as shown in
the middle. Elimination of such a variation leads to frequency locking.
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jwðtÞi ¼ 1ffiffiffi
2
p ½j þ iAj � iB � j � iAj þ iB� ð12Þ

here we have defined

j þ iB �
1ffiffiffi
2
p ½f1� 2gRgj1iB þ ie�iðxtþvÞf1þ 2gR�gj3iB�;

ð13aÞ

j � iB �
1ffiffiffi
2
p ½f1þ 2gRgj1iB � ie�iðxtþvÞf1� 2gR�gj3iB�:

ð13bÞ

She can measure the state j+iA by taking the following
steps: (i) shift the phase of the B-field by p, (ii) fine tune the
value of g0 so that g00ðtÞ ¼ x=2m, for an integer value of m,
(iii) apply the field for a duration of T ¼ p=2g00ðT Þ, and (iv)
detect state j1iA. Note that the constraint on g0 ensures that
T = mp/x, which is necessary for time reversal to work in the
absence of the RWA. Once Alice performs this measure-
ment, the state for Bob collapses to j�iB, given in (14). Note
that if g is neglected, then the measurement produces a j�iB
that contains no information about the phase of Alice’s oscil-
lator, which is analogous to the Jozsa protocol [9]. Note also
that Bob does not need to know the actual value of g0 used by
Alice in order for this protocol to work.

In the present case, j�iB does contain information about
the amplitude and the phase of Alice’s oscillator signal. In
order to decipher this, Bob measures his state j1iB. The
probability of success is:

p/ � jBh1j � iBj
2 ¼ 1

2
½1þ 2g sinð2/Þ�; ð14Þ

where we have kept terms only to the lowest order in g. Of
course, the value of /(mod 2p), the phase difference, can
not be determined from knowing sin(2/) alone. However,
this whole process can be repeated after, for example, Alice
shifts the phase of her B-field by p/2, so that Bob can deter-
mine the value of cos(2/). It is then possible to determine
the value of /(mod 2p) unambiguously.

The overall process can be carried out in one of two
ways. First, consider the situation where Alice and Bob
starts with X pairs of atoms, and entangle each pair in
the form of (13). Then, over a digital communication chan-
nel, Alice sends Bob a list of the M atoms she found in state
j1iA after performing her measurement process described
above. Bob performs his measurement only on this subset
of atoms. Suppose he finds L number of atoms in state
j1iB. Then

f � L
M
� 1

2

� �
! g sinð2/Þ; for large M : ð15Þ

Thus, the value of g determined asymptotically for a
large number of entangled pairs will reveal the value of
sin(2/). Alternatively, if only a single pair of atoms is avail-
able, then the same result can be obtained by repeating the
whole process X times, assuming that / remains unchanged
during the time needed for the process.
Note that what is determined by Bob is /, not X. Thus,
it is not possible to measure the absolute phase difference in
this manner. However, one could use this approach of
phase teleportation in order to achieve frequency locking
of two remote oscillators. This is illustrated in Fig. 2.
Briefly, assume that Bob has an array of N atoms. Assume
further that Alice also has an identical array of atoms. For
our protocol, the physical separations between the neigh-
boring atoms do not have to match. In principle, one can
create such an identical pair of arrays by embedding N

rows of atoms (or quantum dots) in a substrate patterned
lithographically, with two atoms in each row, and then
splitting it in two halves. To start with, the corresponding
atoms in each array are entangled with each other using
the asynchronous approach of [11]. Here, we assume that
the two oscillators may differ in frequency. The fre-
quency-locking algorithm then proceeds as follows. Alice
and Bob both apply their fields parallel to their arrays of
atoms, so that the phase variation is 2p over their respec-
tive wavelengths. After Alice makes her measurements of
the state j+iA, using the same set of steps as described
above, she informs Bob, over a classical communication
channel, the indices of her atoms that were found in this
state. Bob now measures the state j�iB for this subgroup
of atoms only, using an analogous set of time-reversed exci-
tation steps which ends in observing his atom in state j3iB.
For a given atom in this subgroup, the phase of his field at
that location at the time Bob starts the measurement affects
the probability of success in finding the atom in state j3iB
at the end of the measurement process. This phase is varied
as Bob repeats the measurement for different measurement-
starting-times (modulo 2p/xB, where xB is the frequency of
Bob’s oscillator). It is easy to show that there exists a
choice of this phase for which the probability of success
is 100%. However, the success probability for atoms (in
the post-selection subgroup) would vary with location if
the frequencies of Bob’s and Alice’s oscillators are not
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the same. This effect can be used by Bob to adjust his oscil-
lator frequency, thereby achieving frequency locking. The
Nyquist sampling criterion dictates that the number of
atoms in this subgroup can be as low as only two, so that
N can be quite small, thus making this protocol potentially
practicable.

The optimal SNR that may be achievable in the protocol
outlined here will be determined fundamentally by the SNL.
For a measurement interval of s, the SNR in this case would
be g
p

(Ms/so), where so(�s) is the time needed to carry out
a single sequence in the protocol. The values of all these
parameters (g, M and so) would depend on the actual tech-
nology to be employed in realizing the protocol. As a con-
crete example, let us assume a value of g to be 0.025,
corresponding to a case where (g0/x) = 0.1. The values of
M and so are not independent of each other; the bigger
the M, the bigger the amount of time that would be neces-
sary to carry out a single sequence of the protocol. Note
that so determines the speed with which one wants to update
the frequencies of the oscillator (i.e., the inverse of the band-
width of the frequency locking servo). Let us assume a servo
bandwidth of 1 kHz, corresponding to a value of so =
(1 ms/2p). For a lithographically patterned substrate, it is
easy to envision a value of M as large as 104. For an aver-
aging time of 1 s, the SNR is then close to 200. Of course,
such an SNR is expected only under ideal conditions. In
practice, the SNR can be degraded by imperfect fidelity in
the generation of the entanglement, for example.

Given that, to the best of our knowledge, this is the only
technique for performing frequency locking in a manner
that is independent of the fluctuations in the intervening
optical path length, it is not possible to compare this value
to any other technique directly. An alternative way of
achieving the wavelength locking would be to transmit a
radio frequency signal, corresponding to the local clock
frequency, from one location to another, for example. In
this case, one must take into account effects such as fluctu-
ating dispersion in the intervening atmosphere, which will
add an essentially random source of noise, thus degrading
the SNR. Another effect to be taken into account is the
Doppler shift attributed to the relative motion of the
clocks. This in turn requires precise measurement of rela-
tive velocities, which is also affected by random fluctua-
tions of the intervening path-lengths. In contrast, for the
technique proposed here, no such radio signal transmission
is necessary, thereby circumventing the problem of random
density fluctuations in the atmosphere.

To summarize, previously we have shown how the phase
of an electromagnetic field can be determined by measuring
the population of either of the two states of a two-level
atomic system excited by this field, via the so-called
Bloch–Siegert oscillation. Here, we show how a degenerate
entanglement, created without transmitting any timing sig-
nal, can be used to teleport this phase information. This in
turn makes it possible to achieve wavelength locking of
remote oscillators.
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