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I. INTRODUCTION

Volume holographic gratings are routinely used in optical
physics. Holographic data storage and optical information
processing systems based on volume gratings are currently
under development.1–5 Other applications include polariza-
tion optics,6–8 beam splitters and combiners,9,10 narrowband
spectral filters for optical communications,11–13 and intracav-
ity Bragg gratings for various types of lasers.14–16

A rigorous analysis of volume holographic gratings in-
volves the coupled-wave theory,17–20 which is derived from
Maxwell’s equations. Instructors often do not discuss volume
holography in undergraduate optics courses because of the
difficulty of communicating coupled-wave theory. In this pa-
per, we show that good approximations to volume holo-
graphic diffraction can be derived using the multiple beam
interference method, which is familiar to students. The re-
sults obtained using the multiple beam interference method
agree well with those of the coupled-wave theory for weakly
modulated gratings.

Consider a dielectric slab with a finite length L, thickness
d, and refractive index n0. For simplicity, we assume that the
slab is immersed in a medium with a matched refractive
index n0. A holographic grating is written by optically induc-
ing refractive index variations in the bulk of the slab. Figure
1 shows the model of a volume grating that is used for our
analysis. We restrict our attention to lossless transmission
gratings. The z-axis is chosen to be in the plane of incidence
and normal to the media boundaries, the x-axis is in the plane
of incidence and parallel to the media boundaries, and the
y-axis is perpendicular to the plane of incidence.

A simple sinusoidal holographic grating can be expressed
in terms of the reference and signal monochromatic plane
waves of unit amplitude polarized in the ŷ-direction �s polar-
ization�. These waves are denoted by R=exp�−i� ·r� and S
=exp�−i� ·r� �see Fig. 1� and interfere inside the photosen-
sitive material. Here �=��−x̂ sin �+ ẑ cos �� and �
=��x̂ sin �+ ẑ cos ��, where �=2�n0 /� is the average
propagation constant and � is the wavelength in free space.
In this paper, we consider a nonslanted symmetric grating
with the angles of incidence of the R and S waves to be �.
The intensity distribution of the interference pattern inside
the material is given as

I � �R + S�2 = 2�1 + cos�K · r�� , �1�
where
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K = � − � = − x̂2� sin � �2�

is the grating vector. The angle at which the grating was
written is defined as the Bragg angle �=�0.

When the grating in Fig. 1 is illuminated with the plane
wave R in the direction of � at the Bragg-matched angle �0,
the plane wave S in the direction of � is reconstructed �Fig.
2�. The spatial pattern of the intensity profile creates a grat-
ing in the holographic material by modulating the index of
refraction of the material so that n=n0+�n, where n0 is the
average refractive index after exposure. Note that the aver-
age refractive index of the grating may be slightly different
from that of the uniform slab. However, this difference is
small and is not important. The hologram �or holographic
grating� is defined to be the spatial modulation of the refrac-
tive index of the material

�n = n1 cos�K · r� , �3�

where n1 is the amplitude of the index modulation in re-
sponse to the spatial optical intensity distribution inside the
material, and the periodicity of the index modulation

� = 2�/K = �/�2n0 sin �0� , �4�

also known as the grating wavelength, is the same as the
periodicity of the light standing wave pattern. In general, the
amplitude of the refractive index modulation n1 is much
smaller than that of n0. For the weakly modulated gratings
that we will consider in this paper, typical values are n0
=1.5 and n1�10−4.

II. COUPLED-WAVE THEORY

In the coupled-wave theory formalism, the read beam R
may be incident on the gratings at the Bragg-mismatched
angle �=�0+��, where �� is the angular mismatch. The
propagation vectors � and � contain information about the
propagation constants and the directions of propagation of R
and the diffracted beam S. We allow the incident beam to
deviate from the Bragg angle but keep the incident wave-
length fixed. We will assume in the following that the grating
is immersed in a medium with a matched average refractive
index n0 so that refraction at the holographic slab boundaries
can be ignored. The reference and signal waves R
=R�z�exp�−i� ·r� and S=S�z�exp�−i� ·r� are described by
amplitudes R�z� and S�z�, which vary along the z-direction.
The total electric field in the gratings is the superposition of

the two waves E=R�z�exp�−i� ·r�+S�z�exp�−i� ·r�.
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We briefly summarize the well-known properties of S as
predicted by coupled-wave theory. These properties are for
reference and will serve as the benchmarks against which we
will compare the prediction of the multiple beam interfer-
ence model. From Maxwell’s equations, we can obtain a sys-
tem of linear coupled differential equations for R and S,
which can be solved subject to the initial conditions R�0�
=1 and S�0�=0.

