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N-atom collective-state atomic interferometer with ultrahigh Compton frequency and ultrashort
de Broglie wavelength, with

√
N reduction in fringe width
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We describe a collective-state atomic interferometer (COSAIN) with the signal fringe as a function of phase
difference or rotation narrowed by

√
N compared to a conventional interferometer, N being the number of atoms,

without entanglement. This effect arises from the interferences among collective states, and is a manifestation of
interference at a Compton frequency of 10 × 1030 Hz, or a de Broglie wavelength of 4.5 femtometer, for N = 106

and v = 1 m/s. The population of the collective state of interest is detected by a null measurement scheme, in
which an event corresponding to detection of zero photons corresponds to the system being in that particular
collective state. The signal is detected by collecting fluorescence through stimulated Raman scattering of Stokes
photons, which are emitted predominantly against the direction of the probe beam, for a high enough resonant
optical density. The sensitivity of the ideal COSAIN is found to be given by the standard quantum limit. However,
when detection efficiency and collection efficiency are taken into account, the detection scheme of the COSAIN
increases the quantum efficiency of detection significantly in comparison to a typical conventional Raman atomic
interferometer employing fluorescence detection, yielding a net improvement in stability by as much as a factor
of 10. We discuss how the inhomogeneities arising from the nonuniformity in experimental parameters affect
the COSAIN signal. We also describe an alternate experimental scheme to enhance resonant optical density in a
COSAIN by using cross-linearly polarized counterpropagating Raman beams.
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I. INTRODUCTION

Matter-wave interferometry is a potent technology in
metrology. Atom interferometers have been demonstrated
as gyroscopes and accelerometers [1,2], gravity gradiome-
ters [3,4], matter-wave clocks [5], and may lead to a more
accurate measurement of the fine-structure constant [6,7].
They also form testbeds for measuring Newton’s gravitational
constant [8], gravitational red-shift [9], and for testing univer-
sality of free fall [10].

The building block of a conventional Raman atom interfer-
ometer (CRAIN) is a three-level atom, with two metastable
states |g,pz =0〉 ≡ |g,0〉 and |e,pz =�(k1+k2)〉 ≡ |e,�k〉 and
an excited state |a,pz =�k1〉 ≡ |a,�k1〉 coupled by two
counterpropagating beams, with a single-photon detuning δ

[Fig. 1(a)]. One of the beams, with Rabi frequency �1, couples
|g,0〉 to |a,�k1〉, while the other beam, with Rabi frequency
�2, couples |a,�k1〉 to |e,�k〉. For δ��1,�2, the interaction
can be described as an effective two-level system excited by
an effective traveling wave with a momentum �k=�(k1+k2),
with a Rabi frequency �=�1�2/2δ [Fig. 1(b)] [11]. We
assume that δ��, where � is the decay rate of |a〉, so that the
effect of � can be neglected. Under a sequence of π/2-π -π/2
pulses [Fig. 1(c)], the wave packet first separates into two
components, then gets redirected, and finally recombines
to produce an interference which is sensitive to any phase
difference �φ between the two paths. The amplitude of |g〉 at
the end varies as cos2(�φ/2) [12,13].

A CRAIN of this type can be realized by employing an
atomic beam with a continuous flux, or by employing pulses
of atoms pushed out periodically from a magneto-optic trap
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(MOT). The behavior of the CRAIN is essentially the same in
both modes if the number of atoms interrogated in a given time
window is the same. However, as we will describe later, the
collective-state atomic interferometer (COSAIN) must operate
in the latter (pulsed) mode. Thus, for proper comparison we
will assume, in the rest of the paper, that the CRAIN is operated
in the pulsed mode.

The phase difference induced due to rotation at the rate of
�G along an axis normal to the area � of the interferometer is
given by �φ=4π�m�G/h, m being the atomic mass [13,14].
This expression can be derived by two different methods. In the
first method, the path difference of the two counterpropagating
waves is multiplied by 2π/λdB , where λdB is the de Broglie
wavelength, to get the phase difference. The second method
invokes the relativistic addition of velocities to find the time
lag �T = 2��G/c2 in the arrival of the two branches of the
wave, c being the speed of light. �φ is then the product of
�T and the wave frequency. For the CRAIN, this frequency
is the Compton frequency of the atom ωC =γmc2/�≈mc2/�,
where the relativistic time-dilation factor γ is close to unity
for nonrelativistic velocities. These approaches are equivalent
due to the fact that λdB is the laboratory-frame manifestation
of the ωC induced phase variation in the rest frame of the
atom [5,15–17]. To explain this without loss of generality,
let us consider the direction of the velocity of the particle as
x̂. For nonrelativistic velocities, mixing between the spinors
can be ignored, and the phase factor of a positive-energy
spinor, in the rest frame of the particle, is given simply as
exp(−iφ), where φ = ωCτ with τ being the proper time. The
phase φ is a Lorentz-invariant parameter, and can in general be
written as a contraction between the position four-vector xμ

and momentum four-vector �kμ : φ = kμxμ. In the rest frame
of the particle, the position four-vector is xμ = {cτ,0,0,0}
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FIG. 1. (a) A three-level atom. (b) An equivalent reduced two-
level atom model. (c) A CRAIN produced via π/2-π -π/2 sequence
of excitation.

and the momentum four-vector is �kμ = �{ωC/c,0,0,0}. In
the laboratory frame, the position four-vector is, by definition,
xμ = {ct,0,0,0}, and application of Lorentz transform shows
that the momentum four-vector is �kμ = �{ω′

C/c,kdB,0,0},
where kdB = γmV/� = 2π/λdB and the phase factor becomes
φ = ω′

Ct − kdBx. Again, in the nonrelativistic limit, γ ≈ 1
and we get λdB ≈ 2π�/mV . Thus, the de Broglie wavelength
is simply the laboratory-frame manifestation of the phase
variation in the rest frame due to the Compton frequency.

The dependence of �φ on ωC has motivated matter-wave
interferometry with large molecules. To date, the largest
molecule used has a mass of ∼10 000 atomic-mass units [18],
corresponding to the mass of ∼75 133Cs atoms. These interfer-
ometers, based on the Talbot effect, are not suited for rotation
sensing. Furthermore, for interferometry with much larger
particles it would be necessary to use gratings with spacings too
small to be realized with existing technologies. Additionally,
effects such as van der Waals interaction would become
dominant for such gratings. Here, we propose an experiment
that would reveal evidence of matter-wave interference where
a collection of N noninteracting, unentangled atoms act as a
single particle. For 87Rb and N = 106, ωC is ∼10 × 1030 Hz,
and λdB is ∼4.5 femtometer at a velocity of 1 m/s. Further-
more, it can improve the phase measurement ability by a factor
of as much as 10. This type of matter-wave interferometry may
also open up new opportunities for sensitive measurement of
gravitational red-shift [9] or matter-wave clocks [5]. It may
also serve as a testbed for macroscopic quantum decoherence
due to gravitational red-shift [19].

Consider an assembly of N identical noninteracting atoms,
subjected to the π/2-π -π/2 sequence. If we imagine a situation
where the ground state |E0〉≡|g1,g2, . . . ,gN 〉 is coupled,
directly and only, to the state where all the atoms are in the
excited state |EN 〉≡|e1,e2, . . . ,eN 〉, the resulting ensemble

interferometer would experience a phase difference �φEI =
N�φ. However, existing technology does not enable such an
excitation. Even if one were to use a pure Fock state of N ′ > N

photons, the ensemble would evolve into a superposition
of (N + 1) symmetric collective states |En〉 |N ′ − n〉, where
|N ′ − n〉 is a state of the field with (N ′ − n) photons, and
|En〉=J (N,n)−1/2 ∑J (N,n)

k=1 Pk |g⊗(N−n)e⊗n〉, where J (N,n)≡(
N

n

)
,Pk is the permutation operator, and n = 0,1,2, . . . ,N

[20]. Since a laser is a superposition of many Fock states, the
evolution of this system under laser excitation would produce
a seemingly intractable superposition of these collective states.
Modeling the laser field as a semiclassical one also does not
simplify the picture much [21–24]. However, we show here
that, by measuring the quantum state of a single collective state,
it is possible to determine the effect of the interference among
all the collective states, and describe how such a measurement
can be done. Choosing this collective state to be one of the two
extremal states (i.e., |E0〉 or |EN 〉) also makes it possible to
calculate this signal easily since the state of the whole system
can be described as the tensor product of individual atomic
states. We show that the fringe width is reduced by a factor of√

N , without using entanglement. For the current state of the
art, the value of N can easily exceed 106, so that a reduction
of fringe width by a factor of more than 103 is feasible. We
also show that the phase fluctuation of the COSAIN can be
significantly smaller, by as much as a factor of 10, than that for
a conventional interferometer employing the same transition
and the same atomic flux. The extremely narrow resonances
produced in the COSAIN may also help advance the field of
spin squeezing [25–28], which in turn is useful for approaching
the Heisenberg limit in precision metrology. Recently, we have
also proposed a collective-state atomic clock, which employs
the principle of collective excitation of atomic ensemble, and
exhibits a similar narrowing in signal fringe [29].

In this paper, we discuss the various aspects of the
collective-state atomic interferometer. The rest of the paper
is arranged in the following way: In Sec. II, we describe the
theory of the working principle of a COSAIN. We also describe
the physical phenomenon behind the narrowing of the signal
fringes. Section III gives an account of the various parameter
inhomogeneities that affect the signal amplitude and width.
Section IV details the description of the COSAIN experiment,
also including a discussion of the role of the optical density
of the ensemble. We also propose an alternate experimental
scheme to achieve a higher value of effective optical density
in Sec. V. In Sec. VI, we analyze the performance of the
COSAIN as compared to that of the CRAIN. We consider the
effect of quantum and classical noise, detector efficiency, and
collection efficiency.

II. DESCRIPTION OF THE COSAIN

Consider an ensemble of N noninteracting atoms of the
kind described above [21], with the ith atom in its ground
state |gi〉. The ensemble is assumed to be initially situated
at (x =0,z=0) and traveling along the x direction with a
velocity v. The ensemble undergoes the same π/2-π -π/2
sequence as described for the CRAIN. Assuming resonant
excitation, the Hamiltonian of the ith atom after the rotating-
wave transformation is Hi =�i |gi〉 〈ei | /2+c.c. [22], where
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�i is the Rabi frequency of the ith atom. Here, a phase
transformation on the Hamiltonian has also been applied to
render �i real. For the sake of simplicity and brevity, we
consider only the case where the intensity profile of the beams
is rectangular, so that �i =�. In a real experiment, the Rabi
frequency of each atom depends on its position relative to
the Gaussian distribution of the beam intensity profile. Due
to the nonzero temperature of the trapped atoms, they also
experience Doppler shift arising from thermal motion. A
detailed description of the effect of these inhomogeneities on
the COSAIN signal is presented in Sec. III.

