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We investigate the effect of electromagnetically induced transparency inside a laser cavity. By changing the
intensity of an external drive field, we can control the absorption to the laser field. A semiclassical analysis
shows that the system undergoes a switch between first-order and second-order phase transitions. Around the
tricritical point there could be a second-order phase transition followed by a first-order phase transition.
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I. INTRODUCTION

Lasing is a cooperative phenomenon of many atoms in a
cavity. Each atom has a dipole induced by the field from all
the other atoms; in turn its dipole also contributes to the
field, which can be uniformly treated by the mean field
theory. Although laser is a nonequilibrium system, the formal
similarity enables the analogy of its near-threshold behavior
to second-order phase transitions in the equilibrium systems
�1–3�. For example, in the analogy to the ferromagnetic
phase transition, the electric field corresponds to the magne-
tization M, the unsaturated population inversion corresponds
to the temperature, and an injected field corresponds to the
external magnetic field H. The measurement of the laser “co-
existence curve” and “susceptibility” below threshold con-
firmed this analogy quantitatively �4�. As a completion of
this analogy, Gatti and Lugiato showed that the correlation
length of a degenerate optical parametric oscillator diverges
when it approaches the threshold �5�.

Once the second order phase transition analogy was es-
tablished, people started looking for similar analogy in first
order. Examples include the laser with a saturable absorber
�LSA� �6–8� and the dye laser �9�. Here we will concentrate
on the LSA problem. The saturable absorber is inside the
laser cavity. The absorption saturation changes the nature of
the system. So the laser output can have two stable values
and leads to bistability, hysteresis, etc. Experiments have
been done in many systems, e.g., He:Ne laser �10�, CO2 laser
with SF6 absorber �11�, and N2O laser with NH3 absorber
�12�. In theory, Mandel and co-workers treated the problem
analytically in both semiclassical and quantum theories �13�.
In their model both the active cell and the absorber cell con-
tain two-level atoms, interacting with a single cavity mode.
The relative saturability and population inversion of the two
cells determine the number of roots. Hysteresis cycle is ob-
tained when two stable roots are available. The quantum
theory based on Fokker-Planck equation gives the field fluc-
tuation and linewidth across the threshold. It is shown that
the finite fluctuation increases drastically when approaching
the threshold, and then goes to zero above the threshold. The
linewidth also has a sharp narrowing. In a related paper �14�
they showed that the inclusion of higher order derivative
terms reduces the width of the transition region, making the

transition threshold much sharper. This model has also been
used to study the time-dependent behavior �15�. Small am-
plitude harmonically modulated intensity and pulses corre-
sponding to the passive Q switching are found to be the
stable solutions. Roy gave the photon distribution in this sys-
tem and showed the similarity to the dye laser �16�.

As another concept in the phase transition theory, a tric-
ritical point is the joint of a first-order phase transition line to
a second-order line in the parameter space. Scott pointed out
the existence of a tricritical point in his LSA model �17�.
Mortazavi and Singh measured the tricritical behavior by
changing the discharge current of the absorber cell �18�.
Later they found that the intensity fluctuation undergoes a
qualitative change through the tricritical point �25�. For a
second-order phase transition, the fluctuation decreases from
the thermal value to zero with increasing excitation, while
for a first-order phase transition it first increases to a super-
thermal value and then decreases to zero.

Systems with multistability and multicritical points have
also been explored �19–21�. It is shown that when the poten-
tial has higher order terms or when a multimode laser intro-
duces more order parameters, there could be multistability
and multicritical points.

Three-level systems have also been used to model the
absorber. One example is the two-photon absorber �22�, in
which the middle level is assumed to be far from resonance
so that the system is very similar to a two-level system.
Agrawal considered the case of a � system �23�. The laser
frequency is assumed to lie midway between the ground state
sublevels. The phase transition is determined by the detun-
ing, which can be controlled by a static electric or magnetic
field. He predicted the switch between first-order and
second-order phase transitions similar to our result, although
the mechanism is different.