The diffraction efficiency for symmetric gratings �= �S�2
and lossless transmission gratings is defined as

�CWT =
sin2�	2 + 
2

1 + 
2/	2 = 	2 sinc2��	2 + 
2� , �5�

where sinc�x�=sin�x� /x. The variables 	 and 
 are as defined
in Ref. 17, where 	 is the grating strength,

	 =
�n1d

� cos �0
, �6�

and

Fig. 1. A simple sinusoidal holographic grating is written by two monochro-
matic unit amplitude plane waves polarized in the ŷ-direction �s polariza-
tion� R=exp�−i� ·r� and S=exp�−i� ·r� which interfere inside the photosen-
sitive material of thickness d and refractive index n0. Here �=��−x̂ sin �
+ ẑ cos �� and �=��x̂ sin �+ ẑ cos ��, where �=2�n0 /� is the average
propagation constant, � is the wavelength in free space, and �=�0 is the
angle of incidence �Bragg angle� in the surrounding medium with a matched
average refractive index. The length of the arrow representing the grating
vector is obtained from K=�−�=−x̂2� sin �. The periodicity of the grating
is �=2� /K=� / �2n0 sin �0�. Solid and dashed horizontal lines represent pe-
riodic maxima and minima of refractive index modulation.

Fig. 2. When the grating in Fig. 1 is illuminated by the plane wave R in the
direction of � at the Bragg angle �=�0, the plane wave S in the direction of

� is reconstructed.

624 Am. J. Phys., Vol. 77, No. 7, July 2009

 = ��
�d

�
�7�

is related to the angular deviation from the Bragg angle ��.
For weakly modulated gratings 	 �	�
�,

�CWT � 	2 sinc2�
� . �8�

Diffraction efficiency is a maximum at the Bragg incidence
and decays as a sinc2 function as a result of angular deviation
of the read beam from the Bragg condition. Maximum dif-
fraction efficiency for weak modulation �small grating
strength� can be estimated as

�CWT�0� � 	2. �9�

The full width at half maximum angular bandwidth of the
diffraction efficiency can be obtained from the fact that the
half power points for a sinc2�
� function are reached near the
values of 
�� /2. Therefore,

��FWHM = 2��1/2 �
�

d
. �10�

III. MULTIPLE BEAM INTERFERENCE
MODEL

To understand the diffraction from a volume grating, it is
useful to visualize the process with the multiple beam inter-
ference method. Instead of a sinusoidally varying refractive
index model, the grating in this model is visualized as a
square wave refractive index modulation with the period �

n�x� = n0 + n1 sgn�cos�2�x/��� , �11�

where sgn represents the sign function �see Figs. 3�a� and
3�b��. Here, the grating consists of alternating dielectric lay-
ers with refractive indices n+=n0+n1 and n−=n0−n1. The
interfaces between the dielectric layers can be thought of as
grating planes separated by a distance � /2. There are a total
of 2N grating planes, where, for negligible refraction,

N = �largest integer � �d tan �/��� , �12�

where � is the angle of incidence, as shown in Fig. 4. A
typical thickness d may vary between 100 m for photore-
fractive polymers to 1–10 mm for photorefractive crystals or

Fig. 3. �a� Sinusoidal refractive index modulation n�x�=n0

+n1 cos�2�x /��. �b� Equivalent square wave representation n�x�=n0

+n1 sgn�cos�2�x /���. The reflection coefficients are r at the n+ /n− interface
and −r at the n− /n+ interface, where n+=n0+n1 and n−=n0−n1.
photopolymers. For an optical wavelength ��1 m so that
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a typical value of N is in the range from 100 to 10 000.
The grating planes are characterized by the amplitude

Fresnel reflection coefficients r+ at the n+ /n− interface and r−
at the n− /n+. An incoming beam partially reflects from each
of the grating planes it encounters as it traverses the medium.
For a wave incident at an angle �, the reflection coefficient r+
for s polarization �as considered in this paper� is

r+ =

n+ cos � − n−�1 − 	n+

n−
sin �
2

n+ cos � + n−�1 − 	n+

n−
sin �
2

. �13�

If we expand in the small argument n1 and keep only the
first-order terms, we obtain

n+

n−
=

n0 + n1

n0 − n1
� 	1 +

n1

n0

2

�14�

and

�1 − 	1 +
n1

n0

4

sin2 �

��1 − 	1 + 4
n1

n0

sin2 � =�cos2 � − 4

n1

n0
sin2 �

= cos ��1 − 4
n1

n0
tan2 � � cos �	1 − 2

n1

n0
tan2 �
 ,

�15�

where we have assumed that 0���� /2. A realistic assump-
tion is to narrow the range of angles of incidence further
down to 0���� /3, for example. Therefore, the numerator