A π/2 pulse of duration τ is applied to the ensemble
at t = 0, following which each atom is in state |ψi(τ )〉=
(|gi〉− i |ei〉)/

√
2. After the first dark zone of duration of Td ,

the component of the atom in state |ei〉 drifts to (x = vTd, z =
�kTd/m). The state |gi〉 continues along the x direction. We
label the trajectories taken by |gi〉 and |ei〉 as A and B,
respectively. The state of an atom at t =τ +Td is |ψi(τ +Td )〉 =
|ψi(τ +Td )〉A+|ψi(τ +Td )〉B , where |ψi(τ +Td )〉A =|gi〉 /

√
2

and |ψi(τ +Td )〉B =−i |ei〉 /
√

2. At the end of this zone, a
π pulse causes the state |gi〉 to evolve into |ei〉 and vice
versa. The state at the end of this pulse is |ψi(3τ +Td )〉 =
|ψi(3τ +Td )〉A+|ψi(3τ +Td )〉B , such that |ψi(3τ +Td )〉A =
−i |ei〉 /

√
2 and |ψi(3τ +Td )〉B =− |gi〉 /

√
2. Following the

second dark zone of duration Td , the two trajectories converge,
as shown in Fig. 1(c), and |ψi(3τ +2Td )〉 = |ψi(3τ +Td )〉. At
t = 3τ + 2Td , a third pulse of duration τ is applied to the
atoms. If a phase difference of �φ is introduced between
the paths, the state of the atom at the end of the last π/2
pulse is |ψi(4τ +2Td )〉=|ψi(4τ +2Td )〉A+|ψi(4τ +2Td )〉B ,
where |ψi(4τ +2Td )〉A =−i[−i exp(−i�φ) |gi〉+|ei〉]/2 and
|ψi(4τ +2Td )〉B =−[|gi〉−i exp(i�φ) |ei〉]/2. This phase dif-
ference can occur, for example, due to a rotation of the entire
system about the y direction.

The final fringe pattern is the result of the interference
of the states from the two trajectories. This is observed by
measuring the probability of finding the atom in either of the
two states. The signal as a measure of the amplitude of |g〉 is
therefore, SCRAIN =|[1+exp(−i�φ)]/2|2 =cos2(�φ/2). We
note now that the state |�〉 of the ensemble is the direct
product of its constituent atoms: |�〉=∏N

i=1 |ψi〉 [22,23]. The
signal of the COSAIN is a measurement of any of the arising
collective states. We choose to measure the state |E0〉, so
that the resulting signal is the probability of finding all the
atoms of the ensemble simultaneously in |g〉. This choice
of state will be explained later on when we discuss the
detection system of the COSAIN. The signal of the COSAIN
is thus the product of the signals from the constituent atoms
SCOSAIN =∏N

i=1SCRAIN =cos2N (�φ/2). The fringe linewidth
as a function of �φ decreases with increasing N . We define
this linewidth as the full width at half maximum (FWHM)
of the signal fringe �(N )=2 cos−1(2−1/2N ). We have verified
that �(1)/�(N )≈√

N .

Physical interpretation of fringe narrowing

The narrowing of the signal fringes in a COSAIN can
be understood by considering the physical properties of the
collective excitations. If the ensemble in the ground state

interacts with a single photon of momentum �k, it will
oscillate between |E0,0〉↔|E1,�k〉. Consequently, it will
exhibit collective behavior such that its center of mass recoils
with a velocity in the z direction equal to �k/Nm. Thus, this
ensemble can be viewed as a single entity with a mass of Nm,
and a Compton frequency ωC that is N times that of a single
atom, despite no interaction between the atoms. Conversely,
the ensemble can be viewed as having a λdB of h/Nmv that
is N times lower than that of a single atom, where v is the
magnitude of its total velocity (e.g., a constant velocity in
the x direction that is much larger than the velocity in the z
direction due to the recoil). In the ideal case of uniform Rabi
frequencies and no Doppler shift related detunings, the first
π/2 pulse splits the ensemble into a superposition of N + 1
symmetric collective states (we have shown the corresponding
interpretation of the other, more general cases in Ref. [22]).
The state |En〉 receives a recoil of n�k due to the first π/2 pulse
and is deflected in the z direction by n�kTd/Nm by the end
of the first dark zone, making an angle θn = tan−1(n�k/Nmv)
with the x axis. We label the path taken by this state as path n.
The subsequent π pulse causes |En〉 to evolve to |EN−n〉. This
results in the deflection of the trajectory of the states so that all
the N + 1 trajectories converge by the end of the second dark
zone. The third pulse causes each of the N + 1 states to split
further. The resulting COSAIN is, thus, J (N + 1,2) collective
interferometers operating simultaneously. Of these, there are
x interferometers of area (N − x + 1)�/N , producing signal
fringe amplitudes equaling cos2[(N − x + 1)�φ/2], where x

assumes values 1,2, . . . ,N . The interference between these
cosinusoidal fringes results in the narrowing of the total fringe
width. In what follows, we illustrate the physical mechanism
behind this narrowing by considering first the role of Compton
frequency in a CRAIN. We then extend this analysis to
an ensemble of N atoms to describe the phenomenon of
narrowing in the COSAIN.

We consider the product state of the atom and a Fock state
with N ′ photons denoted by |N ′〉 or with N ′ − 1 photons
denoted by |N ′ − 1〉. Thus, at t = 0, the atom photon system
is assumed to be in the state |g〉 |N ′〉 ≡ |g,N ′〉. The atom-field
interaction couples it to the state |e〉 |N ′ − 1〉 ≡ |e,N ′ − 1〉,
as illustrated in Fig. 2(a). We assume that the photon energy
�ω exactly matches the energy difference between the atomic
internal states |e〉 and |g〉. We define the dressed frequency
of the atom-photon system as ωPA, which is a constant, for
all possible states of the system. If we define ωC,e = mec

2/�

as the Compton frequency of the excited atom, where
me = mg + �ω/c2 is the rest mass of the excited atom, and
mg = m is the rest mass of the atom in the ground state,
then we have ωPA = mec

2/� + (N ′ − 1)ω = mgc
2/� + N ′ω.

The Compton frequency of the atom in the ground
state is ωC,g = mgc

2/�. The effect of temporal phase
accumulation on the system during an interval �t , if the
system is in an arbitrary superposition of |g〉 and |e〉,
i.e., cg |g〉 + ce |e〉 at the start of the interval, will be
exp(−iωPA�t)(cg |g,N ′〉 + ce |e,N ′ − 1〉). Thus, after the
first π/2 pulse of a time duration τ , the quantum state
of the system is exp(ωPAτ )(|g,N ′〉A − i |e,N ′ − 1〉B)/

√
2,

where the subscripts A and B indicate the lower and
upper trajectories of the interferometer, respectively.
This is followed by a dark zone of duration Td at
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FIG. 2. (a) Single atom coupled to an N ′-photon state, (b) N -atom
ensemble coupled to an N ′-photon state, (c) ensemble interferometer
formed by splitting and recombining of |E0〉 and |EN 〉.

the end of which the quantum state of the system is
exp[−iωPA(τ + Td )](|g,N ′〉A − i |e,N ′ − 1〉B)/

√
2. A π

pulse is applied at the end of the first dark zone, and
therefore at t = 3τ + Td , the quantum state of the system
is |ψ(3τ + Td )〉 = |ψ(3τ + Td )〉A + |ψ(3τ + Td )〉B , where
|ψ(3τ + Td )〉A = −i exp[−iωPA(3τ + Td )] |e,N ′ − 1〉 /

√
2

and |ψ(3τ + Td )〉B = − exp[−iωPA(3τ + Td )] |g,N ′〉 /
√

2.
At this point, the second dark zone begins, at the end
of which the state of the system can be written as
|ψ(3τ + 2Td )〉 = |ψ(3τ + 2Td )〉A + |ψ(3τ + 2Td )〉B , where
|ψ(3τ + 2Td )〉A = −i exp[−iωPA(3τ + 2Td )] |e,N ′−1〉/√2
and |ψ(3τ + 2Td )〉B = − exp[−iωPA(3τ +2Td )] |g,N ′〉/√2.
Finally, the last π/2 pulse causes each of the arms
to further split into |g,N ′〉 and |e,N ′ − 1〉, so that
the state of the system at t = 4τ + 2Td is given by
|ψ(4τ + 2Td )〉 = |ψ(4τ + 2Td )〉A + |ψ(4τ + 2Td )〉B , where

|ψ(4τ + 2Td )〉A = −i

2
exp[−iωPA(4τ + 2Td )]

× (−i |g,N ′〉 + |e,N ′ − 1〉),
|ψ(4τ + 2Td )〉B = −1

2
exp[−iωPA(4τ + 2Td )]

× (|g,N ′〉 − i |e,N ′ − 1〉). (1)

The two arms, thus, yield identical proportions of |g,N ′〉
and |e,N ′ − 1〉. The probability of finding the atom in the
ground state, which is the signal for the CRAIN, is therefore
SCRAIN = 1. However, if the entire system is rotating at
the rate �G about an axis perpendicular to the area carved
by the interferometer, a time delay �T is introduced between
the two paths. To consider its effect on the signal of the CRAIN,
we note that the state of the system at t = 3τ + 2Td is such that

|ψ(3τ + 2Td )〉A = −i√
2

exp[−iωPA(3τ + 2Td )]

× exp[i(ωC,g + ωC,e)�T/4] |e,N ′ − 1〉 ,

|ψ(3τ + 2Td )〉B = −1√
2

exp[−iωPA(3τ + 2Td )]

× exp[−i(ωC,e + ωC,g)�T/4] |g,N ′〉 .

(2)

Finally, the state of the system due to rotation at the end of
the π/2-dark-π -dark-π/2 sequence is such that

|ψ(4τ + 2Td )〉A = −i

2
exp[−iωPA(4τ + 2Td )]

× exp(iωC,avg�T/2)(−i |g,N ′〉
+ |e,N ′ − 1〉),

|ψ(4τ + 2Td )〉B = −1

2
exp[−iωPA(4τ + 2Td )]

× exp(−iωC,avg�T/2)(|g,N ′〉
− i |e,N ′ − 1〉), (3)

where ωC,avg = (ωC,g + ωC,e)/2. The probability of finding
the atom in the ground state, which is the signal for the
CRAIN, is therefore given by SCRAIN = cos2(�φ/2), where
�φ = ωC,avg�T . From the special relativistic addition of
velocities along the two trajectories, the time delay is found
to be �T = 2θ�G/c2, where θ is the area enclosed by the
CRAIN [16]. In a real experiment, one makes use of a laser,
which is a coherent state, and not a Fock state. However,
when the mean photon number in the laser is very large, the
excitation is akin to what we described here. In effect, the
laser in this limit can be viewed effectively as a Fock state
with a photon number equaling the mean photon number in
the laser. This is the semiclassical approximation, where the
quantum state of the field is assumed to remain unchanged
(and thus factorized) independent of the state of the atom.