We propose a system based on electromagnetically in-
duced transparency �EIT� �24�. The laser field resonant with
one transition should have been absorbed. But at the pres-
ence of another drive field resonant with another transition
with a common level, the coherence effect renders transpar-
ency for the laser field. This property intrigues our interest in
the possible application into a LSA problem. Since the drive
field can control the absorption of the probe field, it might
simulate a system of laser with or without a saturable ab-
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sorber. As a result, we would be able to switch between
first-order and second-order phase transitions by simply ad-
justing the drive field intensity.

II. FREE ENERGY FOR A LASER WITH OR WITHOUT
A SATURABLE ABSORBER

From Landau’s theory the Gibbs free energy close to a
critical point can be expanded into even powers of a dis-
placement parameter x,

G�x� = C2x2 + C4x4 + C6x6 + . . . , �1�

where the coefficient C2 is linear to the difference between
the reservoir variable and its critical value. The phase tran-
sition is second order if C4 is positive, while first order if C4
is negative.

A potential similar to the Gibbs free energy can be defined
for a laser �1�. The displacement parameter is the electric
field E. One can obtain a Fokker-Planck equation from the
laser theory and then apply it to the electric field to get an
equation of motion for the expectation value. The potential
can then be obtained by integration from

Ė = −
�G�E�

�E
. �2�

For a laser without an absorber, the equation of motion is
well known as

Ė =
1

2
��A − C�E − BE3� , �3�

where A is the unsaturated gain in the active medium, B is
the saturation parameter, and C is the cavity loss. Both A and
B are proportional to the population inversion �. A simple
integration gives C4=B /8 which is positive. So it is a
second-order phase transition. The stable value of E changes
continuously as one move across the critical point.

For a laser with a saturable absorber inside the cavity, the
equation of motion can be modified as �8�

Ė =
1

2��A − C −
S

1 + E2/Is
�E − BE3� , �4�

where S is the linear absorption from the saturable absorber
and Is is the saturation intensity. After integration the poten-
tial has a logarithmic term coming from the saturable ab-
sorber. Power series expansion gives

C4 =
1

8
�B −

S

Is
� . �5�

So if the saturation intensity of the absorber is small, Is
�S /B, the phase transition would be first order. The field has
a discontinuous jump from zero to some finite value when
crossing the critical point.

III. DERIVATION AND DISCUSSION

The setup for our system is shown in Fig. 1. We use a
unidirectional ring laser cavity and assume both kinds of

atoms are homogenously broadened. The incoherent pump-
ing in the gain medium provides population inversion for the
active atoms, generating a laser field as the probe field for the
�-type three-level atoms in the absorber cell. This probe
field with frequency � interacts with the transition 	a
↔ 	b
,
while the external drive field with frequency �� interacts
with the transition 	a
↔ 	c
. To avoid drive field recycling
we assume the mirrors to be transparent to the drive field.

For a closed system, the density matrix equations are

�̇bb = �ab�aa + �cb�cc −
i

2�
��abEe−i�t�ba − c.c.� , �6�

�̇cc = �ac�aa − �cb�cc −
i

2
�	�e−i
�e−i��t�ca − c.c.� , �7�

�̇aa = − ��ab + �ac��aa +
i

2�
��abEe−i�t�ba − c.c.�

+
i

2
�	�e−i
�e−i��t�ca − c.c.� , �8�

�̇ab = − �i�ab + �ab��ab −
i�abE

2�
e−i�t��aa − �bb�

+
i

2
	�e−i
�e−i��t�cb, �9�

�̇cb = − �i�cb + �cb��cb −
i�abE

2�
e−i�t�ca +

i

2
	�ei
�ei��t�ab,

�10�

Drive

�
Probe

cb�

ab�
ac�

Gain Medium
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a

b

c

��
Drive

(a)

(b)

FIG. 1. �a� The setup of the system. The absorber cell filled with
three-level atoms is put inside the unidirectional ring laser cavity.
�b� The level structure for the three-level atoms.
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�̇ca = − �i�ca + �ca��ca +
i

2
	�ei
�ei��t��aa − �cc�

−
i�baE�

2�
ei�t�cb, �11�

where �ab is the electric dipole moment, E is the probe field
produced by the active atoms, 	� is the drive Rabi fre-
quency, � and � are the population relaxation rates and di-
pole decay rates, respectively.

