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In this paper, we show that our proposed hybrid optoelectronic correlator (HOC), which correlates images using
spatial light modulators (SLMs), detectors, and field-programmable gate arrays (FPGAs), is capable of detecting
objects in a scale and rotation invariant manner, along with the shift invariance feature, by incorporating polar
Mellin transform (PMT). For realistic images, we cut out a small circle at the center of the Fourier transform do-
main, as required for PMT, and illustrate how this process corresponds to correlating images with real and imagi-
nary parts. Furthermore, we show how to carry out shift, rotation, and scale invariant detection of multiple
matching objects simultaneously, a process previously thought to be incompatible with PMT-based correlators.
We present results of numerical simulations to validate the concepts. © 2014 Optical Society of America

OCIS codes: (070.0070) Fourier optics and signal processing; (100.0100) Image processing; (130.0130) In-
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1. INTRODUCTION
Target identification and tracking is important in many de-
fense and civilian applications. Optical correlators provide
a simple technique for fast verification and identification of
data. The simplest form of such a device is the basic Vander
Lugt [1–3] optical correlator. The limitation of this correlator
is that the recording process is time consuming. This con-
straint is circumvented in a joint transform correlator (JTC)
[4–7], where a dynamic material such as photorefractive poly-
mer film is used so that the recording and correlation take
place simultaneously. A JTC of this type suffers from many
practical problems and constraints. As an alternative, we re-
cently proposed a hybrid optoelectronic correlator (HOC) [8]
where the nonlinearity provided by the JTC medium is re-
placed by the nonlinearity of high-speed detectors. The advan-
tage of this approach as compared to previous architecture
that also employs detectors [9] has been discussed in detail
in [8]. As shown in [8], the HOC is capable of shift-invariant
image recognition, in the same manner as what is achieved
with a conventional holographic correlator (CHC). However,
the actual architecture is very different, requiring many inter-
mediate steps, servos, and postprocessing. Furthermore, the
output signals are also different (e.g., it contains a cross-
correlation term and an anti-cross-correlation term, but no
convolution nor dc term). Thus it may not be a priori obvious
whether the HOC can also perform scale and rotation invari-
ant correlation using polar Mellin transform (PMT) [10–17].

In this paper, we show how it is possible to use PMT to
achieve scale and rotation invariant image recognition
with the HOC architecture. Furthermore, we identify some

limitations of using PMT in the CHC architecture proposed
previously, and we show how to overcome these constraints
by proper preprocessing of images for both CHC and HOC.

The paper is organized as follows: Section 2 describes the
proposed HOC architecture incorporating PMT to achieve
scale and rotation invariance in addition to shift invariance.
Section 3 presents a brief review of the underlying concepts
of PMT for achieving scale and rotation invariance. Section 4
illustrates the simulation results using MATLAB, which shows
that the proposed system is capable of detecting an image in a
scale and rotation invariant manner. In this section, we also
point out some limitations of using PMT in the CHC architec-
ture as proposed previously and show how to overcome these
constraints. Section 5 describes the process of detecting
multiple objects in a shift, scale, and rotation invariant manner
using the HOC architecture and show the simulation results.
The paper concludes with a summary and outlook in section 6.

2. PROPOSED HYBRID OPTOELECTRONIC
CORRELATOR INCORPORATING PMT
The details of the HOC proposed by us can be found in [8].
Briefly, in the shift invariant HOC architecture, the Fourier
transform (FT) of the reference image is interfered with a
plane wave, and the resulting signal is recorded with a
detector array. Similarly, the FT of the object image is also
interfered with a plane wave, and the resulting signal is re-
corded with another detector array. These signals are then
processed in a certain manner, as described below, and then
sent to an SLM to perform the correlation in the optical
domain.
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Figure 1 shows an overview of the HOC architecture, which
can be used to correlate two images, Rj and Qj. Here, Rj and Qj

can each be a conventional image or the PMT processed
version of a conventional image. The process for producing
a PMT processed version of a conventional image will be de-
scribed later in this section. We envision a scenario, where a
set of reference images, Rj, are stored in a database. A particu-
lar image of interest is then retrieved from the database for
correlation. If a digital database (such as computer hard drive)
is used, then the image is converted to the optical domain us-
ing an SLM. The optical image (Rj) is Fourier transformed by a
lens. It is then split into two identical ports, both designated as
Mr. In one port, the image is detected by an array of detectors,
which could be a high-resolution focal plane array (FPA) or a
digital CMOS camera. The signal array produced by the
camera is denoted as Br. The camera is interfaced with a field
programmable gate array (FPGA) via a USB cable. Br can be
stored in the built-in memory of the FPGA [FPGA-1]. In the
other port, Mr is interfered with a plane wave Cr, and detected
with another CMOS camera, producing the digital signal
array Ar and is stored in the memory of FPGA-1. Ar and Br

can be expressed as

Ar � jMrejϕr � Crejψ r j2 � jMrj2 � jCrj2 � jMrjjCrjej�ϕr−ψ r�

� jMrjjCrje−j�ϕr−ψ r�; (1)

Br � jMrj2: (2)

In addition, the intensity profile of the plane wave �jCrj2� is
measured, by blocking the image path momentarily, using a
shutter (not shown), and the information is stored in the

memory component of FPGA-1. FPGA-1 then computes and
stores Sr, which can be expressed as

Sr � Ar − Br − jCrj2 � MrC�
r �M�

r Cr

� jMrjjCrjej�ϕr−ψ r� � jMrjjCrje−j�ϕr−ψ r�: (3)

Here, ϕr is the phase of the Fourier transformed image, Mr,
and Ψr is the phase of the plane wave, Cr. It should be noted
that ϕ is a function of �x; y�, assuming that the image is in the
�x; y� plane. This subtraction process has to be done pixel by
pixel using one or more subtractors available in the FPGA.

The captured query image is also transferred to the optical
domain using another SLM (SLM-2) to form Qj. The optical
image (Qj) is Fourier transformed by a lens and is split into
two identical ports, both designated as Mq. In a manner similar
to what is described above for the reference image, the signal
Sq � Aq − Bq − jCqj2 is produced using two cameras and an
FPGA (FPGA-2) and stored in FPGA-2 memory. Here, Cq is
the amplitude of an interfering plane wave, and the other
quantities are given as follows:

Aq � jMq � Cqj2 � jMqj2 � jCqj2 � jMqjjCqjej�ϕq−ψq�

� jMqjjCqje−j�ϕq−ψq�; (4)

Bq � jMqj2; (5)

Sq � Aq − Bq − jCqj2 � MqC�
q �M�

qCq

� jMqjjCqjej�ϕq−ψq� � jMqjjCqje−j�ϕq−ψq�: (6)

Fig. 1. Illustration of the architecture of an HOC. PMT, polar Mellin transform; PBS, polarizing beam splitter; BS, beam splitter; HWP, half-wave
plate; PZT, piezoelectric transducer.

1260 J. Opt. Soc. Am. A / Vol. 31, No. 6 / June 2014 Monjur et al.



As before, ϕq�x; y� is the phase of the Fourier-transformed
image, Mq, and Ψq is the phase of the plane wave Cq.