Next, we consider an ensemble of N such two-level atoms
that are independent and noninteracting. Furthermore, we
consider the product state of this ensemble and a Fock state
of N ′ photon as described above. Initially, all the atoms are in
the state |g〉, so that the state of the ensemble-photon system is
|E0〉 |N ′〉 ≡ |E0,N

′〉, where |E0〉 = |g1,g2, . . . ,gN 〉. Now, let
us imagine a scenario (which is impossible in practice) that the
state |E0,N

′〉 is directly coupled to the state |EN,N ′ − N〉 via
the exchange of N photons between the states, where |EN 〉 =
|e1,e2, . . . ,eN 〉 as illustrated in Fig. 2(b). Such a process can be
used to realize an atomic interferometer in a manner analogous
to the CRAIN, as illustrated in Fig. 2(c). The area enclosed in
this case would be the same as that for a CRAIN. However,
the average Compton frequency will now be NωC,avg (and the
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FIG. 3. λdB of an 87Rb atom moving at a constant velocity of
1 m/s is 4.56 nm. In the rest frame of the atom, its characteristic
Compton frequency is 1.96(1025 Hz). A cluster of 106 such atoms
will exhibit the characteristics of a single entity of mass that is 1×106

times that of a single 87Rb atom. Therefore, λdB will be 4.56(10−15 m)
and Compton frequency is 1.96(1031 Hz).

de Broglie wavelength will be λdB,single atom/N), so that the
signal given by the population of state |E0〉 measured at the
end, will be Sensemble = cos2(N�φ/2), where �φ is the phase
shift experienced by a CRAIN for the same amount of rotation.

However, since the electric dipole moment for a superposi-
tion of |E0〉 and |EN 〉 vanishes, there is no way to realize the
type of excitation envisioned above. Instead, when excited by
a Fock state of N ′(> N) photons, this ensemble unfolds into a
superposition of (N + 1) symmetric collective states given by
|En〉 |N ′−n〉, where |N ′−n〉 is a state of the field with (N ′−n)
photons and |En〉 = J (N,n)−1/2 ∑J (N,n)

k=1 Pk |g⊗(N−n)e⊗n〉,
J (N,n) = (

N

n

)
, Pk is the permutation operator, and n =

0,1,2, . . . ,N [20]. The state |En〉 has a momentum of n�k in
the direction of the beam since it has absorbed n photons. Thus,
it will exhibit collective behavior such that its center of mass
(COM) recoils with a velocity equal to n�k/Nm. As such, an
ensemble in such a state can be viewed as a single entity with a
mass of Nm and a Compton frequency ωC that is N times that
of a single constituent atom, despite no interaction between
the atoms. Conversely, the ensemble can also be viewed as
having a de Broglie wavelength λdB = h/Nmv that is N times
smaller than that of a single atom, where v is the magnitude
of the total velocity (e.g., a constant velocity in the x direction
that is much larger than the recoil velocity). This is illustrated
schematically in Fig. 3.

Some of these states and their relevant couplings are
illustrated in Fig. 4. For example, state |E0,N

′〉 is coupled
to the state |E1,N

′ − 1〉 at the rate of
√

N�N ′ , where �N ′ =√
N ′�0, with �0 being the single-photon Rabi frequency (for

exciting a single atom) and the
√

N factor results from the
collective enhancement of coupling. If the excitation is carried
out by a laser field where the mean photon number is much
larger than N , then we can make a semiclassical approxi-
mation that �N ′ ∼= �N ′−1

∼= · · · ∼= �N ′−N ≡ �. Furthermore,
the quantum state of the laser remains unchanged (and thus

FIG. 4. Coupling between an N -atom ensemble symmetric col-
lective states and N ′ photons.
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FIG. 5. Measurement of the COSAIN signal (amplitude of |E0〉)
shows a narrowing of the fringe width such that the ratio �(1)/�(N )
increases with

√
N .

factorized) independent of the state of the ensemble. The
Compton frequency of the state |En〉 is given by ωC,En =
mEnc

2/�, where mEn = mE0 + n�ω/c2 is the rest mass of the
ensemble in state |En〉, and mE0 = Nm is the rest mass of
the ensemble in state |E0〉. Thus, the dressed frequency of
the ensemble-photon system ωPE , which is a constant for all
possible states of the system can be written as ωPE(N,N ′) =
mEnc

2/� + (N ′ − n)ω = mE0c
2/� + N ′ω.

In the absence of an effective detuning, the COSAIN is
based on the coherent splitting and recombining of all of these
symmetric collective states. The signal of the COSAIN is,
thus, the product of the signals of the constituent CRAIN’s
that work simultaneously, resulting in the narrowing of the
signal fringes. The fringe linewidth, defined as the full width
at half maximum (FWHM) of the signal fringe is given by
�(N ) = 2 cos−1(2−1/2N ). It is evident from Fig. 5 that the
�(N ) decreases with increasing N . To illustrate the mechanism
behind the COSAIN more transparently, we now consider the
simplest ensemble: an assembly of two atoms of the kind de-
scribed above and N ′ photons. At t = 0, the ensemble-photons
system is assumed to be in the state |E0,N

′〉. The atom-field
interaction couples it to the state |E1,N

′ − 1〉, which in turn
is coupled to the state |E2,N

′ − 2〉. Following the notations
of the π/2-dark-π -dark-π/2 sequence established for the
CRAIN, the state of the ensemble after the first π/2 pulse
is |�(τ )〉 = exp(−iωPEτ )(|E0,N

′〉A − i
√

2 |E1,N
′ − 1〉B −

|E2,N
′ − 2〉C)/2, where ωPE ≡ ωPE(2,N ′) and the subscripts

A, B, and C denote the lower, middle, and upper trajectories
of the interferometer, respectively, as shown in Fig. 6. This is
followed by a dark zone of duration Td , at the end of which the
state of the ensemble is |�(τ + Td )〉 = exp(−iωPETd ) |�(τ )〉.
The component |E1,N

′ − 1〉B is displaced by �kTd/2m along
the z axis since it has absorbed the recoil from one photon
(�k), and it has a mass of 2(mC,g + mC,e) ≈ 2m. Similarly,
|E2,N

′ − 2〉 is displaced by �kTd/m along the z axis since it
has absorbed recoils from two photons (2�k), and it has a mass
of 2mC,e ≈ 2m. At t = τ + Td , the system interacts with the π

pulse (of duration 2τ ) which causes the transition |E0,N
′〉 ↔

|E2,N
′ − 2〉. The state |E1,N

′ − 1〉, however, only picks up
a phase due to the π interaction, and its trajectory remains
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FIG. 6. Illustration of a two-atom COSAIN depicting the state
trajectories.

unchanged. Explicitly, the state of the system at the end of the π

pulse is |�(3τ + Td )〉 = |�(3τ + Td )〉A + |�(3τ + Td )〉B +
|�(3τ + Td )〉C , where

|�(3τ + Td )〉A =−1

2
exp[−iωPE(3τ + Td )] |E2,N

′ − 2〉,

|�(3τ + Td )〉B =− 1√
2

exp[−iωPE(3τ + Td )] |E1,N
′ − 1〉,

|�(3τ + Td )〉C = 1

2
exp[−iωPE(3τ + Td )] |E0,N

′〉. (4)

At the end of this pulse, the system passes through a
second dark zone of duration Td , which causes the state of
the system to become |�(3τ + 2Td )〉 = |�(3τ + 2Td )〉A +
|�(3τ +2Td )〉B +|�(3τ +2Td )〉C , where |�(3τ +2Td )〉A =
exp(−iωPETd ) |�(3τ +Td )〉A, |�(3τ +2Td )〉B =exp(−iωPE

Td ) |�(3τ + Td )〉B , and |�(3τ + 2Td )〉C = exp(−iωPETd )
|�(3τ + Td )〉C . By the end of this dark zone, the three
trajectories converge and a last π/2 pulse is applied which
causes each of the trajectories to further split as follows:

|�〉A = −1
4 exp[−iωPE(4τ + 2Td )](− |E0,N

′〉
− i

√
2 |E1,N

′ − 1〉 + |E2,N
′ − 2〉),

|�〉B = 1
2 exp[−iωPE(4τ + 2Td )](|E0,N

′〉 + |E2,N
′ − 2〉),

|�〉C = 1
4 exp[−iωPE(4τ + 2Td )](|E0,N

′〉
− i

√
2 |E1,N

′ − 1〉 − |E2,N
′ − 2〉). (5)

The signal of the COSAIN is the probability of finding
the ensemble in any of the collective states. We choose to
measure the probability of |E0,N

′〉. The probability of finding
the ensemble in state |E0,N

′〉 is, therefore, SCOSAIN = 1.
However, as explained above for the case of the CRAIN, if
the entire system is rotating at the rate �G about an axis
perpendicular to the area carved by the interferometer, a time
delay is introduced between the paths. This time delay depends
only on the area enclosed and the rate of rotation, as noted
earlier. Let us assume that the delay between the paths C

and A, which forms the A−C loop, is �T . Therefore, the
delay between paths B and A which forms the A−B loop
will be �T/2. Similarly, the delay between paths C and B,
which forms the B−C loop, will also be �T/2. Since only
the relative delay between two paths matter, we assume, for
simplicity, that there is no delay on path B. Thus, just before

the final π/2 pulse, we can write the quantum states of these
paths under rotation as |�〉BR = |�(3τ + 2Td )〉B , |�〉AR =
exp[i(ωC,E0 + ωC,E2)�T/4] |�(3τ + 2Td )〉A, and |�〉CR =
exp[−i(ωC,E2 + ωC,E0)�T/4] |�(3τ + 2Td )〉C . The last π/2
pulse causes each of these components to further split so that
the state of the system at the end of the π/2-dark-π -dark-π/2
sequence is

|�〉AR = −1
4 exp[−iωPE(4τ + 2Td )]

× exp[i(ωC,E0 + ωC,E2)�T/4]

× (− |E0,N
′〉 − i

√
2 |E1,N

′ − 1〉 + |E2,N
′ − 2〉),

|�〉BR = 1
2 exp[−iωPE(4τ + 2Td )](|E0,N

′〉 + |E2,N
′ − 2〉),

|�〉CR = 1
4 exp[−iωPE(4τ + 2Td )]

× exp[−i(ωC,E2 + ωC,E0)�T/4]

× (|E0,N
′〉 − i

√
2 |E1,N

′ − 1〉 − |E2,N
′ − 2〉).

(6)

The signal of the COSAIN can, thus, be viewed as the
aggregation of interference patterns due to three indepen-
dent CRAIN’s working simultaneously, i.e., those formed
by paths A−B, B−C, and A−C. To illustrate this, we
denote the component of |E0,N

′〉 in paths A, B, and C as
χA, χB , and χC , respectively. The interferometers formed
by A−B and B−C are identical. The measurement of
the amplitude of |E0,N

′〉 from each of these interferome-
ters is given by SA−B = SB−C = |χA + χB |2 = |χB + χC |2 =
3/16 + cos2(ωC,avg�T/2)/4. This corresponds to a CRAIN
that is operating with an atom of average Compton fre-
quency ωC,avg. The interferometer formed by A−C yields
the signal value SA−C = |χA + χC |2 = cos2(ωC,avg�T )/4,
behaving analogously to a CRAIN formed by an atom of
average Compton frequency 2ωC,avg. The total COSAIN
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FIG. 7. Signals derived from the interferometers formed by
trajectories A−C, A−B, and B−C. The bottom panel shows the
signal of CRAIN (broken line) to the signal of a two-atom COSAIN
(solid line).
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signal arises due to the interference of the component of
|E0,N

′〉 from the three paths SCOSAIN = |χA + χB + χC |2 =
cos4(ωC,avg�T/2), as shown in Fig. 7. This is reconciled by
the fact that |χA + χB + χC |2 = |χA + χB |2 + |χB + χC |2 +
|χA + χC |2 − (|χA|2 + |χB |2 + |χC |2). The collective atomic
recoil laser (CARL) mechanism is similar to this concept
presented here, in the sense that no interaction between atoms
is needed [30,31]. On the other hand, the Dicke phase transition
pertains to the BEC regime, and is not closely related to what
is being presented here [32].

