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a b s t r a c t

We describe a subluminal laser which is extremely stable against perturbations. It makes use of a
composite gain spectrum consisting of a broad background along with a narrow peak. The stability of the
laser, defined as the change in frequency as a function of a change in the cavity length, is enhanced by a
factor given by the group index, which can be as high as 105 for experimentally realizable parameters.
We also show that the fundamental linewidth of such a laser is expected to be smaller by the same factor.
We first present an analysis where the gain profile is modeled as a superposition of two Lorentzian
functions. We then present a numerical study based on a physical scheme for realizing the composite
gain profile. In this scheme, the broad gain is produced by a high pressure buffer-gas loaded cell of
rubidium vapor. The narrow gain is produced by using a Raman pump in a second rubidium vapor cell,
where optical pumping is used to produce a Raman population inversion. We show close agreement
between the idealized model and the explicit model. A subluminal laser of this type may prove to be
useful for many applications.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Recently, we have shown that the frequency of a superluminal
ring laser (SRL) becomes highly sensitive to perturbations [1–10].
It has also been shown that the change in the resonant frequency
of the so-called White Light Cavity [11–15], which is a passive
version of the SRL and contains a critically tuned fast light med-
ium, as a function of a change in the cavity length, is much larger
than that for a conventional cavity [3,8]. Recent studies [2,3,16–19]
have shown that the converse is also true. The resonant frequency
of a cavity containing a slow light medium with a large group
index changes very little as a function of a change in its cavity
length, thus making it highly stable. In this paper, we describe the
properties of the active version of such a slow light cavity: a
subluminal laser (SLL). It can also be thought of as the slow-light
counterpart of a superluminal laser.

Briefly, an SLL is a laser inside which the group velocity of light
is much slower than the vacuum speed of light. The behavior of
the SLL can be characterized by the group index, ng. We show that
the spectral sensitivity, defined as the change in lasing frequency
as a function of a change in the cavity length, is reduced by a factor
u (Z. Zhou).
of ng, the group index, which is defined as the ratio of the vacuum
speed of light and the group velocity of light. Since values of ng as
high as 105 or more can be readily achieved, an SLL can be a super-
stable laser.

Another interesting and potentially very important aspect of
SLL is that its measured linewidth (γMEAS), under quantum noise
and measurement bandwidth limits, which is given by the geo-
metric mean of the Schawlow-Townes linewidth (STL) and the
measurement bandwidth, can be substantially smaller than that of
a conventional laser. As we show in detail later in this paper, this
linewidth is expected to be smaller than that of a conventional
laser by a factor of ng . The large value of ng expected for an SLL
would thus imply a very small value of γMEAS. A laser with such a
small value of γMEAS, coupled with increased stability, may find
important applications in many areas.

Of course, almost all lasers operate under conditions where
n 1g > . Thus, any such laser in principle can be called an SLL. What
we describe here is a type of SLL where n 1g ≫ , with values as high

105 for experimentally realizable parameters. In principle, an SLL
with a significant group index can be realized by employing a gain
medium with a very narrow gain spectrum. An example of such a
laser is the Raman laser [20,21], in a Λ system where the gain
spectrum can be very narrow (�MHz or smaller), with the line-
width being determined by a combination of the Rabi frequency of
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the Raman pump, the optical pumping (required for producing
Raman population inversion between the low-lying states) rate,
the collisional decay and dephasing rates for the two low-lying
states, and the linewidth of the pump laser. In principle, such a
Raman laser experiences the enhanced stability due to the slow-
light effect. However, for experimentally accessible parameters,
the amount of gain that can be produced in such a laser is very
small, and decreases with decreasing linewidth of the gain spec-
trum, thus highly limiting the utility of such a laser. Finally, γMEAS is
inversely proportional to the root of the laser power. Thus, com-
pared to an SLL with a higher power, γMEAS for a Raman laser
would be much larger. In this paper, we propose a model that
produces an SLL with a stability enhancement factor (ng) as large
as 105, without limiting its output power.