In the final stage of the hybrid correlator (as shown in
Fig. 2), these two signals (Sr and Sq) described in Eqs. (3)
and (6) are multiplied together using the multiplier in
FPGA-3. Four-quadrant multiplication can easily be imple-
mented using an FPGA. The resulting signal array, S, is stored
in FPGA-3 memory. This can be expressed as

S � Sr · Sq � �MrC�
r �M�

r Cr� · �MqC�
q �M�

qCq�
� �α�MrMq � αM�

r M�
q � β�MrM�

q � βM�
r Mq �; (7)

where α≡ jCrjjCqjej�Ψr�Ψq�; β ≡ jCrjjCqjej�Ψr−Ψq�.
This signal array, S, is now transferred to another SLM

(SLM-3) from FPGA-3 through the digital visual interface
(DVI) port. Since S can be positive or negative, the SLM should
be operated in a bipolar amplitude mode. The optical image
produced by SLM-3 is Fourier transformed using a lens,
producing the signal Sf , given by

Sf � α�F�MrMq� � αF�M�
r M�

q� � β�F�MrM�
q�

� βF�M�
r Mq�: (8)

Here, F stands for the FT. Since Mα (α � r or q) is the FT of
the images Rj or Qj, using the well-known relations between
the FT of products of functions, and convolutions and cross-
correlations, we can express the final signal as the sum
of four terms:

Sf � α�T1 � αT2 � β�T3 � βT4;

T1 � Rj�x; y� ⊗ Qj�x; y�;
T2 � R�

j �−x;−y� ⊗ Q�
j �−x;−y�;

T3 � Rj�x; y� ⊙ Qj�x; y�;
T4 � Qj�x; y� ⊙ Rj�x; y�; (9)

where ⊗ indicates 2D convolution, and ⊙ indicates 2D cross-
correlation. We can now make the following observations:

• T1 represents the 2D convolution of the images, Rj and Qj.
• T2 represents the 2D convolution of the images, Rj and

Qj, but with each conjugated and inverted along both axes.
• T3 represents the 2D cross correlation of the images,

Rj and Qj.
• T4 represents the 2D cross correlation of the images,

Qj and Rj. (Cross correlation is noncommutative; hence, T3

is not necessarily equal to T4). We denote it as the anticross-
correlation signal.

The cross-correlation technique is usually used to find
matches between two objects. In our architecture, we have
convolution terms (T1 and T2) in addition to cross-correlation
terms (T3 and T4). The convolution terms can bewashed out by
implementing a phase stabilization and scanning technique in
the HOC architecture, which has been discussed in detail in [8].

The CHC [2–4] has one convolution term and one cross-
correlation term, along with some dc and low spatial frequency
outputs. In contrast, the HOC architecture, after incorporating
the phase stabilization and scanning, has only two outputs: a
cross-correlation (T3) and an anti-cross-correlation term
(T4). The strengths of T3 and T4 are the same, and they appear
as symmetric signals in the presence of a shift. This difference
has to be kept in mind in using the HOC architecture.

The signal observed by the final FPA, is, of course, given by
SfD ≡ αjSf j2, where α is a proportionality constant, which we
set to be unity for simplicity of discussion. Thus, assuming
that the contributions from T1 and T2 are eliminated via
the combination of phase scanning and low-pass filtering
[8], the final FPA signal can be expressed as

SfD � jβ�T3 � βT4j2 � jβ�F�MrM�
q� � βF�M�

r Mq�j2: (10)

It is useful to consider two different scenarios in order to
interpret the information one can glean from this signal.

Scenario 1: Perfectly Matched Images with no

Relative Shift

In this case, T3 � T4, so that Eq. (10) can be expressed as
SfD � jβ� � βj2jT3j2 � 4jβj2cos2�Ψr −Ψq�jT3j2. This signal is
maximum when �Ψr −Ψq� � 0. As discussed in [8], this situa-
tion (i.e., use of identical, unshifted images) thus can be used
to keep the servo locked to the position, where �Ψr −Ψq� � 0.
Thus we will assume from now on that �Ψr −Ψq� � 0, so
that β � β� � jβj.

Scenario 2: Perfectly Matched Images with a Relative

Shift in Position

If the query image is shifted by a vector ρ⃗0, then

Mq � Mr exp�j2πf⃗ · ρ⃗0�. Hence we can write: MrM�
q �

jMrj2 exp�−j2πf⃗ · ρ⃗0�; M�
r Mq � jMrj2 exp�j2πf⃗ · ρ⃗0�. Now we

define F�jMrj2�≡ G0�ρ⃗0�, where F stands for FT. It then fol-

lows that T3�F�MrM�
q��F�jMrj2exp�−j2πf⃗ · ρ⃗0���G0�ρ⃗− ρ⃗0�.

Similarly, T4 �F�M�
r Mq��F�jMrj2 exp�j2πf⃗ · ρ⃗0���G0�ρ⃗� ρ⃗0�.

The spatial extent of G0�ρ⃗� is determined by the size of the
image. Let us quantify this by defining a radial extent, jρ⃗mj
such that G0�ρ⃗� � 0 for jρ⃗j ≥ jρ⃗mj. The behavior of the final
signal depends on the value of the parameter, η≡ jρ⃗0j∕jρ⃗mj.

Case I: Consider first the situation, where η ≥ 1. In this
case, there is no overlap between G0�ρ⃗ − ρ⃗0� and G0�ρ⃗� ρ⃗0�
(i.e., between T3 and T4). Thus the final detector signal of
Eq. (10) can be expressed as SfD � jβj2�jT3j2 � jT4j2�. In this
case, we will see two distinct peaks, corresponding to the
cross-correlation (T3) and anti-cross-correlation (T4). We
would like to point out that, for the sake of simplicity, this
condition was implicitly assumed to hold in the discussions
presented in [8].Fig. 2. Final stage of the HOC.
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Case II: Consider next the situation, where η < 1. In this
case, the final detector signal can be expressed as
SfD�jβj2jG0�ρ⃗− ρ⃗0��G0�ρ⃗� ρ⃗0�j2�jβj2jT3�T4j2. The shape
of this signal depends on the details of the images and
thereby on the details of T3 and T4. In what follows, we illus-
trate the shape of the signal SfD for both Case I and II, with a
few examples.

For clarity, we consider first examples of 1D images.
Figures 3(a) and 3(b) show two images, with Gaussian pro-
files, shifted from each other by jρ⃗0j � 4σ, where σ � 5 mm
is the half-width of each image. Here, a reasonable estimate
for jρ⃗mj is 3σ, so that η > 1 is satisfied, corresponding to
Case I. As can be seen in Fig. 3(c), the signal now has two
distinct peaks. Next we consider again the same images,
but with a smaller shift: jρ⃗0j � 2σ, shown in Figs. 3(d) and
3(e). In this case, η � 0.67, corresponding to Case II, so that
there will be overlaps between T3 and T4. However, the two
peaks can still be discerned in the final signal, shown in
Fig. 3(f). Finally, we consider a case where jρ⃗0j � σ, as shown
in Figs. 3(g) and 3(h). In this case, η � 0.25, and we can see
that the peaks are no longer distinguishable and have merged
into each other, as shown in Fig 3(i).