III. PARAMETER INHOMOGENEITIES
AFFECTING SIGNAL

In this section, we present a detailed description of the
effect of inhomogeneity in Rabi frequency and Doppler shift
on the signal of a COSAIN. These inhomogeneities put
significant constraints on the ensemble size, temperature of the
trapped atoms, and the intensity profile and size of the laser
beams. The manifestations of these effects can be analyzed
by considering an ensemble of N identical noninteracting
and independent atoms of the type described in Sec. II.
A laser beam propagating along the z axis will impart a
momentum �k to an atom upon absorption of recoil from a
single photon, driving it to a superposition of the states |gi,0〉
and |ei,�k〉, with the amplitude of each state depending on
the intensity of the laser beam and the time of interaction.
The field amplitude of the laser beams is assumed to be of
Gaussian profile in x and y directions, and constant in the
z direction. At t = 0, the position of the ith atom is given
by r̃ = xi x̂ + yi ŷ + zi ẑ. Due to the thermal motion of the
atoms, each atom experiences a different Doppler shift and,
therefore, a different effective laser frequency ω0i . The net
consequence of this is that the ith atom picks up a detuning
of δi = kviz, where viz denotes the atom’s velocity in the z
direction. Furthermore, each atom sees a different electric
field Ei = x̂E0 exp[−(x2

i + y2
i )/2/σ 2

L] cos(ω0i t − kzi), due to
the finite extent of the ensemble. Here, σL represents the
width of the laser beam in the transverse directions. There-
fore, the Rabi frequency experienced by the ith atom is
given by �i = �0 exp[−(x2 + y2)/2σ 2

L], where �0 ≡ 〈gi |
(x · ρi) |ei〉 E0/� = 〈ei | (x · ρi) |gi〉 E0/� and ρi is the position
of the electron with respect to the nucleus.

In the electric dipole approximation, the Hamiltonian for
the ith atom can be written as Hi = |pi |2/2m + H0i + qρi · Ei,
where H0i is the internal energy of the atom, q is the
electronic charge, m is the mass of the atom, and pi is the
momentum of the ith atom. The COM motion kinetic energy
term can be expressed as |pi |2/2m = |piz|2/2m + |pi⊥|2/2m,
where piz is the momentum in the z direction, and pi⊥ is
the momentum in a direction perpendicular to z. Consider
first the effect of the second term: |pi⊥|2/2m. In a typical
experimental scenario, this accounts for the motion of the
atom, typically at a large velocity, in the x direction (see
Fig. 1), acquired, for example by the initial push imparted
to the trapped atoms before they enter the first interaction
zone. Thus, any variation in this due to a velocity spread
within the ensemble can be ignored, and this term can be
treated as an overall constant energy which can be subtracted
from the Hamiltonian. Consider next the first term: |piz|2/2m.

This term shows that the state |g,piz〉 coupled to |e,piz + �k〉
by the laser differs in energy by (�kviz + �

2k2/2m), where
the first term is the Doppler shift and the second term is the
recoil energy which is a constant for all atoms, and can be
subtracted from the Hamiltonian. Thus, after subtraction of
constant terms, the net effect of the kinetic energy term is to
account for the Doppler shift. Finally, as we have shown in
detail in Ref. [22], a fully quantum mechanical description
of the COM motion (e.g., by keeping track explicitly of the
momentum of the atoms in the |g〉 and |e〉 states) is not essential
in describing the collective states in the limit where the Rabi
frequency of the ith atom �i is large compared to the Doppler
shift due to the COM motion. This regime is valid for the
COSAIN, and, therefore, a semiclassical description of the
COM motion of each atom suffices for the case at hand.
Upon making the rotating-wave approximation, Hi can then be
expressed in the bases of |gi〉 and |ei〉 as Hi/� = ωg |gi〉 〈gi | +
ωe |ei〉 〈ei | + �i{exp[i(ω0i t − kzi)] |gi〉 〈ei | + H.c.}/2, where
ωe includes the Doppler shift. Performing the rotating-wave
transformation and removing any phase factors causes the
transformation Hi → H ′

i , such that H ′
i /� = −δi |e′

i〉 〈e′
i | +

�i(|g′
i〉 〈e′

i | + H.c.)/2. The new basis vectors |g′
i〉 and |e′

i〉 are
related to the original basis vectors as exp(−iωgt) |gi〉 and
exp{−i[(ωe + δi)t − kzi]} |ei〉, respectively. Assuming that
the ith atom is initially in the state cgi(0) |g′

i〉 + cei(0) |e′
i〉,

its quantum state can be written as

|ψ ′
i 〉 = eiδi t/2

{[
cgi(0) cos

(
�′

i t

2

)

− i
cgi(0)δi + cei(0)�i

�′
i

sin

(
�′

i t

2

)]
|g′

i〉

+
[
−i

cgi(0)�i − cei(0)δi

�′
i

sin

(
�′

i t

2

)

+ cei(0) cos

(
�′

i t

2

)]
|e′

i〉
}
, (7)

where �′
i =

√
�2

i + δ2
i is the effective coupling frequency

of this atom. The relative separation of the atoms along the
direction of propagation of the laser beam has no effect on
the fidelity of the collective states that can be attained by the
ensemble [22]. For the purpose of the present discussion, we
stay in the bases of |g′

i〉 and |e′
i〉.

At t = 0, the first pulse of duration τ is applied to the
atoms so that �0τ = π/2. The state of the ith atom following
this interaction can be written as |ψ ′

i (τ )〉 = cgi(τ ) |g′
i〉A +

cei(τ ) |e′
i〉B , where cgi(τ ) = exp(iδiτ/2)[cos (�′

iτ/2) − iδi sin
(�′

iτ/2)/�′
i] and cei(τ ) = exp(iδiτ/2)[−i�i sin (�′

iτ/2)/
�′

i]. The subscripts A and B denote the lower and upper arms
of the interferometer trajectory. The ensuing dark zone lasts
for a duration Td wherein the atoms are left to drift freely
so that at t = τ + Td , the COM of state |e′

i〉 is separated
from that of state |gi〉 by d = �kTd/m. During this dark
zone where no atom-light interaction is taking place, the
portion of the atom in state |e′

i〉 picks up a phase due to
detuning, making the state of the atom at the end of this pulse
|ψ ′

i (τ + Td )〉 = cgi(τ + Td ) |g′
i〉A + cei(τ + Td ) |e′

i〉B , where
cgi(τ + Td ) = cgi(τ ) and cei(τ + Td ) = exp(iδiTd )cei(τ ). At

063612-7



SARKAR, KIM, FANG, AND SHAHRIAR PHYSICAL REVIEW A 92, 063612 (2015)

this point, a second pulse of duration 2τ (π pulse) is applied
to atoms, and each trajectory undergoes further splitting, as
shown in Fig. 1. The π pulse can, in principle, be perfect only
for one group of atoms, such as those with δ = 0. For all other
atoms, the pulse duration will differ slightly from π . As a
result, for example, the |e′

i〉 state will not fully evolve into the
|g′

i〉 state, and a residual amount will stay in the |e′
i〉 state. In

the regime where �i � δi for all i, the effect of these residual
components can be safely ignored. Under this approximation,
the state of the atom is given by |ψ ′

i (3τ +Td )〉=cei(3τ +Td )
|e′

i〉A+cgi(3τ +Td ) |g′
i〉B , where cei(3τ +Td ) = exp(iδiτ )cgi

(τ + Td )[−i�i sin(�′
iτ )/�′

i] and cgi(3τ + Td ) = exp(iδiτ )
cei(τ + Td )[−i�i sin(�′

iτ )/�′
i]. Following the π pulse, the

atoms are further set adrift in another dark zone of duration
Td , where the component of the atom following trajectory A

picks up a phase due to detuning. The net effect of this is that
|ψ ′

i (3τ + 2Td )〉 = cei(3τ + 2Td ) |e′
i〉A + cgi(3τ + 2Td ) |g′

i〉B ,
where cei(3τ + 2Td ) = exp(iδiTd )cei(3τ + Td ) and
cgi(3τ + 2Td ) = cei(3τ + Td ). By the end of this dark
zone, the two trajectories converge and a third pulse
of duration τ is applied to the atoms. Therefore, the
state of the atom at t = 4τ + 2Td is |ψ ′

i (4τ + 2Td )〉 =
[cgi(4τ + 2Td )A |g′

i〉 + cei(4τ +2Td )A |e′
i〉] + [cgi(4τ +2Td )B

|g′
i〉 + cei(4τ + 2Td )B |e′

i〉], where cgi(4τ + 2Td )A =
exp(iδiτ/2)cei(3τ + 2Td )[−i�i sin(�′

iτ/2)/�′
i], cei(4τ +

2Td )A = exp(iδiτ/2)cei(3τ + 2Td ) [cos(�′
iτ/2) + iδi sin

(�′
iτ/2)/�′

i], cgi(4τ + 2Td )B = exp(iδiτ/2)cgi(3τ + 2Td )
[cos(�′

iτ/2) − iδi sin(�′
iτ/2)/�′

i], and cei(4τ + 2Td )B =
exp(iδiτ/2)cgi(3τ + 2Td )[−i�i sin(�′

iτ/2)/�′
i].

The signal of the CRAIN formed by the ith atom
is the measurement of the amplitude of state |g′

i〉 at
the end of the π/2-dark-π -dark-π/2 sequence due to
the interference of the components from the two paths.
Since the two arms yield identical proportions of both
|g′

i〉 and |e′
i〉, i.e., cgi(4τ + 2Td )A = cgi(4τ + 2Td )B and

cei(4τ + 2Td )A = −cei(4τ + 2Td )B , the signal of the CRAIN
formed is SCRAIN,i = αi , where αi = |2cgi(4τ + 2Td )A|2 � 1.
Since the signal of a COSAIN is the product of the signals
of the individual CRAIN’s formed by the constituent atoms
in the ensemble [22], the signal of the resulting COSAIN is,
consequently, SCOSAIN = ∏N

i SCRAIN,i = ∏N
i αi . However,

if a phase difference is introduced between the two paths,
the signal of the CRAIN’s and thus the COSAIN will
depend on it additionally. Assuming that an external phase
�φ is introduced to the path A of the interferometer, the
quantum state of the atom at t = 4τ + 2Td is given by
|ψ ′

i (4τ + 2Td )〉 = exp(i�φ)[cgi(4τ + 2Td )A |g′
i〉 + cei(4τ +

2Td )A |e′
i〉] + [cgi(4τ + 2Td )B |g′

i〉 + cei(4τ + 2Td )B |e′
i〉].