The rest of the paper is organized as follows. In Section 2, we
describe the proposed scheme for making an SLL, including the
basic concept and the basic configuration. In Section 3, the
idealized analytical model is used for simulating the system.
In Section 4, the algorithm employed to solve the model using
actual gain medium is explained in detail. In Section 5, we
explain and discuss the quantum noise and measurement band-
width limited linewidth. A conclusion of the whole paper is
presented in Section 6.
2. Proposed scheme for making an SLL

In our proposed system for an SLL, as summarized in Fig. 1, the
gain spectrum consists of two parts: a narrow gain peak added on
top of a broad gain spectrum. We use Rb vapor as a specific ex-
ample of a medium that can be used to realize this. The broad gain
is provided by the same mechanism as is used for realizing the
conventional DPAL (Diode Pumped Alkali Laser) [22–28]. A spec-
trally broad pump is applied on the D2 line in a cell filled with a
high pressure (�1 atm or more) of Ethane or 4He. Rapid relaxation
(induced by the buffer gas) of atoms from the P3/2 to the P1/2
manifold thus leads to gain on the D1 line, with a spectral width as
much as 5 GHz for a buffer gas pressure of 1 atm, and much larger
with higher buffer gas pressures. DPALs with output powers of
close to 50 W [25] have been reported in the literature. The gain
peak is provided by adding to the cavity a second Rb cell, without
any buffer. An optical pumping beam is applied to this cell to
produce a Raman population inversion between the two hyperfine
levels in the ground state ( 1| 〉and 2| 〉 in Fig. 1(b)). A piece of the
linearly polarized output of the laser, at frequency f1, is rotated in
polarization by 90°, and shifted in frequency (by an acousto-
Fig. 1. (a) Schematic of the configuration for a s
optical modulator, AOM-1) by an amount that matches the ground
state hyperfine splitting in Rb (�3.034 GHz for 85Rb, for example)
to produce the Raman probe beam (at frequency f2), which is ap-
plied to the second cell, by using a polarizing beam splitter (PBS),
and then ejected from the lasing cavity by another PBS. Depending
on the transition used for the optical pumping, this beam produces
either a dip or a peak in the gain spectrum for the lasing field, with
a width that can be as narrow as a few hundred KHz. When a gain
dip is produced, the system becomes a superluminal laser under a
carefully tuned set of parameters that produces ng�0 [1]. When a
gain peak is produced, the system becomes an SLL, with the en-
hancement in stability given by the value of ng correspondi ng to
the gain peak, which can be as high as 105.

It should be noted that in order for the lasing mode to ex-
perience a peak (or dip) in the gain, it is necessary for the fre-
quency of the Raman probe beam to remain fixed at an absolute
value. To accomplish this, a piece of the Raman probe beam is
shifted in frequency by another AOM (AOM-2) to a value (f3) that
becomes resonant with an atomic transition (the 2 3| 〉 ↔ | 〉 tran-
sition, for example). The beam at frequency f3 is sent through a
reference.

cell (e.g., a saturated absorption cell), and a feedback generated
from the resonance observed in this cell is applied to the voltage
controlled oscillator (VCO-1) that determines the frequency of
AMO-1. Thus, if the frequency (f1) of the laser moves (e.g., due to a
change in the cavity length), the frequency output of VCO-1 is
automatically adjusted to ensure that f2 remains resonant, and
thereby f1 remains fixed, assuming that the frequency of the VCO
(VCO-2) used for AOM-2 remains stable. If a frequency synthesizer
is used instead of a VCO for AOM-2, it is possible to keep the
frequency of AOM-2 (i.e., (f2–f3)) very stable. However, for Rb,
Raman probe can be locked to a transition in 87Rb without shifting
its frequency, which means that AOM-2 is not necessary in this
approach. For example, the short term fractional frequency stabi-
lity of an oven-controlled crystal oscillator can be 10 /12 τ~ − ,
where τ is the observation time (in unit of second). Long term
stability can be provided by referencing this oscillator to an atomic
clock, for example. We should note that a similar scheme can also
be employed to increase the stability of a Raman laser, by locking a
frequency-shifted piece of the Raman pump to an atomic
transition.
3. Theoretical model of an SLL using idealized gain media

We first consider a model of an SLL with idealized gain media,
ubluminal laser and (b) Raman transitions.



Fig. 2. Gain profile based on the analytical model for an idealized SLL: (a) overall gain spectrum and (b) Raman gain.
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which can be analyzed easily through the semi-classical equation
of motion for a single model laser [29]. Inside the laser cavity, the
phase and the amplitude of the field, assumed to be in single
mode, are described by the following equations [29]:

2
, 1cυ φ Ω χ υ+ ̇ = − ( )

′
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E
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where υ is the lasing frequency; φ and E are the phase and the
amplitude of the lasing field, respectively; Ωc is the resonant
frequency of the cavity without any medium, which is given by
2πmc/L where L is the cavity length; Q is the quality factor of the
cavity; and χ' and χ'' are the real and imaginary part of the sus-
ceptibility of the gain medium, respectively. Suppose v0 is the
frequency around which χ'' is symmetric. We then define as L0 the
length of the cavity for which vc 0Ω = . In this model, while L varies
around L0, cΩ will derivate from v0.