Next we consider some examples in two dimensions.
Figures 4(a) and 4(b) show two identical images, shifted from
each other by jρ⃗0j ≈ 0.02 m. For this image jρ⃗mj ≈ 0.01 m, so
that η > 1 is satisfied, corresponding to Case I. As can be seen
in Fig. 4(c), the signal now has two distinct sharp peaks.

Next we consider again the same images, but with a smaller
shift: jρ⃗0j ≈ 0.004 m, shown in Figs. 4(d) and 4(e). In this case
η ≈ 0.4, corresponding to case II, so that there will be overlaps
between T3 and T4. However, the two peaks can still be
discerned in the final signal, shown in Fig. 4(f). Finally, we

consider a case, where jρ⃗0j ≈ 0.001 m, as shown in Figs. 4(g)
and 4(h). In this case, η ≈ 0.09, and we can see that the peaks
are no longer distinguishable and have merged into each
other, as shown in Fig 4(i).

If the cross-correlation peaks are clearly resolved, then we
can infer the distance between the two matched images,
given by half the separation between the peaks. However, this
information cannot be retrieved when the peaks are not
resolved. On the other hand, the ability of the HOC architec-
ture to determine whether a match is found is not adversely
affected by the potential overlap between T3 and T4. Addi-
tional implications of this potential overlap between T3 and
T4 are addressed in other sections of this paper. Note that
in other sections of the paper, we will assume that the con-
volution terms (T1 and T2) have been eliminated by the phase
stabilization and scanning circuit.

A. Incorporating Polar Mellin Transform in the HOC
Architecture
If we start with regular reference and query images for the
HOC architecture described above, it can detect images in
shift invariant manner only. The architecture can be extended
to achieve scale and rotation invariance, along with shift
invariance, by transforming the reference and query images
to log-polar domain. The flow diagram of performing this
transformation, which is generally called the PMT, is de-
scribed in Fig. 5(a), and the detailed architecture is described
in Fig. 5(b). We start with an image U�x0; y0� [query or refer-
ence image and converted to optical domain using an SLM as
shown in Fig. 5(b)]. The coordinates have dimensions of
distance, e.g., meter. The next step is to find the FT of the
image, ~U�k0x; k0y�, where the coordinates have dimensions of
per meter. For notational convenience, we redefine k0x → x

Fig. 3. Illustration of the resolving power of the HOC architecture for
1D identical images.

Fig. 4. Illustration of the resolving power of the HOC architecture for
2D identical images.
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and k0y → y, and denote as V�x; y� to be the same as ~U�k0x; k0y�.
In practice, the original image, U�x0; y0� would be represented
in the optical domain by using an SLM linked to a camera or a
computer database. A lens would be used to find the FT:
~U�k0x;k0y�≡ V�x; y�. An FPA detects the intensity of the Fourier
transformed image, i.e., jV�x; y�j2. The FPA is interfaced with
the FPGA, which determines the value of jV�x; y�j, thus elimi-
nating the phase information. The magnitude of the FT of an
object or function is invariant to a shift in the function
jFff�x; y�gj � jFff�x − x0�gj, but not to a scale change in the
input. A circular hole of small radius (e.g., radius of five units)
on jV�x; y�j is created using the FPGA. The necessity of
creating this hole is discussed in detail in Section 4, where
we also point out that in general this hole does not
affect significantly the performance of the correlator. To
achieve scale and rotation invariance, the amplitude of
V�x; y� is transformed to the polar coordinate function,
F�r; θ�, using the FPGA. Then it is converted to the log-polar
coordinate function G�ρ; θ� using the same FPGA. The refer-
ence images are polar Mellin transformed and stored in the
database. The database can be a computer or a holographic
memory disk if fast retrieval of the reference image is re-
quired. The captured query image also goes through the
same procedure of PMT and is supplied to the correlator’s
input port. In the next section, we describe the PMT process
in detail, including illustrative examples.

3. PREPROCESSING THE IMAGE USING
POLAR MELLIN TRANSFORM AND
EXAMPLES OF CORRELATIONS USING
IDEALIZED IMAGES
A simple example of the PMT process is illustrated in Fig. 6.
Here, we assume an artificial case, where the amplitude of the
FT [i.e., V�x; y�] of an image is chosen to be an uniform square,
with a flower shape hole in it, as shown in Fig. 6(a). The
corresponding polar function, F�r; θ� is shown in Fig. 6(b)
and the corresponding polar-logarithmic function, G�ρ; θ�
is shown in Fig. 6(c). Note that for F�r; θ� the coordinates
r and θ are rectilinear (as opposed to curvilinear). For a
given combination of coordinates in polar space, say
fr � r1; θ � θ1g, we determine the corresponding values
of x and y by using the relations x1 � r1 cos θ1 and
y1 � r1 sin θ1. The value of the function F is then given by
F�r1; θ1� � jV�x1; y1�j. To plot the function F, we put the cor-
responding value of F at the coordinate �x1; y1� to a point that
is a distance r1 away from the origin along the horizontal
axis (which has the dimension of inverse length, mm−1)
and a distance θ1 away from the origin along the vertical axis
(which is in the dimension of radian and spans from 0 to 2π).

To generate the log-polar coordinate function G�ρ; θ�, we
proceed as follows: for a given combination of coordinates
in this space, say fρ � ρ1; θ � θ1g, we determine the corre-
sponding values of r and θ (i.e., r1 and θ1) by using the rela-
tions ρ1 � log�r1∕r0� and θ1 � θ1. Here, the choice of the
scaling distance, r0, is arbitrary. Note that the value of
log�r1∕r0� approaches −∞ as r approaches zero, for any finite
value of r0. Obviously, this is an impractical situation. To cir-
cumvent this problem, we choose to ignore the information
contained in a small circle of radius r0 (in the V�x; y� plane),
centered around r � 0, thus restricting the lower range of
ρ � log�r∕r0� to 0, corresponding to r � r0. The magnitude
of r0 should be chosen judiciously so as not to exclude any
critical feature that may be present within the exclusion zone
of 0 ≤ r ≤ r0. Of course, for the particular case shown in Fig. 6,
already a dark part in the center of VA�x; y�. Thus there is no
loss of information if the circle of radius r0 is fully contained in
the small dark part. Figures 7(b) and 7(c) show the amplitude
and the phase, respectively, of the image whose magnitude of
FT is VA�x; y� as shown in Fig. 7(a). From Fig. 7(c), it is clear
that such an image whose magnitude of the FT is VA�x; y� is
unrealistic because the phase of the actual image is spanning
between −π to π. While in this section we restrict ourselves
to unrealistic images, where FTs have holes at the center, in
Section 4 we will consider realistic images, for which it
would be essential to exclude a small circle in FT plane.

Fig. 5. (a) Flow diagram for transforming of query/reference image
to the log-polar domain. (b) Schematic illustration of the architecture
for implementing PMT.