Fig. 4. Multiple beams reflecting from interfaces in the single scattering
approximation. Beams reflected from the interfaces with the +r reflection
coefficient are shown with solid arrows, and the beams reflected from the
interfaces with −r reflection coefficient are shown with dashed arrows. The
total number of reflections is 2N, where for negligible refraction N
= �largest integer� �d tan � /���, where � is the angle of incidence.
in Eq. �13� is
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�n0 + n1�cos � − �n0 − n1�cos �	1 − 2
n1

n0
tan2 �


= 2n1 cos � +
2�n0 − n1�n1

n0
cos � tan2 �

� 2n1 cos ��1 + tan2 �� =
2n1

cos �
, �16�

and the denominator in Eq. �13� is

�n0 + n1�cos � + �n0 − n1�cos �	1 − 2
n1

n0
tan2 �


= 2n0 cos � − 2
�n0 − n1�n1

n0
cos �t tan2�

� 2 cos ��n0 − n1 tan2 �� . �17�

Hence

r+ =
n1

cos2 ��n0 − n1 tan2 ��
�

n1

n0 cos2 �
= r . �18�

Similarly,

r− =

n− cos � − n+�1 − 	n−

n+
sin �
2

n− cos � + n+�1 − 	n−

n+
sin �
2

� −
n1

n0 cos2 �
= − r+ = − r . �19�

Thus we can model the gratings as alternating layers with
reflection coefficients r and −r spaced by a distance � /2. For
n0=1.5 and n1�10−4, r�10−4.

We can derive the analytical expression for the diffraction
efficiency by summing reflections from all the grating
planes. We assume a single reflection event from each grat-
ing plane. The reflections are illustrated in Fig. 4. For the
incident unit amplitude electric field, the amplitude of the
reflection from each diffraction plane is either �r. The dif-
fracted electric field is given by a finite sum with alternating
sign reflection coefficients. We use the principle of superpo-
sition, consider reflections from the interfaces with +r �solid
arrows� and −r �dashed arrows� coefficients separately, and
then add the two sums together, taking the appropriate phase
differences into account. The phase difference between
waves reflected by any two successive planes separated by a
distance � /2 �that is, reflections with the same sign of the
reflection coefficient� is

� = �L , �20�

where L is the path length difference. Two reflected rays p1
and p2 are shown in Fig. 5. The wave front of the reflected
wave is indicated by the dashed line AC. Therefore, the path
length difference between the reflections is

L = AB + BC, �21�

where

AB = �/sin � �22�
and
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BC = ��/sin ��cos�� − 2�� . �23�

Therefore,

L = ��/sin ���1 − cos�2��� = 2� sin � . �24�

Hence, the phase difference between the wave fronts re-
flected by two successive grating planes at Bragg-matched
incidence is

�0 = �L0 = 2�� sin �0 = 2
2�n0

�

�

2n0 sin �0
sin �0 = 2� .

�25�

For a Bragg-mismatched angle of incidence �=�0+��, the
phase difference is �=�0+��, where

� = �L = 2�� sin � =
2�

sin �0
sin��0 + ���

= 2� + ��2� cot �0, �26�

so that

�� = ��2� cot �0. �27�

By summing the reflections with coefficient r, we obtain the
scalar electric field

E1 = r�1 + ei� + ei2� + ¯ + ei�N−1�� = r
1 − eiN�

1 − ei�

= rei�N−1��/2sin�N�/2�
sin��/2�

. �28�

The waves reflected from the interfaces with reflection coef-
ficient −r have a phase delay � /2 relative to the waves re-
flected from the interfaces with +r reflection. Thus we obtain

E2 = − rei�/2E1, �29�

so that

E = E1 + E2 = − r2iei�2N−1��/4sin�N�/2�
sin��/2�

sin��/4� . �30�

Because �=�0+��=2�+��, where ���1 is a phase

Fig. 5. The phase difference for reflections p1 and p2 from two grating
planes separated by a distance �, that is, with the same reflection coeffi-
cients, is �=�L, where the path length difference is L=AB+BC. For Bragg-
matched incidence �0=2�.
mismatch due to deviation from the Bragg angle, we have
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�E� = 2r
sin�N��/2�
sin���/2�

cos���/4� = r
sin�N��/2�
sin���/4�

� r
sin�N��/2�

��/4
= 2rN sinc�N��/2� . �31�

Note that sin��� /4� can be expanded in powers of �� but
not sin�N�� /2�. If we use the values of N in Eq. �12�, r in
Eq. �18�, and �� in Eq. �27�, we obtain

N��/2 =
d tan �0

�
��

2� cot �0

2
= ��

�d

�
= 
 , �32�

where 
 was defined in Eq. �7�,

2rN = 2
n1

n0 cos2 �0

d tan �0

�
=

4 tan2 �0

�

�n1d

� cos �0
= �	 ,

�33�

�=4 tan2 �0 /�, and 	 was defined in Eq. �6�.
Therefore, the diffraction efficiency for the incident wave

with unit amplitude is

�MBI = �E�2 = �2Nr�2 sinc2�N��/2� = �2	2 sinc2�
� , �34�

where we have recovered the sinc2�
� functional dependence
of the diffraction efficiency on the dephasing of coupled-
wave theory in Eq. �8�. The maximum diffraction efficiency
for Bragg-matched incidence for ��=0 is