The amplitude of |g′
i〉 will, thus, be SCRAIN,i =

|1 + exp(−i�φ)|2αi = 4αi cos2(�φ/2). In the case where
�i � δi , αi = 1

4 and the signal shows the well-known
cos2(�φ/2) dependence. The resulting COSAIN signal
is, therefore, SCOSAIN = ∏N

i 4αi cos2(�φ/2). In the ideal
situation where each atom sees the same Rabi frequency
due to a uniform beam profile and there is no effective
detuning experienced by the atoms, αi = 1

4 and the signal
at the end of the interferometer sequence is given by
SCOSAIN = cos2N (�φ/2). This corresponds to the narrowing
of the signal fringe by a factor proportional to

√
N as

compared to the signal in a CRAIN.

In the more practical situation relevant for experimental
conditions, �i and δi for each atom are determined by the laser
beam intensity profile, and atom trap size and temperature, as
described above. To illustrate the effect of these parameters,
we assume that the atoms are first cooled down using a
magneto-optic trap arrangement. The trapped atoms are then
held in a cigar-shaped dipole trap to further cool them down
via evaporative cooling. The density of atoms in the trap is
assumed to follow a Gaussian spatial distribution so that its
length in the longitudinal direction is ξL, and its width in the
transverse direction is ξT .

A. Effect of velocity distribution

The Maxwell-Boltzmann velocity distribution of the
ensemble is fMB(v,TMB) = √

m/2πkBTMB× exp(−mv2/

2πkBTMB), where TMB is the temperature of the trap and
kB is the Boltzmann constant. Since the ensemble undergoes
interaction with a pair of counterpropagating laser beams,
the Doppler shift observed by the ith atom δi = (k1 + k2)vi

cannot be neglected compared to the Raman-Rabi frequency
experienced by it. Thus, at nonzero ensemble temperatures,
the signal contribution from each atom is significantly lower
than the maximum amplitude possible. The signal peak value
falls sharply with increasing N as illustrated in Fig. 8(a). It is
also evident from Fig. 8(b) that the signal of a COSAIN varies
significantly as a function of the temperature.

B. Effect of intensity profile of laser beams

Next, we consider the effect of the Gaussian spatial distribu-
tion of the Raman beams on the COSAIN. Assuming that the
beam waist size is w, the Raman Rabi frequency experienced
by the ith atom of the ensemble is �i = �0 exp(−2r2/w2).
Here, �0 is the peak value of the Raman Rabi frequency and
r is the radial distance of the ith atom from the center of
the beam. We consider that the average temperature of the
trapped atoms is TMB = 0.5 μK and the peak value of the
beam intensity is 15 mW/mm2 so that �0 = 1.9×107 rad/s.
Figure 9 shows the variation of the peak value of the SCOSAIN

with increasing value of ς = w/ξT .

0 2 4
N ×105

0

0.2

0.4

0.6

0.8

1

M
a
x
(S

C
O

S
A

I
N

)

0 2 4 6 8 10
TMB(μK)

0

0.2

0.4

0.6

M
a
x
(S

C
O

S
A

I
N

)

(b)(a)

FIG. 8. (a) Variation of signal peak value with N at 0.5 μK
average temperature and rectangular intensity profile beams at � =
1.9×107 s−1. (b) Variation of signal peak value with trap temperature
for N � 1.9×104.
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FIG. 9. Variation of the peak value of the SCOSAIN with increasing
MOT size to beam waist ratio at TMB = 0.5 μK for different values
of N .

C. Effect of spontaneous emission

In our analysis of the COSAIN, we have employed a model
of a three-level atom where the intermediate state (|a,�k1〉) is
adiabatically eliminated to reduce the system to an equivalent
two-level model. However, the actual population of this state
is approximately �2/δ2, with � = �1 = �2. In the time
that it takes for a 2π pulse (π/2-π -π/2 sequence sans the
dark zones), we can estimate that the number of spontaneous
emissions that occur per atom is 2(�2/δ2)τ� � 4π�/δ. For
δ = 200�, this number is about 6.3×10−2 and increases by
a factor of N for an ensemble of N atoms. Note that there
is no enhancement in the rate of spontaneous emission due
to superradiant effects since we are considering a dilute
ensemble. Consequently, the signal for both the CRAIN and
the COSAIN would deviate from the ideal one. The effect
of spontaneous emission on the CRAIN can be taken into
account by using the density matrix equation for a three-level
system. However, in this case, it is not possible to ascribe a
well-defined quantum state for each atom. This, in turn, makes
it difficult to figure out the response of the COSAIN since our
analysis for the COSAIN is based on using the direct product
of the quantum state of each atom. For a large value of N , it is
virtually impossible to develop a manageable density matrix
description of the system directly in terms of the collective
states. However, it should be possible to evaluate the results
of such a density matrix based model for a small value of N

(<10, for example). This calculation is a subject of our future
work.

For the general case of large N , one must rely on an
experiment (which, in this context, can be viewed as an analog
computer for simulating this problem) to determine the degree
of degradation expected from residual spontaneous emission.
It should be noted that the detrimental effect of spontaneous
emission, for both the CRAIN and the COSAIN, can be
suppressed to a large degree by simply increasing the optical
detuning while also increasing the laser power. This is the
approach used, for example, in reducing the effect of radiation
loss of atoms in a far-off resonant trap (FORT).
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FIG. 10. (a) SCOSAIN for N = 2×105. (b) Plot of ��/� as a
function of �N/N .

D. Effect of fluctuation in number of atoms

In both the CRAIN and the COSAIN, the signal is collected
multiple times and averaged to increase the signal-to-noise
ratio (SNR). The number of atoms in the ensemble can vary in
each run. In the CRAIN, a fluctuation of �N in N is reflected
in the signal amplitude by the same amount while the linewidth
does not change. This can be easily deduced from the fact that
SCRAIN = N cos2(�/2). Replacing N by �N will change the
signal. However, the FWHM which occurs at SCRAIN = N/2
will not change. More details on the classical and quantum
noise in the CRAIN and the COSAIN are given in Sec. VI A.
In this section, we discuss how the fluctuation in the number
of atoms in every run of the experiment affects the signal of
the COSAIN.

The signal of the COSAIN due to a fluctuation of �N in N

is given by SCOSAIN = cos(�φ/2)2(N±�N). Figure 10(a) shows
plot of a COSAIN signal with N = 2×105. The broken lines
represent the case where �N/N = 0.1. As is evident from
the above discussion, the linewidth increases (decreases) with
decreasing (increasing) �N . However, the peak of the signal
remains at unity, as opposed to the effect of inhomogeneity
of field and velocity distribution. The signal linewidth of the
COSAIN is approximately �(N ) = �(1)/

√
N . A fluctuation of

�N in N is reflected in the linewidth uncertainty as ��(N ) =
�(1)[(N − �N )−1/2 − (N + �N )−1/2]. The fractional fluc-
tuation is, therefore, ��(N )/�(N ) � (1 − �N/N+)−1/2 −
(1 + �N/N+)−1/2 = �N/N + 0.625(�N/N )3 + 0.492
(�N/N )5 + O[(�N/N )6]. This relation is depicted in
Fig. 9(b) by the broken line. For small �N/N , the fractional
change in FWHM is ��(N )/�(N ) � �N/N to a good
approximation, as shown by the solid line in Fig. 10(b).

IV. DETAILS OF PROPOSED EXPERIMENT

In order to illustrate the complete picture of the proposed
experiment, we consider 87Rb as the atomic species as an
example. We assume a scenario where the atoms will be
evaporatively cooled to a temperature of about 2 μK, in a
dipole force trap [33] and then released. The Raman pulses
will be applied while these atoms are falling under gravity.
Each Raman pulse will consist of a pair of counterpropagating,
right circularly polarized (σ+) beams. One of these beams
is red detuned from the F =1→F ′ =1 transition in the D1
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manifold by ∼1.5 GHz, and the other one is red detuned by
the same amount from F =2→F ′ =1 transition, also in the
D1 manifold. The second Raman beam is generated from
the first one by a modulator which is driven by an ultrastable
frequency synthesizer (FS) tuned to 6.834 682 610 9 GHz. We
assume that the atoms are initially in the F =1,mF =0 state.

Thus, the states |g〉 and |e〉 in Fig. 1(a) would correspond to
the hyperfine ground states F =1, mF =0 and F =2, mF =0,
respectively. The Raman transitions occur via the excited states
F ′ = 1, mF ′ = 1 and F ′ = 2, mF ′ = 1. The resulting four-
level system can be reduced to a two-level system in the same
way as that for the � system by adiabatically eliminating the
excited states together. The resulting system has a coupling
rate that is the sum of the two Raman Rabi frequencies. The
laser intensities are adjusted to ensure that the light shifts of
|g〉 and |e〉 are matched.

At the end of the π/2-π -π/2 sequence, a probe beam is
applied to measure the amplitude of one of the collective
states, via the method of zero-photon detection. To explain
this, we revert to the three-level model of the atom, and first
consider a situation where the atomic ensemble is contained
in a single-mode cavity with volume mode V , cavity decay
rate γc, resonant at ω1. The cavity is coupled to the transition
|a〉→|g〉 with coupling rate gc =|e〈r〉|E/�, where |e〈r〉| is
the dipole moment of the atom and E=√

2�ω1/ε0V . If an
off-resonant classical laser pulse of frequency ω2 is applied,
the cavity causes Raman transitions to occur between the
collective states |En〉 and |En−1〉 with the coupling rates
�′

n =√
N − n + 1

√
n�′, where �′ =�2gc/2�. This is illus-

trated in Fig. 11(a).
In the bad cavity limit (γc � √

N�′), the Raman transitions
will still occur. However, the system will not reabsorb the
emitted photon, i.e., the transition from |En〉 to |En−1〉 will
occur, but not vice versa. The field of such a photon is
E=√

2�ω1/ε0A cT , where A is the cross-sectional area of
the ensemble and T the interaction time [34]. This limit applies
here since there is no cavity, so that the stimulated Raman
scattering is an irreversible process that can be modeled as
a decay with an effective decay rate that is unique to each
|En〉. The decay rate from |EN 〉 is γN =4NL|gc�2|2/�2c=
Nγsa, where γsa =16L�′2/c [35], and that for |En〉 is γn =
n(N + 1 − n)γsa.