Fig. 6. (a) V�x; y� is the amplitude of the FT of an image with a flower
shape hole in it. (b) Corresponding polar function, F�r; θ� is shown.
(c) Polar-logarithmic function, G�ρ; θ� is shown [here, r0 � 0.1].
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Before proceeding further, we note that the necessity of ex-
cluding a small circle in the FT plane was not addressed in the
previous original investigations [11,12] pertaining to the use of
PMTs for rotation and scale invariant correlations. This is due
in part to the fact that these papers considered artificial im-
ages, where FTs already contained holes in the center. Any
realistic image, on the other hand, is bound to have a nonzero
value at the center of the FT, corresponding to the average
value of the image amplitude. However, in later work involv-
ing this approach, this issue was addressed [16,17].

Consider now a situation where two identical PMT images,
each corresponding to Fig. 6(c), are applied as inputs to the
HOC. The resulting final output signal, jSf j2 of the HOC, is
illustrated in Fig. 8(a). Because of the perfect match, the out-
put has a sharp peak at the center, corresponding to the sum

of the terms T3 and T4 (which are identical in this case) of
Eq. (10). The value (∼1) at the peak, of course, is arbitrary,
depending on the magnitude of the images. In Fig. 8(b), we
show the peak clearly by applying a threshold value of 0.9.

Next we consider the effect of scale change on this PMT
conversion process. Figure 9 shows such a case, where
VA�x; y� represents the amplitude of the FT of the same image
as considered in Fig. 6, and VB�x; y� represents the amplitude
of the FT of the same image, but scaled up by a linear factor of
σ � 2 (i.e., × 4 larger in area). Thus VB�x; y� is scaled down
by a linear factor of 2 ( × 4 smaller in area) compared with
VA�x; y�. Note first that the corresponding polar distributions
[as shown in Figs. 9(b) and 9(e)], FB�r; θ� and FA�r; θ� are the
same in the θ direction, but differ by the linear scaling factor
(2 in this case) in the r direction. Note next that the corre-
sponding polar-logarithmic distributions, GA�ρ; θ� and
GB�ρ; θ� as shown in Fig. 9(c) and 9(f), respectively, are iden-
tical in shape, except for a shift in the ρ direction, equaling
the logarithm of the scale factor: log�2� ≅ 0.3. This illustrates
the essence of how scale invariance is achieved via these
transformations. The FTs of GA�ρ; θ� and GB�ρ; θ� would
be identical in amplitudes, thus leading to a strong cross-
correlation when applied to the HOC, which eliminates the
effect of relative shift.

Figures 9(g) and 9(h) illustrate the output signals of the
HOC, if these PMT images [(GA and GB)] are applied as

Fig. 7. (a) Shows VA�x; y�, which is the FT of an image. (b) Shows
the magnitude of an image whose FT is VA�x; y�. (c) Shows the phase
of the actual image whose FT is VA�x; y�.

Fig. 8. (a) Final output signal when two identical images are inputs
to the HOC. The PMT version is shown in Fig. 6(c). (b) Output signal
after thresholding shows that there is a peak in the center when match
between two objects is found.

Fig. 9. (a) We consider an artificial case, where VA�x; y� is the FT of
an image. (b) Corresponding polar distribution FA�r; θ�. (c) Corre-
sponding log-polar distribution GA�ρ; θ� (d) VB�x; y� is smaller in area
than VA�x; y� by a factor of 4. (e) Corresponding polar distributions,
FB�r; θ�. FB�r; θ� and FA�r; θ�, are the same in the θ direction, but differ
by the linear scaling factor (2 in this case) in the r direction. (f) Cor-
responding polar-logarithmic distribution, GB�ρ; θ�. GA�ρ; θ� and
GB�ρ; θ� are identical in shape, except for a shift in the ρ direction
[equaling the logarithm of the scale factor: log�2� ≅ 0.3]. (g) Final
output signal jSf j2 when GA�ρ; θ� and GB�ρ; θ� are applied to the
correlator. (h) Final signal after thresholding for σ � 2.
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inputs. The output signal of the correlator, jSf j2 contains
the two cross-correlation terms, T3 and T4. From Eq. (10),
T3 represents the cross-correlation of the PMT images,
GA�ρ; θ� ⊙ GB�ρ; θ� and T4 represents the anticross-
correlation of the same PMT images, but in reverse order:
GB�ρ; θ� ⊙ GA�ρ; θ�. Thus T3 and T4 signals are shifted by
an equal amount but in the opposite direction according to
the shift in position between GA�ρ; θ� and GB�ρ; θ�. As shown
in Fig. 9(g), the output now contains two peaks: (a) the cross-
correlation, GA�ρ; θ� ⊙ GB�ρ; θ� at ρ0 � log�2� � 0.3 and
θ0 � 0 and (b) the anti-cross-correlation GB�ρ; θ� ⊙ GA�ρ; θ�
at ρ0 � − log�2� � −0.3 and θ0 � 0, where �ρ0; θ0� are the
coordinates in the correlation plane. Here, as expected, the
magnitude of each peak is ∼0.27, which is approximately
one fourth of the peak value shown in Fig. 8. In Fig. 9(h),
we apply a threshold of 0.25 to illustrate the peaks clearly.

It is important to consider the limit imposed on this process
by the fact that the final signal contains both T3 and T4 terms.

As we discussed in detail in Section 2, there are essentially
two distinct scenarios, characterized by the parameter η.
For the scale invariant recognition, the value of this parameter
is proportional to the scaling factor. The case shown in Fig. 9
corresponds to η > 1, producing two peaks that are clearly
resolved. We next consider a case where the scaling factor
is small, corresponding to η < 1. In this case, VC�x; y� is scaled
down by a small factor of σ � 1.2 compared with VA�x; y� as
shown in Fig. 10(a). The corresponding polar distribution and
log-polar distributions, FC�r; θ� and GC�ρ; θ�, are shown in
Figs. 10(b) and 10(c), respectively. For this case, the polar-
logarithmic distributions, GA�ρ; θ� and GC�ρ; θ�, are shifted
from one another by an amount log�1.2� ≈ 0.08, which corre-
sponds to η < 1.

Figure 10(d) shows the final signal while GA�ρ; θ� and
GC�ρ; θ� are applied as input to the HOC architecture. In this
case, the corresponding shift between GA�ρ; θ� and GC�ρ; θ� is
log�1.2� ≈ 0.08. Hence, the two peaks have merged into a
single peak of magnitude ∼0.7. Note that in this case, while
we are still able to determine the fact that the images are
matched, the information about the relative scale between
the images is lost. Figure 10(e) shows the final output signal
after thresholding.