�MBI�0� = �2	2. �35�

For angles of incidence in the range of 20° ���60°, which
is typical for most experimental setups, 0.2��2�5. For
35° ���45°, �2�1. Thus, the maximum diffraction effi-
ciency obtained from coupled-wave theory and the multiple
beam interference model agrees within an order of magni-
tude. The angular full width at half maximum of the diffrac-
tion efficiency is the same as for the coupled-wave theory in
Eq. �10�, ��FWHM�� /d.

The functional dependence of observables such as angular
bandwidth and diffraction efficiency can be understood
transparently from our model. In some cases, such as for
angular bandwidth, the agreement is quite good because this
quantity is an insensitive function of the index modulation.
In other cases, such as for the diffraction efficiency, the
agreement is less satisfactory. For example, the diffraction
efficiency of the multiple beam interference model in Eq.
�35� differs from the coupled-wave theory model by a factor
of �2. In all cases we obtain the proper functional depen-
dence. The multiple beam interference model makes use of a
rectangular index modulation profile. In contrast, the
coupled-wave theory model is developed for a sinusoidal
index variation profile. Thus, the agreement would be more
accurate if the coupled-wave theory included the higher or-
der harmonics due to the rectangular nature of the index
profile.

To elucidate the dependence of the diffraction efficiency
on angular deviation from the Bragg angle, we can formulate
the multiple beam interference model with the help of
phasors.21 We represent the reflections from the mth layer in
the grating by the phasor

pm = rei�m = reim�� �36�
for reflections with +r coefficient in Eq. �28� and
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qm = − rei�/2ei�m = rei��/2eim�� = ei��/2pm �37�

for reflections with −r coefficient in Eq. �29�, where, consis-
tent with Eq. �26�

�m = �0 + m�� = 2� + m�� . �38�

The sum of the N phasor pm and N phasor qm �see Eq. �12��
gives the net phasors

P = �
m=0

N−1

pm = r�
m=0

N−1

eim�� �39�

and

Q = �
m=0

N−1

qm = ei��/2P . �40�

The total electric field phasor is

E = P + Q = P + ei��/2P � 2P �41�

because ���1. Note that the zero in diffraction when P and
Q have opposite directions, which occurs when ��=2�, can
be ignored because it is outside of the region of small ��.
For Bragg-matched diffraction, ��=0, so that P and Q are
collinear and have maximum amplitudes �P�max= �Q�max=Nr,
yielding the maximum diffraction

�E�max
2 = �2Nr�2. �42�

When the reading beam deviates from the Bragg angle, ��
�0. For N�1 and r�1, the vector sum of the reflection
phasors forms a curved chord of length C=Nr, as illustrated
in Fig. 6. Hence the length of the net phasor P decreases. The
half-maxima point ��HM of diffraction can be estimated
graphically from Fig. 6. Because �E�HM=�2Nr, it follows

�

Fig. 6. Phasor diagram illustrating the criteria for half-maximum diffraction
dephasing, which occurs when the net phasor with amplitude �P�=Nr /�2
coincides with the diameter of the semicircle with radius R formed by the
chord of length C=Nr.
that �P�HM=Nr / 2. Thus the condition for ��HM is that
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�P�HM/C = 1/�2, �43�

which occurs when the net phasor PHM coincides with the
diameter of the semicircle formed by the chord C because
the ratio of the diameter to half circumference is 2 /�
�1 /�2. Therefore, we have N��HM��, or

��HM � �/N . �44�

For the value ��null the phasor pm traverses a complete circle
with radius R, as shown in Fig. 7. For N�1 and ���1, we
have the condition of the first zero, that is, P=0, and hence,
E=0 when N��null=2�, or

��null = 2�/N . �45�

As �� increases further, the first side lobe begins to appear.
Note that the results in Eqs. �42�, �44�, and �45� are consis-
tent with �E�2= �2Nr�2 sinc2�N�� /2� in Eq. �34�. The advan-
tage of using the phasor description is that it provides an
accessible pictorial description of diffraction.

IV. CONCLUSION

In conclusion, we have developed a multiple beam inter-
ference model for the interpretation of Bragg diffraction in
weakly modulated volume holographic gratings. The mul-
tiple beam interference method predicts the same angular
diffraction efficiency bandwidth as the coupled-wave theory
and is physically intuitive and useful for teaching volume
holographic gratings without using coupled-wave theory.

a�Present address: Nuclear Engineering Division, Argonne National Labo-
ratory, Argonne, Illinois 60439.
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