The read beam is extracted from the source and is passed
through a 99:1 (R/T : the ratio of the intensity reflectivity
R to the intensity transmittivity T ) nonpolarizing beam
splitter B1 before hitting the ensemble. The probability of
counterpropagating photons emitted from this interaction is
determined by the resonant optical density of the ensemble.
The direction of signal emission and the role of optical density
are discussed further in Sec. IV. The emitted photons pass
through B1 and, subsequently, through a half-wave plate. The
emitted photons and the probe beam are recombined by another
99:1 beam splitter B2 and sent to a high-speed detector, which
generates a dc voltage along with a signal at the beat frequency
∼6.834 GHz with an unknown phase. This signal is bifurcated
and one part is multiplied by the FS signal, while the other is
multiplied by the FS signal phase shifted by 90◦. The signals
are then squared before being combined and sent through a
low-pass filter (LPF) to derive the dc voltage. This dc voltage is
proportional to the number of scattered photons. A lower limit

FIG. 11. (Color online) (a) Interaction between the collective
states in the bad cavity limit. (b) Atomic interferometer experiment
for an ensemble of �-type atoms for detecting state |E0〉.

is set for the voltage reading and any values recorded above
it will indicate the presence of emitted photons. The duration
of the probe beam is set at γNT =10, where γN =Nγsa is
the slowest decay rate, to ensure that even the longest-lived
state is allowed to decay almost completely. If no photon
is emitted, the voltage will read below the limit, indicating
that the ensemble is in state |E0〉. If the ensemble is in any
other collective state, at least one photon will be emitted.
This process is repeated M times for a given value of �φ.
The fraction of events where no photons are detected will
correspond to the signal for this value of �φ. This process is
then repeated for several values of �φ, producing the signal
fringe for a COSAIN. The experimental scheme is illustrated
in Fig. 11(b).

Role of optical density

In this paper, we have assumed that the ensemble is cigar
shaped. This particular choice of configuration is made to
achieve the optimum optical density required for realizing
the detection scheme discussed above. Consider a four-wave
mixing process where three laser beams with wave vectors
�k1, �k2, and �k3 interact with a nonlinear medium. The process
can be viewed as the scattering of the �k3 beam, for example,
off the grating formed by the interference between the �k1 and
�k2 beams. Efficient phase matching (which is akin to Bragg
matching) then requires that the generated beam with a wave
vector �k4 will satisfy the condition that �k1 + �k2 = �k3 + �k4. The
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detection process for the COSAIN can be viewed as a time-
delayed four-wave mixing process. The coherence induced
in the ensemble has a spatial variation (i.e., a phase grating)
proportional to exp[i(�k1 + �k2)]. In the detection zone, we apply
a readout field with a wave vector �k3 = �k2. Thus, the scattering
field will have a wave vector �k4 = �k1. This implied that the
photon would be scattered in the direction opposite to that of
the probe.

In such a scattering process, the fraction of photon that
would be scattered in directions other than the direction
dictated by exact phase matching is determined by the resonant
optical density of the ensemble, which is given by ρ = σnξL

[34]. Here, σ � (λ/2)2 is the resonant scattering cross section,
n is the density, and ξL is the interaction length. The fraction of
the signal captured by the detector would then be (ρ − 1)/ρ.
This effect can be incorporated in the detector quantum
efficiency by writing it as η = η0(ρ − 1)ρ, where η0 is the
ideal quantum efficiency of the detector.

The proposed detection scheme demands that ρ � 75,
so that at least 98% of the emitted photons are captured,
assuming an ideal detector. As discussed in Sec. III A, the
signal amplitude falls exponentially with increasing ensemble
temperature, and N . However, the ensemble must not reach the
vicinity of critical density at low temperatures. Considering
these factors, we choose N = 2.6×104, ξL = 1 mm, and
ξT = 10 μm, deriving ρ = 78.45 for the D1 manifold of 87Rb.

V. ALTERNATE EXPERIMENTAL SCHEME

The limitation on cooling the ensemble to reduce the
effects of Doppler shift restricts the number of atoms. In turn,
this restricts the optical density that can be achieved for an
ensemble undergoing the COSAIN sequence. Here, we discuss
an alternate experimental scheme that raises the effective
optical density of the ensemble. In this scheme, each atom
is modeled as a four-level system, as shown in Fig. 12(a). The
metastable states |g〉 and |e〉 are coupled via two intermediate
states |a〉 and |b〉. This four-level system can be reduced
to an effective three-level system in the � configuration.
Each Raman pulse will consist of a pair of s-polarized and
p-polarized beams, applied in counterpropagating directions.
We assume that the s-polarized beam is moving in the +z
direction, and thus, can be represented as Es = (σ̂+Ẽs0 +
σ̂−Ẽs0) cos(ωst − ksz) = ŝEs0 cos(ωst − ksz). Similarly, the
p-polarized beam is moving in the −z direction, and thus, can
be represented as Ep = (σ̂+Ẽp0 − σ̂−Ẽp0) cos(ωpt + kpz) =
p̂Ep0 exp(iπ/2) cos(ωpt − kpz). Here, ωs and ωp are the laser
frequencies, and Es0 and Ep0 are the amplitudes of the electric
field of each laser beam. After making the rotating-wave
approximation and rotating-wave transformation, the atom-
laser interaction Hamiltonian elements are 〈g| �ρ · σ̂+Ẽs0 |a〉,
〈g| �ρ · σ̂−Ẽs0 |b〉, 〈e| �ρ · σ̂+Ẽp0 |a〉, 〈e| − �ρ · σ̂−Ẽp0 |b〉, and
the corresponding complex conjugates. Here, �ρ = xx̂ +
yŷ + zẑ = ρσ+ σ̂+ + ρσ− σ̂− + zẑ. The Hamiltonian can be
further simplified to H = ρgaẼs0 |g〉 〈a| + ρgbẼs0 |g〉 〈b| +
ρeaẼp0 |e〉 〈a| − ρebẼp0 |e〉 〈b| + c.c.

For concreteness, we use the D1 line of 87Rb to
illustrate the mechanism behind this scheme. Thus, the
states |g〉 and |e〉 in the left part of Fig. 12(a) would

FIG. 12. (Color online) (a) Raman transitions between |g ≡
F = 1,mF = 0〉 and |e ≡ F = 2, mF = 0〉 via |a ≡ F ′ = 1,

mF ′ = −1〉 and |b ≡ F ′ = 1, mF ′ = 1〉, (b) Raman transitions
between |g ≡ F = 1, mF = 0〉 and |e ≡ F = 2, mF = 0〉 via
|ã ≡ F ′ = 2, mF ′ = −1〉 and |b̃ ≡ F ′ = 2, mF ′ = 1〉, (c) Alternate
experimental scheme to increase the resonant optical density of the
ensemble by introducing a ring cavity in the detection zone.

correspond to the hyperfine ground states F = 1, mF = 0
and F = 2, mF = 0, respectively. The Raman transitions
occur via the excited states |a ≡ F ′ = 1, mF ′ = −1〉 and
|b ≡ F ′ = 1, mF ′ = 1〉. For this particular choice of lev-
els, ρga = −ρgb = ρea = ρeb = |ρ0|, |ρ0Ẽs0| = ��g/2, and
|ρ0Ẽp0| = ��e/2. The atom-laser interaction Hamiltonian
in this case is, therefore, H = �(�g |g〉 〈a| − �g |g〉 〈b| +
�e |e〉 〈a| − �e |e〉 〈b|)/2 + c.c. This four-level system can
be reduced to an equivalent three-level model by ro-
tating the {|a〉 , |b〉} Hilbert sub-space by π/4. The re-
duced Hamiltonian Hred is given by Hred = �(�g |g〉 〈−| +
�e |e〉 〈−|)/√2 + c.c., where |−〉 = (|a〉 − |b〉)/√2, as il-
lustrated in the right part of Fig. 12(a). The D1 line
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of 87Rb is also coupled via |ã ≡ F ′ = 2, mF ′ = −1〉
and |b̃ ≡ F ′ = 2, mF ′ = 1〉. In this case, −ρgã = −ρgb̃ =
−ρeã = ρeb̃ = |ρ̃0|, |ρ̃0Ẽs0| = ��̃g/2, and |ρ̃0Ẽp0| = ��̃e/2.
Thus, the Hamiltonian is H̃ = −�(�̃g |g〉 〈ã| + �̃g |g〉 〈b̃| +
�̃e |e〉 〈ã| + �̃e |e〉 〈b̃|)/2 + c.c. The reduced equivalent three-
level Hamiltonian is H̃red = �(�̃g |g〉 〈+̃| + �̃e |e〉 〈+̃|)/√2 +
c.c., where |+̃〉 = (|ã〉 + |b̃〉)/√2. These transitions are shown
in the Fig. 12(b). Thus, the system is equivalent to two
� systems, each with a different common mode detuning.
Adiabatic elimination of the |−〉 and the |+̃〉 states would
produce the effective two-level transition between |g〉 and |e〉,
just as in the case of excitations with circularly polarized fields
described earlier.

At the end of the π/2-dark-π -dark-π/2 sequence, the
ensemble is introduced into a ring cavity of finesse F . The
read beam is extracted from the p-polarized beam and enters
the cavity through port P 1, as illustrated in Fig. 12(c). The
scattered photons, which will be s polarized, are extracted with
a polarizing beam splitter B2. Note that this type of extraction
is not possible if the interferometer were to be realized with
circularly polarized beams. The repeated interaction of the
ensemble with the read beam increases the effective resonant
optical density of the ensemble to Fρ/π . Since the ensemble
is falling under gravity through the course of the experiment,
the cavity mode size must be reasonably large to accommodate
this motion. We assume that the length of the first dark zone
is 1 cm, and that the distance between the last π/2 pulse and
the read beam is also 1 cm. The duration of the read beam,
T is set at γNT = 10, where γN = Nγsa is the slowest decay
rate, to ensure that even the longest-lived state is allowed to
decay completely. It can be shown that for N = 2.6×104,
T � 3.3 ms, so that the distance traveled by the ensemble
during the interrogation period is �3.3 mm. The cavity mode
size must be at least twice as much as this distance.

VI. PERFORMANCE OF THE COSAIN COMPARED
TO THAT OF THE CRAIN

In order to compare the performance of the COSAIN to
that of the CRAIN, we analyze the stability of the phase
difference measured by them by investigating the fluctuation
that has both quantum mechanical and classical components,
i.e., δ�φ|total = (�SQM +�Sclassical)/|∂S/∂�φ|, where S(�φ)
is the signal. Since the signal depends on the phase, the
fluctuation is not necessarily constant. Therefore, there is no
unique value of signal-to-noise ratio (SNR) to compare unless
the COSAIN and the CRAIN are compared at a particular
value of the phase difference. Thus, the fluctuations must
be compared as a function of �φ. In Sec. VI A, we discuss
in detail the quantum fluctuation due to quantum projection
noise �P =√

P (1 − P ) [36], where P is the population of the
state being measured, and the classical noise in the long-term
regime. Since the measure of the signal depends on counting
zero photon events, the efficiency of the high-speed detector
affects the signal amplitude and width. In Sec. VI B, we discuss
the effect of the detector efficiency on the COSAIN signal. In
Sec. VI C, we discuss the collection efficiency of the COSAIN
as a measure of its performance as compared to the CRAIN.
The CRAIN suffers from imperfect collection efficiency due

to the latter’s dependence on experimental geometry. On the
other hand, the collection efficiency of the COSAIN is close
to unity owing to the fact that the fluorescence of photons is
collected through coherent Raman scattering. As a result, for
the same number of atoms detected per unit time, the COSAIN
is expected to outperform the CRAIN by as much as a factor
of 10.