Now we consider the effect of rotation on the PMT images.
Figure 11 shows such a case, where VA�x; y� is the amplitude
of the FT of another arbitrary image, and VB�x; y� represents
the amplitude of the FT of the same image, but rotated by an
angle of θ0 � 45°. Thus VB�x; y� is rotated by an angle of θ0 �
45° compared to VA�x; y�. Here, we have made use of the well-
known fact that the process of FT preserves the angular infor-
mation. Note first that the corresponding polar distributions
[as shown in Fig. 11(b)], FB�r; θ�, and FA�r; θ� now differ in
the θ direction only, and the pattern is shifted by θ0 � 45°.
Also note that the log-polar distributions are now still identical
in shapes, except that GB�ρ; θ� is now shifted from GA�ρ; θ� in
the θ direction. It is particularly important to carefully con-
sider the shift in the θ direction, since this coordinate is lim-
ited to a range of θ to 2π (360°). Specifically, the distribution
along the θ direction in GA�GB� can be broken into two parts:
the part enclosed in the solid box in the upper (lower) part of
Fig. 11(c) can be denoted as GA1�GB1�, and the part enclosed
in the dotted box is denoted as GA2�GB2�. In GB�ρ; θ�, the GB1

part is shifted by an angle θ0, while the GB2 part is shifted by
−�2π − θ0�, compared to GA1 & GA2, respectively. Figure 12(a)
shows the cross-correlation (T3) and anti-cross-correlation
signal (T4), when GA�ρ; θ� and GB�ρ; θ� are applied to the
HOC. Figure 12(b) shows the cross-sectional view (as a func-
tion of θ for ρ � 0) of the cross-correlation (T3) and anti-cross-
correlation signal (T4). Consider first the T3 term, which
corresponds to GA�ρ; θ� ⊙ GB�ρ; θ�. Since there is no match
between GA1�ρ; θ� and GB2�ρ; θ� and between GA2�ρ; θ� and
GB1�ρ; θ�, we get only two peaks: peak 3a corresponding
to GA1�ρ; θ� ⊙ GB1�ρ; θ� at ρ0 � 0 and θ0 � θ0 (� 45°), and
peak 3b corresponding to GA2�ρ; θ� ⊙ GB2�ρ; θ� at ρ0 � 0
and θ0 � −�2π − θ0� � −315°. The signal corresponding to
T3, for ρ � 0, is plotted as a function of θ in Fig. 12(c). As
can be seen, peak 3a is prominent, while peak 3b is barely
visible. This is due to the fact that θ0 is small compared to
(2π − θ0) so that the energy contained in GA2�GB2� is
smaller than that contained in GA1�GB1�. Similarly, from the
T4 term, we get two other peaks: peak 4a corresponding to

Fig. 10. (a) VC�x; y� is smaller in area than VA�x; y� by a factor of
1.44. (b) Corresponding polar distributions, FC�r; θ�. (c) Correspond-
ing polar-logarithmic distribution is GC�ρ; θ�. (d) Final output signals
GA�ρ; θ� and GC�ρ; θ� are applied to HOC. Final output signal has one
peak at the center implying that a match is found, but no scale infor-
mation is revealed due to the fact that the displacement between
GA�ρ; θ� and GC�ρ; θ� is very small. (d) Final signal after thresholding
for σ � 1.2.

Fig. 11. (a) VA�x; y� is the amplitude of the FT of an arbitrary image
and VB�x; y� represents the amplitude of the FT of the same image, but
rotated by an angle of θ0 � 45°. (b) Corresponding polar distributions,
FB�r; θ� and FA�r; θ�, now differ in the θ direction. (c) Dotted part of
GB�ρ; θ� is now shifted from the solid part of GA�ρ; θ� in the θ direction
by an amount of θ0 � 45°; the dotted part of GB�ρ; θ� is now shifted
from the solid part of GA�ρ; θ� in the θ-direction by an amount of
−�2π − θ0� � −315°.
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GB1�ρ; θ� ⊙ GA1�ρ; θ� at ρ0 � 0 and θ0 � −θ0; and peak 4b
corresponding to GB2�ρ; θ� ⊙ GA2�ρ; θ� at ρ0 � 0 and
θ0 � �2π − θ0�. These two peaks are shown in Fig. 12(d), as
a function of θ, for ρ0 � 0. Again, we see that peak 4b is much
smaller than peak 4a. The final output signal jSf j2 is shown in
Fig. 12(e). Here, we see peaks 3a and 4a clearly, while peaks
3b and 4b are barely visible. However, the detection of just
two peaks is enough to discern the relative angle of rotation.
Figure 12(f) shows the final output signal jSf j2 after threshold-
ing fromwhere the locations of the peaks are clearly visible. In
Fig. 13, we show how the relative amplitudes of peaks 3a and
3b vary as a function of the rotation angle, θ0. Similar behavior
occurs (not shown) for peaks 4a and peak 4b as well. The
actual ratios of these peaks would, of course, depend on
the details of the angular properties of the image.

Next we consider the effect of rotation and scale change
simultaneously. Figure 14 shows such a case, where VA�x; y�
is the amplitude of the FT of an arbitrary image and VC�x; y�
represents the amplitude of the FT of the same image, but
scaled up by a linear factor of 2 and rotated by an angle of
θ0 � 45°. Note first that the corresponding polar distributions
[as shown in Fig. 14(b)], FC�r; θ�, and FA�r; θ� now differ in

both the r direction and the θ direction. Note next
that the log-polar distributions are now still identical in
shapes, except that GC�ρ; θ� is now shifted from GA�ρ; θ� in
the ρ direction by an amount, ρ0 � log�2� � 0.3, and the θ
direction by an amount, θ0 � 45°. Similar to the case of rota-
tion change described above, the distribution along the θ
direction in GA�GC� can be broken into two parts: the part
enclosed in the solid box in the upper (lower) part of
Fig. 14(c) can be denoted as GA1�GC1�, and the part enclosed
in the dotted box is denoted as GA2�GC2�. In GC�ρ; θ� the
GC1 part is shifted by an angle θ0, while the GC2 part is shifted
by −�2π − θ0�, compared with GA1 and GA2, respectively.

Figure 15(a) shows the cross-correlation and anti-cross-
correlation (T3 � T4) signal, when GA�ρ; θ� and GC�ρ; θ� are
applied to the HOC. The output contains several peaks, cor-
responding to the cross-correlation and anti-cross-correlation
terms, T3 and T4, of Eq. (9). Consider first the T3 term, which
corresponds to GA�ρ; θ� ⊙ GC�ρ; θ�. Since, there is no match
between GA1�ρ; θ� and GC2�ρ; θ� and between GA2�ρ; θ� and
GC1�ρ; θ�, we get only two strong peaks: peak 3a0 correspond-
ing to GA1 ⊙ GC1�ρ; θ� at ρ0 � log�2� � 0.3 and θ0 � θ0
(� 45°), and peak 3b0 corresponding to GA2�ρ; θ� ⊙
GC2�ρ; θ� at ρ0 � 0.3 and θ0 � −�2π − θ0� [shown in Fig. 15(c)].
As can be seen, peak 3a0 is prominent, while peak 3b0 is
barely visible. Similarly, from the T4 term, we get two other
peaks: peak 4a0 corresponds to GC1�ρ; θ� ⊙ GA1�ρ; θ� at ρ0 �
−0.3 and θ0 � −θ0; and peak 4b0 corresponds to GC2�ρ; θ� ⊙
GA2�ρ; θ� at ρ0 � −0.3 and θ0 � �2π − θ0� [shown in
Fig. 15(d)]. Figure 15(e) shows the final output signal jSf j2,
and Fig. 15(f) shows the output signal after applying a
threshold of 0.9. From Fig. 15(f), it is obvious that the

Fig. 12. (a) Cross-correlation and anti-cross-correlation (T3 � T4)
signal when GA�ρ; θ� and GB�ρ; θ� are applied to the HOC. (b) Cross-
sectional view of the T3 � T4 signal showing two peaks shifted in the θ
direction by an amount of θ0 and −θ0, which correspond to the cross-
correlation terms GA1�ρ; θ� ⊙ GB1�ρ; θ� and GB1�ρ; θ� ⊙ GA1�ρ; θ�.
(c) Cross-correlation signal T3, which shows the two peaks
corresponding to the cross-correlation GA1�ρ; θ� ⊙ GB1�ρ; θ� and
GA2�ρ; θ� ⊙ GB2�ρ; θ�. (d) Anti-cross-correlation signal T4, which
shows the two peaks corresponding to the cross-correlations
GB1�ρ; θ� ⊙ GA1�ρ; θ� and GB2�ρ; θ� ⊙ GA2�ρ; θ�. (e) Final output
signal jSfj2. (f) Final output signal after thresholding.