For convenience, we define the parameters: Δ ≡
,c 0 0Ω υ δ υ υ− ≡ − . The derivatives dΔ/dL and dδ/dL characterize

the resonant frequency shifts produced from a perturbation of L in
the empty and filled cavity, respectively. The ratio between the
two derivatives, R d dL d dL/ / /δ Δ≡ ( ) ( ), determines whether the
amount of the frequency shift is enhanced (R41) or suppressed
(Ro1) by the intracavity medium. To derive an explicit expression
for R, we first solve Eq. (1) in steady state. After subtracting v0
from both sides, differentiating with respect to L, and applying
dv dδ= , we get d dL d dL v d dL d dL/ /2 / /2 / /δ χ δ χ Δ+ ( ) + ( ) =′ ′ . By sub-
stituting d dL/χ ′ by d d d dL/ /χ δ δ( )( )′ , R can be expressed as:
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Let us consider the case in which the cavity contains a medium
with a narrow absorption as well as a medium with a broad gain.
For simplicity we assume that the media overlap each other, and
fill the whole cavity. This configuration creates a net gain profile
with a dip in the center. The imaginary part of the susceptibility χ″
can then be written as:
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where the subscripts e and i refer to the envelop gain profile and
the narrow gain profile, respectively; Gk represents the gain
parameter (k¼ i, e), which is defined as G N /k k k 0ξ ε≡ ℏ , where Nk is
the density of the quantum systems for the medium, ξk is defined
as /k k k

2 2ξ Γ≡ ℘ (ℏ ) using the Wigner-Weisskopf model [30] for
spontaneous emission, and ε0 is the permittivity of free space and

k℘ is the dipole momentum. Here, kΓ presents the linewidth, kΩ is
the Rabi frequency, and ν is the lasing frequency. Then, applying
the modified Kramers-Kronig relation [31–33], the real part of the
susceptibility can be expressed as:
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We fist consider a conventional, homogeneously broadened
gain medium, i.e., Gi¼0. From Eqs. (4) and (5), χ' and χ'' are then
simply related to each other as / 2 / e0χ χ ν ν Γ‵ ‵‵ = − ( − ) . Under
steady state lasing condition, Q1/χ′ = −′ , which leads to

Q2 / e0χ ν ν Γ= − ( − ) ( )′ . As shown in this expression, χ' is a linear
function of v, and antisymmetric around v0. Noting that Q / c0ν Γ= ,
where Γc is the linewidth of the empty cavity, we find that
R n1/ g= , where n 1 /g c eΓ Γ= + . Since n 1g > , the sensitivity is
suppressed by a conventional gain medium when compared to an
empty cavity. In a typical laser, /c eΓ Γ is very small, so that this re-
duction is rather insignificant.

For the case of a conventional laser medium discussed above, it
was easy to determine the value of χ′ due to the simple ratio be-
tween χ′ and χ″. In particular, this ratio does not depend on the
laser intensity. However, for the SLL (i.e. Gi≠0), the two terms in χ″
are highly dissimilar (as shown in Fig. 2), i.e., the amplitude and
the linewidth of the narrow gain peak are significantly different
from that of the envelop profile. Therefore, it is no longer possible
to find a ratio between χ′ and χ″ that is independent of the laser
intensity. Thus, in this case, it is necessary to determine first the
manner in which the laser intensity depends on all the para-
meters, including v. We define I E 2≡ so that Ik k k

2Ω Γ ξ≡ . There-
fore, Eqs. (4) and (5) become:



Fig. 3. Real part of the susceptibility of the model for idealized SLL after lasing.
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By setting Eq. (6) equal to �1/Q, we get aI bI c 02 + + ≡ , where
a, b, and c are functions of various parameters. We keep the so-
lution that is positive over the lasing bandwidth:

I b b ac a4 / 22= (− + − ) ( ). Substituting this solution for I to eval-
uate i

2Ω and e
2Ω in Eq. (7), we get an analytic expression for χ′,

which is plotted in Fig. 3. We note next that the steady state so-
lution of Eq. (1) implies that L mc v2 / / 1 /2π χ= ( ) ( + )′ . Using this
expression, we can thus plot L as a function of v, as shown in Fig. 4.
All the parameters used for generating Figs. 2, 3, 4(a), and 5 are
listed in Table 1.