A. Effect of quantum and classical noise

For the COSAIN to be a useful device for practical
metrology, it must outperform the CRAIN. To explore this,
we compare their stability in the short-term and the long-term
regimes. The stability of an interferometer is determined by
the fluctuations in �φ that have both quantum mechanical and
classical components. The phase difference �φ (expressed in
radians) is proportional to the rate of rotation of the gyroscope
�G (see Sec. II). Thus, �φ = μ�G, where μ depends on the
area of the interferometer and mass of the single atom.

In the CRAIN described above, the signal is a measure
of the probability of finding the atom in state |g〉, Pg =
cos2(μ�G/2). The signal is detected by probing the desired
state for a duration of time. If Ñ is the number of atoms per unit
time and T is the interrogation period, then the net signal is
SCRAIN = ÑT Pg . For comparison, we set the number of atoms
per trial in the COSAIN N , multiplied by the number of trials
M , to equal ÑT . Therefore, SCRAIN = MN cos2(μ�G/2).
Since the fluctuation in MN is

√
MN , the quantum mechanical

variance of the signal is �(SCRAIN,QM ) = √
MN sin(μ�G)/2

since the projection noise in a single two-level atomic
system is �SCRAIN = √

Pg(1 − Pg) [36]. In the case where
the probability of finding the atom in |g〉 is 0 or 1, the
projection noise vanishes. On the other hand, the projection
noise is at its peak value when Pg = 1

2 . The slope of the
signal is, therefore, ∂SCRAIN/∂�G = −MN sin(μ�G)/(2γsa),
where γsa = 1/2μ is the linewidth. Assuming ideal quantum
efficiency of the detection process, the fluctuation in the
rate of rotation can be written as δ�G|total = |(�SQM +
�Sclassical)/(∂SCRAIN/∂�G)|, which may be be considered as
noise (�S), over the rotational variation of signal (RVS) which
is (∂SCRAIN/∂�G). In the following text, we consider first the
effect of quantum noise. The quantum rotation-rate fluctuation
(QRF) for a CRAIN may be written as

δ�G|QM,CRAIN =
∣∣∣∣ �SQM

(∂SCRAIN/∂�G)

∣∣∣∣ = γsa√
MN

. (8)

It is, thus, merely a coincidence that the QRF turns out to
be constant in a CRAIN. Contrary to popular perception,
the QRF of an interferometer is, therefore, not fundamentally
the linewidth divided by the SNR. It should be evident from the
above discussion that the signal is not given by MN , and the
noise is not given by

√
MN . Instead, they both depend on �G.

In devices where the QRF is not a constant, as we will
show for a COSAIN, it is thus imperative that we carry out an
analysis of the QRF in a manner analogous to the analysis for
the CRAIN shown above. Thus, we will adopt the approach
that the net rotation-rate fluctuation δ�G should be thought
of as the ratio of the noise to the RVS. This approach should
be adopted universally for all metrological devices. Of course,
for devices where the relevant quantity is not the rotation rate,
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the definition should be adapted accordingly. For example, in
a clock that measures frequency, the relevant quantity can be
expressed as follows: net frequency fluctuation is the ratio of
the noise to the spectral variation of signal (SVS).

Following this approach, we calculate the net rotation-
rate fluctuation of the COSAIN and compare it to that
of the CRAIN. We will first calculate the quantum fluc-
tuation which is relevant in the short-term regime, and
then the classical fluctuation, which dominates in the long-
term regime. The signal of a COSAIN for M trials is
SCOSAIN = MPE0 = M cos2N (μ�G/2), and the projection
noise is �PE0 = √

PE0(1 − PE0) for a single trial, so that
�PE0 = √

M
√

PE0(1 − PE0) for M trials. Thus, the total
quantum mechanical noise in the signal is

�PE0 =
√

M cosN (μ�G/2)
√

1 − cos2N (μ�G/2), (9)

and the RVS is

∂SCOSAIN/∂�G =−MN cos2N−1(μ�G/2) sin(μ�G/2)/γsa.

(10)

Therefore, the QRF in the COSAIN is given by

δ�G(QM,COSAIN) = γsa

N
√

M

√
sec2N (μ�G/2) − 1

tan(μ�G/2)
. (11)

Thus, unlike the CRAIN, the phase fluctuation in a COSAIN is
not constant and depends on �G and, thus, on �φ. We consider
first the limiting case of �G → 0. Using Taylor expansion, it is
evident that δ�G(QM,COSAIN) = γsa/

√
MN , which is the same

as that of a CRAIN. This can be understood physically by
noting that while the fringe width becomes much narrower for
the COSAIN, the SNR also decreases due to the fact that a
single observation is made for all N atoms in a given trial.
The QRF for the COSAIN, given in Eq. (11), is smallest as
�G → 0 and increases as �G moves away from zero. The ratio
of the QRF for the CRAIN to that of the COSAIN is plotted
as a function of �G in the left side of Fig. 13 for M = 1000
and N = 104. Here, the vertical bars indicate the FWHM of
the COSAIN signal. It is clear from this plot that the QRF for
the COSAIN increases significantly as we move away from
resonance. However, since a servo will keep the value of �G
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FIG. 13. (Left) Ratio of the QRF in the CRAIN to the QRF in the
COSAIN, for M = 1000 and N = 104. It should be noted that the
fluctuation in the CRAIN is independent of �G while that of
the COSAIN varies significantly with it. (Right) Ratio of the RVS of
the COSAIN to the RVS of the CRAIN for M = 1000 and N = 104.
The vertical lines in the plots show where the FWHM of SCRAIN are.

confined to be close to zero, the phase stability of the COSAIN,
under quantum noise limited operation, should be very close to
that of the CRAIN, assuming that all the other factors remain
the same.

The classical rotation-rate fluctuation (CRF) δ�G|classical =
�Sclassical/(∂S/∂�G) is the limiting factor in the long-term
stability. While the quantum fluctuation is dominated by quan-
tum projection noise, the classical noise is dominated by noise
in the electronic and the mechanical components employed
to generate the interferometer signal. Since the pieces of
equipment used in the development of both the COSAIN
and CRAIN suffer from similar noise issues, the variance �S

is expected to be of the same order of magnitude for both
interferometers. On the other hand, the RVS (∂S/∂�G) is not
the same, as was shown previously. The ratio of the RVS of
the COSAIN to the RVS of the CRAIN is

∂SCOSAIN/∂�G

∂SCRAIN/∂�G

= cos2N (μ�G/2)

cos2(μ�G/2)
= PE0

Pg

, (12)

and is plotted in Fig. 8 (right). With �Sclassical,COSAIN ∼
�Sclassical,CRAIN, the ratio of the CRF of the COSAIN to that
of the CRAIN can be written as

δ�G(classical,COSAIN)

δ�G(classical,CRAIN)
� cos2(μ�G/2)

cos2N (μ�G/2)
. (13)

Similar to the ratio of the two interferometers in QRF, Eq. (13)
is smallest as �φ → 0 and increases as �φ moves away from
resonance. Thus, with respect to both quantum and classical
sources of noise, the COSAIN must be operated near �φ � 0
for optimal performance.

B. Effect of detector efficiency

The key aspect of the COSAIN is the measurement of the
amplitude of |E0〉, which indicates that each of the atoms
in the ensemble is individually in |g〉. The probe beam is
applied to the ensemble, which is in the quantum state |�〉 =
c0 |E0〉 + ∑N

n=1 |En〉. Interaction between the probe beam, the
ensemble, and the free-space vacuum modes on the other leg
would lead to production of photons unless c0 = 1 and cn = 0
for all n. These photons are detected using a heterodyning
technique, as described in Sec. II. The voltage output of the
heterodyning system is proportional to the amplitude of the
electric field corresponding to the photons.

In general, one or more photons are produced as |En〉 decays
to |En−1〉 and subsequent states. The time needed for these
photons to be produced depends in the vacuum and probe
field induced Raman transition rates between |En〉 and |En−1〉.
If we assume perfect efficiency for detecting each of these
photons, and wait for a time long compared to the inverse of
the weakest of these transition rates, then the detection of no
photons implies that the system is in state |E0〉. In practical
experimental conditions, we can choose a small threshold
voltage at the output of the heterodyning system as an indicator
of null detection. Thus, any signal below this threshold would
be viewed as detection of the quantum system in the |E0〉 state,
and all signals above this threshold would be discarded. The
number of events below this threshold for M trials carried out
with all the parameters of the experiment unchanged, is the
derived signal for the COSAIN. After collecting data for all
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the values of �φ that are of interest, the result would ideally
yield the plot of the COSAIN signal SCOSAIN = |c0|2, averaged
over M trials. However, with a fractional detector efficiency
and finite detection period, the signal would deviate from the
ideal result.

Consider first the effect of the detection period. Given the
decay rate of the off-resonant Raman process γn = n(N +
1 − n)γsa, the probability that |En〉 will produce zero photons
during the measurement period T is P0,n = e−γnT . Thus, the
total probability of zero-photon emission (which should vanish
ideally for any cn �= 0) is given by P0 = ∑N

n=1 |cn|2e−γnT . The
COSAIN signal SCOSAIN is the total probability of finding zero
photons during T , and can be expressed as SCOSAIN = |c0|2 +∑N

n=1 |cn|2e−γnT . Noting that γ0 = 0, we can rewrite this
as SCOSAIN = ∑N

n=0 |cn|2e−γnT . The lower and upper bounds
of SCOSAIN can be established by considering the strongest
and the weakest effective decay rates. The strongest decay
rate occurs for the middle state γN/2 = (N/2)(N/2 + 1)γsa ≈
(N2/4)γsa, where N � 1 approximation has been made. With
the substitution of the largest decay rate for each |En〉 into the
equation for SCOSAIN, the lower bound is set by

PL = |c0|2 + (1 − |c0|2) exp(−N2γsaT/4). (14)

On the other hand, the weakest decay rate is exhibited when
n = N , making the upper bound on the signal

PU = |c0|2 + (1 − |c0|2) exp(−NγsaT ). (15)

The signal of the COSAIN SCOSAIN produced in time T will
lie somewhere between PL and PU .

Consider next the effect of the nonideal detection efficiency
of the heterodyning scheme. For concreteness, we define η as
the efficiency of detecting a single photon. In practice, this
parameter will depend on a combination of factors, including
the quantum efficiency of the high-speed photon detector and
the overlap between the probe laser mode and the mode of
the emitted photon. For the present experiment, we are only
interested in knowing whether at least one photon is detected,
and not in the actual number of photons. When more photons
are emitted, the detector will have a better chance of observing
a nonzero signal, and hence distinguish dark counts from the
rest with more certainty. For example, if three photons are
emitted in time T , then four different outcomes are possible:

(i) All three photons are detected, with probability η3.
(ii) Two of the photons are detected with probability

η2(1 − η); this can occur for any two of the photons, so the
multiplicity is 3.