For simplicity, we assume both the drive field and the
probe field to be resonant with their corresponding transi-
tions. After transforming into the rotating frame,

�ab = �̃abe−i�abt, �cb = �̃cbe−i��ab−���t, �ca = �̃caei��t.

�12�

Together with the relation �aa+�bb+�cc=1 for the closed
system, we can obtain the steady state solution. So the effec-
tive polarization from the absorber

P = 2Na
e�ba�̃ab = iNa

e
	�ab	2E

�D
���abE

2�
�2

��ab + �ac��cb

+ �cb�	�
2

2
��ab + �cb� + �ca��ab + �ac��cb� , �13�

where the denominator

D = ��abE
2�

�4

�2�ac + 4�cb� + ��abE
2�

�2��ab��ab + �ac��cb

+
	�

2

2
��ab + �ac − 3�cb + 6�cb� + 2�cb�ca��ac + 2�cb��

+ �	�
2

4
+ �ab�cb��	�

2

2
��ab + �cb� + �ca��ab + �ac��cb� ,

�14�

and Na
e is the effective number density for the three-level

atoms. It can be related to the actual number density by Na
e

=NaVa /Vtot. Here Va and Vtot are the absorber volume and
the total volume, respectively. Similarly we can define the
effective number density for the gain medium Ng

e.
We assume the active atoms to be effectively two-level,

which has the same level separation as �ab and the same
dipole moment. With the polarization from the EIT medium,
we can obtain the field equation of motion

Ė =
1

2
�� A

1 + E2/Is
− C�E − � �

0
�Im P� , �15�

where A=
�	�ab	2Ng

e

0��ab
is the linear gain and Is=

�2�ab
2

2	�ab	2 is the satu-
ration intensity for the active atoms. After integration the
coefficient of E4 term in G�E� is

C4 =
1

8

A
Is

−
�

2
Na

e 	�ab	4

40�3

	�
2

4
�2�cb��ab + �ac − 3�cb� − ��ab + �ac��cb + 12�cb

2 � + 2�cb
2 �ca��ac + 2�cb�

4�	�
2

4
+ �ab�cb�2�	�

2

2
��ab + �cb� + �ca��ab + �ac��cb� . �16�

If there is no drive field, i.e., 	�=0, it is simplified to,

C4�	�=0� =
1

8

A
Is

−
�

2
Na

e 	�ab	4

40�3

�ac + 2�cb

2�ab
2 ��ab + �ac��cb

. �17�

For large enough Na
e we could have C4�	�=0��0. Then we

increase the drive field intensity so that the second term of
Eq. �16� has a smaller magnitude. Finally at some point C4
=0. According to Ref. �8� this is the criterion between first-
order and second-order phase transitions.

In the limiting case of a perfect EIT system, the dephasing
rate between the two lower levels �cb=0, which also requires
�cb=0. Substitute into Eqs. �16� and �17� and we find
C4�	��0�=A /8Is while C4�	�=0�→−�. One might tend to say
that the order of the phase transition just depends on whether
we switch on the drive field or not. But the stable value of E
would also go to infinity so it is a idealized situation. One
can never achieve a perfect EIT.

For a finite �cb we did the numerical calculation to find
the steady state solutions for Eq. �15�. These solutions will

follow the change of C= �
Q where Q is the quality factor of

the cavity. As can be seen from Fig. 2, the probe intensity-Q
curve is single valued for a Rabi frequency above the thresh-
old, while bistable for a Rabi frequency below the threshold.
Those parts with a negative slope are unstable. So the switch
between first-order and second-order phase transitions can be
achieved by simply changing the drive Rabi frequency. For a
small range near the threshold there are even three solutions.
When the Q factor increases, one can see a second-order
phase transition followed by a first-order phase transition, as
shown for 	�=0.1096 MHz.