Fig. 13. Normalized amplitude of T3 for different angles. See text for
details.

Fig. 14. (a) VC�x; y� is smaller in area by a factor of 4 than VA�x; y�
and is rotated by 45°. (b) Corresponding polar distributions, FC�r; θ�
and FA�r; θ�, now differ in the r direction and the θ direction.
(c) GC�ρ; θ� is now shifted from GA�ρ; θ� in the ρ direction by an
amount log�2� � 0.3 and the θ direction by an amount of θ0 � 45°.
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positions of the peak of the cross-correlation signal (T3) cor-
responds to rotation and scale change between two images.

4. SIMULATION RESULTS OF THE SCALE
AND ROTATION INVARIANT HOC
In Section 3, we have shown that by incorporating PMT, the
proposed HOC architecture can achieve scale and rotation
invariance, in addition to the shift invariance feature. So
far, we have considered artificial cases, where the FT of
the object or reference image has a distinct hole in the center.
As discussed earlier, this corresponds to an unrealistic situa-
tion, where the image must have both positive and negative
amplitudes. In this section, we consider real world scenarios,
where the image has non-negative values everywhere. Since
such an image has a nonzero average value, its FT cannot
have a hole in the center. By cutting a hole of a suitable radius
in the center of the FT of the image, we produce an effective
image, which is no longer positive definite and is thus compat-
ible with the PMT process.

In Fig. 16(a), we consider two images, U1�x0; y0� and
U2�x0; y0�, where U2�x0; y0� is scaled down by a linear factor
of 2 with respect to U1�x0; y0�. The corresponding magnitudes
of FTs, V1�x; y� and V2�x; y�, are shown in Fig. 16(b), where
V2�x; y� is scaled up by a factor of 2 compared to V1�x; y�
in each dimension. Here, we take the magnitude of the FTs
to get rid of any shift information. In Fig. 16(c), a hole of radius
r0 is created in the center of V1�x; y� and V2�x; y�, which are
denoted as V1H�x; y� and V2H�x; y�, respectively. Figure 16(d)
shows the corresponding polar distributions, F1�r; θ� and
F2�r; θ�. As shown in Fig. 16(e), the polar-logarithmic distribu-
tions are nearly identical in shape, except that G2�ρ; θ� is
now shifted from G1�ρ; θ� in the ρ direction by an amount
of log�2� � 0.3. The PMT processed images, G1�ρ; θ� and
G2�ρ; θ�, are now inputs to the HOC architecture. Figure 16(f)
shows the final output signals jSf j2 of the HOC, where the
peaks of the cross-correlation signals, T3 and T4, are shifted
from the center in the ρ direction by an amount equaling
log�σ� and − log�σ�, respectively. Figure 16(g) shows that
thresholding gives a clear view of the location of these peaks,
from which we can determine the relative scaling factor.
When a hole is cut in the FT of an image, the process is equiv-
alent to the use of a modified image. We use one of the images
considered above, U1�x0; y0�, to illustrate what this modified
image looks like. Before proceeding, it is instructive to
document clearly the notations we have employed (as shown
in Table 1).

In the correlation process described in Fig. 16, we made use
of V1H�x; y� and V2H�x; y�. The corresponding modified images
are U1H�x0; y0� and U2H�x0; y0�. As an example, we show below,
in steps, how to determine U1H�x0; y0� and explain its shape.
Figure 17(a) shows V1�x; y�, the FT of the original image,
while Fig. 17(e) shows V1H�x; y�, the FT of the modified image.
However, in order to reconstruct the corresponding images,
we require the complex FTs. These are illustrated next.
Figures 17(b) and 17(c) show the real and imaginary parts re-
spectively of ~U1�kx0 ;ky0 � � ~U1�x; y�, the FT of the original im-
age. Inverse FT of ~U1�x; y� yields the original image, U1�x0; y0�,
which is shown in axonometric view in Fig. 17(d). Note that
the original image is real only. Similarly, Figs. 17(f) and 17(g)
show the real and imaginary parts, respectively, of
~U1H�kx0 ;ky0 � � ~U1H�x; y�, the FT of the modified image. In-
verse FT of ~U1H�x; y�, yields the modified image, U1H�x0; y0�.
Note that U1H�x0; y0� is complex, as a result of the hole-cutting
process. Real and imaginary parts of U1H�x0; y0� are shown in
Figs. 17(h) and 17(i), respectively.

In Fig. 18(a), we consider two images, U1�x0; y0� and
U3�x0; y0�, where U3�x0; y0� is scaled down by a linear factor
of 2 and also rotated with respect to U1�x0; y0� by an angle
of θ0 � 30°. The magnitude of the FT of U3�x0; y0�, denoted
as V3�x; y�, is also rotated by an angle of θ0 � 300, and the area
is enlarged by a factor of 4, as shown in Fig. 18(b). In
Fig. 18(c), a hole of radius r0 is created in the center of each
of V1�x; y� and V3�x; y�, producing functions denoted as
V1H�x; y� and V3H�x; y�, respectively. The corresponding polar
distributions, F1�r; θ� and F3�r; θ�, are shown in Fig. 18(d). As
shown in Fig. 18(e), the polar-logarithmic distributions are
still identical in shape, except that G3�ρ; θ� is shifted from
G1�ρ; θ� in the θ direction and ρ direction. In the process de-
scribed above, two original images, U1�x0; y0� and U3�x0; y0�,
are converted to PMT images, G1�ρ; θ�, and G3�ρ; θ�, which