(iii) One photon is detected, with probability η(1 − η)2 and
multiplicity of 3.

(iv) No photons are detected, with probability ε3 ≡
(1 − η)3.

The sum of these probabilities is 1. The probability that at
least one photon is detected is thus (1 − ε3). For any state
n �= 0, the probability of detecting at least one photon is,
therefore, (1 − εn).

Moreover, we must also consider how the effective detec-
tion efficiency is influenced by the fact that the collective states
decay at different rates. Specifically, the n level for n > 0 might
produce N − n photons, N − n − 1 photons, down to zero
photons, depending on the length of the measurement time and

the effective decay rate. If the system is in |E3〉, for example,
it can produce up to three photons but with probabilities that
change over T . For a given time T , |E3〉 evolves into a sum
of the states |E3〉 → ∑3

k=0 an,k(T ) |Ek〉, where the coefficient
an,k(T ) depends on the effective decay rate that is specific to
each state, and changes as the states evolve in time. Thus, the
probability of detecting at least one photon is

P =
N−1∑
n=1

|cn|2
N∑

k=n

(1 − εk−n)|an,k(T )|2. (16)

Therefore, the probability of detecting no photon is

SCOSAIN = 1 − P = 1 −
N−1∑
n=1

|cn|2
N∑

k=n

(1 − εk−n)|an,k(T )|2.

(17)

The numerical analysis for a large number of atoms is
tedious and scales as at least (N − 1)! for the COSAIN.
However, we can take the worst case scenario to serve as
the upper bound for the signal. The worst case occurs when
only a single photon is produced as a result of |En〉 decaying
to only the |En−1〉 state, so that the index of the second
summation stops at k = n − 1. In this case, we can write
|an,n−1(T )| = (1 − e−γnT ) and the signal becomes

SCOSAIN = |c0|2 + ε(1 − |c0|2) + η

N∑
n=1

|cn|2e−γnT . (18)

Using the approach we employed in arriving at Eqs. (14)
and (15), we now consider the strongest and the weakest decay
rates for single-photon production to arrive at the lower and
upper bounds of the zero-photon count signal:

PL = 1 − η(1 − |c0|2)(1 − e−N2γsaT/4), (19)

PU = 1 − η(1 − |c0|2)(1 − e−NγsaT ). (20)

Figure 14 shows the plot of the ideal SCOSAIN PL and
PU over a variation in �φ for different values of detector
efficiencies and detection times for N = 10 000. It can be seen
from the plots that the upper and lower bounds on the signal
coincide with the ideal signal in the vicinity of �φ → 0. For
a larger size of the ensemble, a longer detection time ensures
that the gap between the bounds decreases and that they are
closer to the ideal signal.

If we set γsaT = 1, the signal depends on η as

SCOSAIN � 1 − η[1 − cos2N (�φ/2)] (21)

for large N and M = 1. Hence, we can calculate the QRF
for the COSAIN to see how it depends on the detector
efficiency, and how it compares to the CRAIN. For the
CRAIN, it is straightforward to show that with SCRAIN =
ηN cos2(�φ/2), the quantum mechanical noise in the signal
is �SCRAIN = √

ηN cos(�φ/2) sin(�φ/2) and the RVS is
|∂SCRAIN/∂�G| = (ηN/γsa) cos(�φ/2) sin(�φ/2), so that the
QRF is δ�G(QM,CRAIN) = γsa/

√
ηN . It is also straightforward

to calculate the QRF of the COSAIN. The total quantum
mechanical noise in the COSAIN signal in Eq. (21) is

�SQM,COSAIN = η cosN (�φ/2)
√

1 − cos2N (�φ/2), (22)
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FIG. 14. Plot of ideal signal (solid line), the upper bound (broken
line), the lower bound (dotted line) for different detection times T

and detector efficiencies η for N = 10 000.

and the RVS is

∂SCOSAIN/∂�G =−(ηN/γsa) sin(�φ/2) cos2N−1(�φ/2).

(23)

Thus, the QRF of the COSAIN is

δ�G(QM,COSAIN) =
∣∣∣∣ γsa

N
√

η

√
1 − cos2N (μ�G/2)

cosN−1(μ�G/2) sin(μ�G/2)

∣∣∣∣
(24)

which approaches γsa/
√

ηN as �G → 0. Assuming that the
detector efficiencies of the COSAIN and the CRAIN can be
essentially the same, they do not affect the ratio of the two
QRF’s.

C. Effect of collection efficiency

We consider next the effect of collection efficiency β on the
COSAIN and compare it to that of the CRAIN. The signal for
both the COSAIN and the CRAIN is directly proportional to
β. From Eqs. (8) and (11), it is easy to show that

ζ ≡ δ�G(QM,COSAIN)

δ�G(QM,CRAIN)
=

√
sec2N

(
μ�G

2

) − 1
√

N tan
(

μ�G

2

)
√

βCRAIN

βCOSAIN
,

(25)

where βCRAIN (βCOSAIN) is the collection efficiency of the
CRAIN (COSAIN).

As �G → 0, the quantity in the square brackets in Eq. (25)
approaches unity. Therefore, in this limit ζ , the ratio of the QRF
of the COSAIN to that of the CRAIN would depend on the ratio
of of the collection efficiencies of the detection process. The
coherent stimulated Raman scattering based detection method
used for the COSAIN process has a collection efficiency that
is close to unity, i.e., βCOSAIN � 1. In the case of the CRAIN,

the fluorescence is collected from the spontaneous emission
process, which emits photons in a dipolar radiation pattern. The
βCRAIN can be quantified by analyzing the detection method,
for example, of a CRAIN that makes use of cold atoms released
from a MOT. For a lens placed at a distance of r = 5 cm,
with a diameter of d = 2.5 cm, ignoring the dipolar pattern of
radiation for simplicity, and assuming it to be uniform in all
directions, this system yields a value of βCRAIN � d2/4r2 =
1

16 corresponding to ζ ∼ 0.25. In a typical CRAIN, various
geometric constraints make it difficult to achieve a value of
βCRAIN much larger than this. In practice, in cases where the
total volume occupied by the CRAIN has to be constrained
in order to meet the user requirements, the value of βCRAIN is
typically 1%, which would correspond to ζ ∼ 0.1. Thus, the
near-unity collection efficiency of the COSAIN can lead to an
improvement of the interferometer stability by as much as a
factor of 10.

Another method of detecting signal in a CRAIN is absorp-
tion. However, the use of absorption warrants the consideration
of many practical issues. The fluctuation in �φ is affected by
additional noise contributed by the laser used in absorption.
Let us assume that the observation time is T , and the number
of photons in the probe beam before absorption is NP , and that
the probe is in a coherent state. Furthermore, we assume that
the number of atoms passing through the detection process
within this time is NA, and the linewidth of resonance is �.
If the detection process produces an absorption by a fraction
of κ (i.e., κ = 1 represents perfect absorption of the laser
beam), and the detector has a quantum efficiency of η, then
the resulting fluctuation in �φ can be expressed as

δ�φabs = �

(
1√

ηκNA

+ 1√
ηκNP

)
, (26)

where the first term inside the parentheses represents the
quantum projection noise of the atoms, and the second term
represents the shot noise of the photons (which can be
regarded as the quantum projection noise of photons). The
validity of this expression can be easily verified by considering
various limits. Consider first the ideal case where ε ≡ ηκ = 1.
For NP � NA, the additional noise from the laser can be
neglected, and we get the fundamental noise limit due to
the quantum projection noise of the atoms. On the other
hand, if NP � NA, the quantum projection noise from the
atoms can be neglected, and the process is limited by the
shot noise of the laser. In general, the parameter ε represents
the overall quantum efficiency of the detection process. The
corresponding expression for detection via fluorescence is
δ�φF = γ /

√
ηρNA, where ρ is the fraction of fluorescence

hitting the detector.
The contribution from the second term in Eq. (26) shows

that the intensity of the laser beam used in absorption must
be made strong enough in order to make the effect of this
term negligible compared to the first term. However, since
the absorption process is nonlinear and saturates for a strong
laser beam, increasing the laser intensity often decreases the
effective value of κ . For example, consider an ensemble of
2×106 atoms with a linear optical density of 300, which can
be realized (as we have shown above) for an ensemble confined
to a cigar-shaped ensemble. For a weak probe, the value of κ

is unity. However, as the probe power is increased, the value

063612-15



SARKAR, KIM, FANG, AND SHAHRIAR PHYSICAL REVIEW A 92, 063612 (2015)

of κ decreases dramatically. This can be seen by considering
a situation where the value of NP is 109, for example. Since
the atomic transition used for absorption is not closed (i.e., not
cyclic), the ensemble can only absorb a number of photons
that are of the order of 2×106. Thus, the maximum value
of κ would be only about 0.002. Furthermore, if the area of
the laser beam (πw2) is much larger than the area of the
atomic ensemble (πξ 2

T ), then the value of κ can never exceed
the value of ξ 2

T /w2. We are not aware of any publication
reporting a cold-atom interferometer that makes use of
absorption for detecting the atoms, possibly because of these
constraints and considerations. Nonetheless, as a matter of
principle, an absorption process can certainly be used to reduce
the quantum frequency fluctuation below what is observed
in fluorescence detection systems, under proper choice of
parameters.

VII. SUMMARY

In this paper, we have described a collective-state atomic
interferometer (COSAIN) with N noninteracting, independent
atoms in an ensemble. We have shown that the signal
fringes are narrowed by

√
N compared to a conventional

interferometer, without entanglement. This effect is a result of
the interference among collective states, and is a manifestation
of interference at a Compton frequency of 10 × 1030 Hz, or a
de Broglie wavelength of 4.5 femtometer, for N = 106 and
v = 1 m/s. The essence of the COSAIN is the detection of
a collective state, rather than individual atomic states. For a
suitably chosen collective state, this is accomplished via a
null detection scheme, wherein the detection of zero photons

corresponds to the system being in this collective state. We
have presented a heterodyne detection scheme for measuring
this signal. In this scheme, the signal is detected by collecting
fluorescence through stimulated Raman scattering of Stokes
photons, which are emitted predominantly against the direction
of the probe beam, for a high enough resonant optical density.
We have shown that the fringe width reduction occurs due
to the interference of the multiple paths among the collective
states, and does not violate the fundamental quantum limit. We
have also proposed an excitation scheme, applicable to both a
conventional Raman atomic interferometer (CRAIN) as well
to the COSAIN, wherein the counterpropagating beams are
cross-linearly polarized. For the COSAIN, this scheme enables
an enhancement of the effective resonant optical density by
placing a cavity around the atoms in the detection zone. We
have analyzed in detail the effect of various inhomogeneities,
arising from the nonuniformity in experimental parameters,
on the COSAIN signal, and used this analysis to identify a
suitable choice of parameters for realizing a COSAIN. The
performance of the COSAIN has been compared to that of the
conventional Raman atomic interferometer (CRAIN) by ana-
lyzing quantum and classical fluctuations in frequency. When
the effects of detector efficiency and collection efficiency are
considered, it can be seen that the COSAIN may perform
10 times better than a CRAIN employing fluorescence
detection.
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