The parameters we used are somehow extreme. The Q
factor and drive Rabi frequency are small. But the probe
laser intensity is large, which is still acceptable since it is
inside the cavity. There is no requirement for a small probe
because we keep E to all orders in Eq. �13�. An interesting
thing is to compare the threshold value to the solution of
C4=0. Ideally they should be the same. But we found a small
difference. This can be understood since the C4 criterion is
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only good for small probe approximation, which does not
apply quite well in this case.

The switch between first-order and second-order phase
transition is a tricritical point in the phase space, as can be
seen from the phase diagram Fig. 3. Such tricritical points
have been predicted in the two-level atom saturable absorber
case �18�. In that system the point is the termination of both
lines, while here the first-order line goes beyond the tricriti-
cal point. So for a given drive Rabi frequency, we can ob-

serve a first-order transition, or a second-order transition fol-
lowed by a first-order transition, or a second-order transition.

We use the Q factor as the variable to investigate the
phase transition because it is the only parameter not in the
expression of C4. So we can compare the criterion C4=0 to
the numerical results. Without that purpose other parameters
may also be used as the variable, for example, the effective
number density of the gain medium. It is proportional to the
discharge current if we use a gas discharge cell as the gain
cell �18�. The numerical calculation shown in Fig. 4 is simi-
lar to Fig. 2. For a given drive Rabi frequency there could be
one, two, or three solutions.

The latent heat in first-order phase transition is also an
interesting topic �8�. At the critical point, the Clausius-
Clapeyron equation is

L = T0�V2 − V1�
dP

dT0
. �18�

In our system, minus threshold population inversion corre-
sponds to the critical temperature T0, the drive field corre-
sponds to the pressure P, and the laser field corresponds to
the volume V. E1 and E2 can be solved from Eq. �15�.

The LSA problem has also been investigated from the
dispersive point of view. Mandel showed that if both cells
contains two-level atoms, there could be new solutions cor-
responding to nonzero detuning because of the anomalous
dispersion �26�. Lukin et al. considered the intracavity EIT
and found a pronounced frequency pulling and cavity-
linewidth narrowing �27�. Here we are mainly interested in
the absorption property, so we take the detuning to be zero to
avoid the pulling effect.

FIG. 2. �Color online� Intensity-Q factor curves for different
drive Rabi frequencies. �a� From right to left, 	�=0.100 MHz,
0.104 MHz, 0.108 MHz, 0.112 MHz, 0.116 MHz, 0.120 MHz.
Clearly there is a switch between first-order and second-order phase
transitions. �b� From right to left, 	�=0.1088 MHz, 0.1092 MHz,
0.1096 MHz, 0.1100 MHz. For a small range near the tricritical
point, there could be three nonzero solutions. The other parameters
are 	�ab	=10−29 m C, �=1 �m, Na

e =4.5�1016 m−3, Ng
e =1.28

�1018 m−3, and �cb=1 kHz.

FIG. 3. �Color online� Phase diagram for the system. The first-
order phase transition line meets the second-order line at the tric-
ritical point and goes beyond.

FIG. 4. �Color online� Intensity-Ng
e curves for different drive

Rabi frequencies. From right to left, 	�=0.011 MHz, 0.11 MHz,
0.14 MHz, 1.1 MHz. Similarly there is a switch between first-
order and second-order phase transitions. In the small window en-
larged around the tricritical point, 	�=0.121 MHz and there are
three nonzero solutions. The other parameters are 	�ab	
=10−29 m C, �=1 �m, Na

e =4.5�1016 m−3, Q=27, and �cb

=1 kHz.
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IV. CONCLUSION

In this paper, we investigate the effect of including an EIT
cell as an absorber inside the laser cavity. By controlling the
drive Rabi frequency, we can simulate the cases of laser with
or without absorber and obtain phase transitions of both first
order and second order. Around the tricritical point there
could even be a second-order phase transition followed by a
first-order one. These phenomena can be seen clearly from
the phase diagram, in which the first-order phase transition
line goes beyond its joint with the second-order line. The

tricritical value determined by the criterion C4=0 is close to
the numerical result but not very accurate, because in this
case the probe field is no longer small. Our calculation is
based on �-type system. Other three-level systems like V
type or � type should have a similar drive intensity con-
trolled phase transition as well.
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