Fig. 15. (a) Cross-correlation and anti-cross-correlation (T3 � T4)
signal when GA�ρ; θ� and GC�ρ; θ� are applied to the HOC, showing
two peaks at (ρ0 � 0.3; θ0 � 45°) and (ρ0 � −0.3; θ0 � −45°). These cor-
respond to the cross-correlation terms GA1�ρ; θ� ⊙ GC1�ρ; θ� and
GC1�ρ; θ� ⊙ GA1�ρ; θ�, respectively. (b) Cross-sectional view shows
the peaks 3a0 and 4a0. (c) Cross-correlation signal T3, which shows
the two peaks corresponding to the cross-correlation GA1�ρ; θ� ⊙
GC1�ρ; θ� and GA2�ρ; θ� ⊙ GC2�ρ; θ�. (d) Anti-cross-correlation sig-
nal T4, which shows the two peaks corresponding to the cross-
correlations GC1�ρ; θ� ⊙ GA1�ρ; θ� and GC2�ρ; θ� ⊙ GA2�ρ; θ� (e) Final
output signal jSfj2. (f) Final output signal after thresholding.
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act as inputs to the HOC architecture. Fig. 18(f) shows the
final results of the HOC architecture, where the cross-
correlation signal T3 has two peaks at positions (ρ0 � log�σ�,
θ0 � θ0) and (ρ0 � log�σ�, θ0 � −�2π − θ0�) and the anti-
cross-correlation signal, T4 also has two peaks at positions
(ρ0 � − log�σ�, θ0 � −θ0) and (ρ0 � − log�σ�, θ0 � �2π − θ0�).
As mentioned in Section 3, the peaks at positions
(ρ0 � log�σ�, θ0 �−�2π−θ0�) and (ρ0 �− log�σ�, θ0 � �2π − θ0�)
are very small compared to other peaks, so that they are
barely visible in the final output signal. Figure 18(g) shows
that after thresholding the peaks of the cross-correlation sig-
nals at positions (ρ0 � log�σ�, θ0 � θ0) and (ρ0 � − log�σ�,
θ0 � −θ0) are clearly visible. From the location of the peaks,
we can infer that the objects are rotated with respect to each
other by an angle of 30° and also scaled down by a factor of 2.

5. MULTIPLE OBJECT DETECTION USING
THE HOC ARCHITECTURE
In [8], we showed how to recognize a single object using the
HOC architecture in a shift invariant manner. In this paper so
far, we have shown how to recognize a single object in a shift,
scale, and rotation invariant manner. However, there are

Fig. 16. (a) We consider two images, U1�x0; y0� and U2�x0; y0�, where U2�x0; y0� is smaller in area than U1�x0; y0� by a factor of 4. (b) The corre-
sponding magnitudes of FTs are denoted as V1�x; y� and V2�x; y�, which are similar in shape, except that V2�x; y� has a larger area than that of
V1�x; y� by a factor of 4. (c) A hole of radius r0 is created in the center of V1�x; y� and V2�x; y�, and the resulting functions are denoted as V1H�x; y�
and V2H�x; y�, respectively. (d) The corresponding polar distributions, F1�r; θ� and F2�r; θ�, are the same in the θ direction, but differ by a linear
scaling factor of 2 in the r direction. (e) The polar-logarithmic distributions, G1�ρ; θ� and G2�ρ; θ�, are identical in shape, except for a shift in the ρ
direction [equaling the logarithm of the scale factor: log�2� ≅ 0.3]. (f) The final output signal, jSf j2 of the HOC when U1�x0; y0� and U2�x0; y0�, is
converted to the log-polar domain and then acts as an input to the HOC. (g) After thresholding, we get two peaks corresponding to the two
cross-correlation terms (T3 and T4).

Table 1. Summary of Definitions of Various

Transform

Symbol Meaning

U1�x0; y0� Original image; fx0; y0g are spatial coordi-
nates, with units of millimeter (mm)

~U1�kx0 ; ky0 � FT of the original image; fkx0 ; ky0 g are wave
number coordinates, with units of mm−1

~U1�x; y� Same as ~U1�kx0 ; ky0 �, except that we have
defined x≡ kx0 , y≡ ky0 . Thus fx; yg are
wave number coordinates, with units
of mm−1. This redefinition is for con-
venience only.

V1�x; y�≡ j ~U1�x; y�j This is the magnitude of the FT of original
image.

U1H�x0; y0� Image resulting from cutting a hole in the
FT.

~U1H�kx0 ; ky0 � FT of U1H�x0; y0�; again fx0; y0g are spatial
coordinates.

~U1H�x; y� Same as ~U1H�kx0 ;ky0 � with the definition of
x≡ kx0 , y≡ ky0

V1H�x; y�≡ j ~U1H�x; y�j This is the magnitude of the FT of the
modified image.
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Fig. 17. Illustration of the fact that cutting a hole of certain radius in the center of the FT of the image does not change the image significantly. See
text for details. [Note that in Figs. 18(b), 18(c), 18(f), and 18(g) the color has been inverted for clear visualization.]

Fig. 18. (a) We consider two images, U1�x0; y0� and U3�x0; y0�, where U3�x0; y0� is smaller in area than U1�x0; y0� by a factor of 4 and also rotated by
an angle of θ0 � 30°. (b) The corresponding FTs are denoted as V1�x; y� and V3�x; y�, which are similar in shape, except V3�x; y� has a larger area
than that of V1�x; y� by a factor of 4 and also rotated by an angle of θ0 � 30°. (c) A hole of radius r0 is created in the center of V1�x; y� and
V3�x; y�, which are denoted as V1H�x; y� and V3H�x; y�, respectively. (d) The corresponding polar distributions, F1�r; θ� and F3�r; θ�, are shifted
in the θ direction by an amount of θ0 � 30° and also shifted in the r direction by a linear scaling factor of 2. (e) Polar-logarithmic distributions,
G1�ρ; θ� and G3�ρ; θ�, are identical in shapes, except for a shift in the ρ direction [equaling the logarithm of the scale factor: log�2� ≅ 0.3] and
also a shift in the θ-direction by an amount of θ0 � 30°. (e) Final output signal, jSf j2 of the HOC when U1�x0; y0� and U3�x0; y0� are converted to
G1�ρ; θ� and G3�ρ; θ� and act as inputs to the HOC. (f) After thresholding, we get two peaks corresponding to the two cross-correlation terms
(T3 and T4).
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potential scenarios, where the query field may contain multi-
ple matches to the reference object. In this section, we
describe how to achieve distinct detection of these multiple
matches. We consider two different scenarios.

First we consider the case, where the multiple images in the
query field are only shifted, without any scale change and ro-
tation angle. In this case, the architecture needed does not
employ the PMT process. However, it is somewhat different
from the approach used for detecting multiple (unscaled
and unrotated) matches using a CHC because of the fact that
the HOC produces both cross-correlation and anticross-
correlation signals. Second we consider the case, where the
multiple images in the query field have potentially distinct
values of shift, scale factor, and rotation angle. In this case,
the PMT process has to be employed. However, since the
PMT process eliminates the shift information, multiple object
recognition in this case requires a substantially different
architecture.

A. Multiple Object Detection for Shifted Images without
Rotation and Scale Change
Detection of multiple objects using the HOC architecture
without rotation and scale change is similar to single object
detection under the same scenario (i.e., without rotation and
scale change), in that it does not require using the PMT
process. However, a potential complication arises due to
the presence of both T3 (cross-correlation) and T4 (anti-
cross-correlation) terms. Specifically, in the presence of
multiple matches, it becomes difficult to determine whether
a peak corresponds to T3 of a given matched image or T4

of another matched image, for example. This can be circum-
vented by applying the following technique. Assume first
that the reference image is represented by a grid of
N×N points. In contrast, we confine the query image, poten-
tially containing multiple objects, to a grid of only N∕2×N
points. We now map this query image to a grid of N×N
points, thus producing a final query image, where half
the image is blank. Consider a situation, where the blank
half of the query image is on the left side. It is easy to
see that, after carrying out the correlation process in the
manner described in Section 2, the peaks representing all
the T3’s (corresponding to multiple matches) will appear
on the right side of the final signal plane, while all the
T4’s will appear on the left side of the final signal plane,
thus avoiding the potential ambiguities between the T3’s
and the T4’s mentioned above.

Figure 19 illustrates the results of a simulation for
multiple-object detection with the HOC using this approach.
Figure 19(a) shows the reference image, ImA, plotted on an
N×N grid. Figure 19(b) show the query image, ImB, which
contains three images that match the reference (denoted as
B, C, and D), and one that does not (denoted as A). Note that
these four images are confined to the right-half plane only,
leaving the left-half blank. Figure 19(c) shows the output sig-
nal, jSf j2, where we can see six sharp peaks corresponding to
cross-correlation signals (T3B, T3C, and T3D) and anticross-
correlation signals (T4B, T4C, and T4D) of the three matched
images. The other two signals in the output plane with lower
peaks correspond to the cross-correlation (T3A) and anti-
cross-correlation (T4A) signals for the unmatched case. After
thresholding [as shown in Fig. 19(d)], the final signals are

clearly visible from which we can infer that three matches
are found. In addition, the distances of the peaks from the
center reveal the locations of the matched images.

This approach of leaving a blank space also has an added
advantage, in that it ensures that the overlap parameter, η
(defined in Section 2) is never less than unity. This can be
seen clearly by considering image C, which is located at
the left edge of the right-half plane. Since it is contained
fully in the right-half plane, the distance between this and
the reference images is jρ⃗mj, which corresponds to η � 1.
All other images that are further away from the boundary
between the left and right half planes would thus have
a value of η > 1. Therefore, the cross-correlation and
anti-cross-correlation signals will be clearly revolved for all
images.

Finally, we note that the use of the rectangular field
(N∕2 × N) in confining the query image may be inconvenient
in some situations, especially if the camera used in acquiring
the query image has an image field that is a square. This can be
circumvented by confining the query image to a square field
with N∕2 × N∕2 points, leaving the other three quad-
rants blank.

B. Multiple Object Detection in Shift, Scale, and
Rotation Invariant Manner Using the HOC Architecture
Next we consider a situation, where the query field contains
multiple replicas of the reference image, but each with poten-
tially a different position, a different scale factor, and a differ-
ent angular orientation. Obviously, this case would require
the use of the PMT process. However, the PMT process
loses the information about the relative position of any image
once the phase information in the FT is eliminated by meas-
uring the magnitude of the FT. Thus the magnitude of the
FTs of each of the matched images in the query field will
overlap with one another, making it impossible to find any
matches.

To overcome this problem, we propose the approach illus-
trated schematically in Figs. 20 and 21. The situation of inter-
est here is as follows: we assume that we have one reference
image, and L≡ n∕2 × n captured query images (n is an

Fig. 19. Illustration of multiple object detection without rotation and
scale change using the HOC architecture. See text for details.
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integer), each of which is a potentially shifted, scaled, and
rotated replica of the reference image. In principle, we can
employ the PMT-enhanced HOC process L times. The goal
here is to carry out these L correlations simultaneously.

To start, we fit each captured image into a grid of
�N∕n� × �N∕n�, where N×N is the grid size for the reference
image. We then fit these images into the right-half plane of an
N×N grid. This is illustrated in Fig. 20. Next, we use an SLM
to convert the query image to the optical domain. However,
instead of sending the whole query image at once, we send to
the SLM only one of the small grids (of size N∕n×N∕n) of the
right-half plane with all the other small grids being dark. This
is illustrated schematically shown on the left edge of the
Fig. 21, for the first row and n∕2-th column of the right-half
plane, for example. The image in this grid is denoted as
Q1;n∕2. The lens, the FPA, and the FPGA, as shown in the rest
of Fig. 21, are used to produce the corresponding PMT im-
age, denoted as G1;n∕2�ρ; θ�. This process is repeated n2∕2
times, which is the number of small grids containing images,
without changing the positions of the SLM, the lens, and the
FPA. The n2∕2 numbers of PMT images produced and stored
in the FPGA are then mapped to a corresponding set of
small grids, which in turn is sent to the final SLM (SLM-3)
for detecting cross-correlation and anti-cross-correlation
signals.

In Fig. 22, we show results of numerical simulations used to
illustrate the process described above. For simplicity, we
have used an artificial reference image that has a clear hole
in its FTs, similar to that shown earlier in Fig. 11. The FT of the
reference image is shown in Fig. 22(a), denoted as F00, and the
FTs of multiple query objects are shown in Fig. 22(b), which
are denoted as Fij (i � row number; j � column number). For
example, F42 is the image shown on the bottom right corner.
The left half of the query plane is kept blank for the reason
described above. As can be seen in Fig. 22(b), F21 and F42

are similar to F00; F22 and F31 are rotated from F00 by an angle
of θ0 � 30°; F11 and F32 are scaled down from F00 by a factor
of σ � 2; F12 and F41 are scaled down by a factor of σ � 2 and
also rotated by an angle of θ0 � 30° from F00. The correspond-
ing PMT images, G1�ρ; θ� and G2�ρ; θ�, are shown in Figs. 22(c)
and 22(d), respectively [18]. Figure 22(e) shows the final
signal jSf j2 after thresholding. The right-half side shows
the cross-correlation signals and the left side shows the
anti-cross-correlation signals. The red dots in Fig. 22(e)
correspond to the auto-correlation of the reference PMT
image, and the white dots on the right-half plane represent
the corresponding cross-correlation signals. From the dis-
tance between the red dot and the white dot in a given
box, we can infer the scale and rotation change between
the reference image and the query image.

Fig. 20. Illustration of the process of mapping multiple query objects, each with potentially a different position, a different scale factor, and a
different angular orientation, to the right half of the query image plane, which has a grid size of N × N. See text for details.

Fig. 21. Process of Fourier transforming a query image plane with multiple images using an SLM and a lens. See text for details.
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6. CONCLUSIONS
We have shown that our proposed HOC architecture, which
correlates images using SLMs, detectors, and FPGAs, is capable
of detecting objects in a scale and rotation invariant manner,
along with the shift invariance feature, by incorporating
PMT. For realistic images, we cut out a small circle at the center
of the Fourier transform (FT) domain, as required for PMT, and
illustrate how this process corresponds to correlating images
with real and imaginary parts. Furthermore, we showed
how to carry out shift, rotation, and scale invariant detection
of multiple matching objects simultaneously, a process
previously thought to be incompatible with PMT based corre-
lators. We presented results of numerical simulations to
validate the concepts. Experimental efforts are underway in
our laboratory to demonstrate these capabilities of the HOC
using bulk components. Efforts are also underway to
develop an integrated graphic processing unit [8] in order to
realize a high-speed version of the HOC.
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