The condition used in generating Fig. 4(a) corresponds to a
group index of n 2.3 10g 0

5υ υ( = )~ × , as noted earlier the factor by
Fig. 4. Relationship between cavity length and lasing detuning for the idealized SL
enhancement.
which frequency fluctuation is suppressed in an SLL is given by
this value. As such, the conditions used here correspond to a
highly stable SLL.

It should be noted, however, that when the cavity length
changes sufficiently from its quiescent value of L0, e.g.:
L L 0.5 10 m0

5− = × − , corresponding to the dashed vertical line in
Fig. 4(a), there are multiple solutions of the laser frequency for a
given length. In order to understand what this implies, we con-
sider first a different set of parameters for which ng is much
smaller n 160g 0υ υ( ( = )~ ), and the corresponding plot of frequency
versus length is shown in Fig. 4(b). This figure can be divided into
three regions. In regions 1 and 3, there exists only one solution.
But in region 2, the laser equations have two or three solutions, i.e.
for a specific cavity length, there are multiple potential lasing
frequencies. However, the compound gain medium to be used for
realizing the SLL is homogeneously broadened, as discussed in
detail later in this paper. As such, mode competition is likely to
ensure that only one of these solutions will survive in steady state.
A detailed calculation involving nearly-degenerate multiple modes
and the gain competition between these modes is needed to de-
termine the exact behavior of the SLL in this region, and will be
carried out in the near future, using the practical example we
describe in the next section. Nonetheless, we can understand the
behavior of the laser over a limited range of length changes. As-
sume, for example, that the cavity length is L0 before the gain is
activated. In this case, the SLL will lase at 0υ υ= , corresponding to
the point O in Fig. 4(b). If LΔ now stays small enough so that the
SLL stays within zone 1, the SLL will move along the line AOA′. If is
large enough, but still smaller than OB OB= ‵ , the SLL will stay on
the BAOA′B′ line, since the gain in the two other possible modes
(within zone 2) will be highly suppressed, given the fact that the
SLL is already lasing in the primary mode. Similarly, if LΔ is large
enough so that the SLL moves to zone 3, it will jump to the unique
frequency corresponding to that zone. The only concern would be
when the value of LΔ is such that the SLL reaches point C or C′. In
that case, it is not clear whether its frequency will follow the CA
line or the CD line when LΔ is reduced. As stated above, this
question can only be answered by a study of the temporal dy-
namics of the cavity field. Thus, if the SLL is operated in such a
manner that LΔ remains less than OC OC= ‵ , it will operate in the
stable mode, which will experience the enhanced stability in fre-
quency. In what follows, we will refer to this range as the primary
L for (a) extremely high stability enhancement and (b) relatively low stability



Fig. 5. Laser output intensity as a function of (a) length change and (b) laser frequency. The inset in Fig. 5(a) shows a blown up view of the multiple values of the intensity
over a small vertical range.

Table 1
Parameters used in the analytical model.

Parameters Value

eΓ 2 5 10 s8 1π × × −

iΓ 2 10 s2 1π × −

v0 2 3.8 10 s14 1π × × −

Ne 1 106×
Ni 1 1014×
Q 1.5 107×
m 1282051
L0 0.99999978 m
Ge 6.667 10 7× −

Gi 6.667 10 3× −

Fig. 6. Desired region of operation for the idealized SLL: (a) laser de
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mode zone, and the stable mode as the primary mode.
In Fig. 5(a) we plot the output intensity of the laser as a func-

tion of the cavity length, for the parameters used in producing
Fig. 4(b). As can be seen, the intensity has a unique value for some
ranges of the cavity length, but has multiple possible values over
the ranges for which the frequency also has multiple values (see
Fig. 4(b)). Again, for our current model, it is not clear as to what
the actual value of the intensity would be, and this issue can only
be resolved by studying the temporal dynamics, as noted above.

In Fig. 5(b), we show the output intensity as a function of the
laser frequency. This plot is generated by combining the in-
formation presented in Figs. 4(b) and 5(a). As can be seen, there is
a one-to-one correspondence between the intensity and the fre-
quency, for all values of the cavity length. In Fig. 6(a), we show the
laser frequency versus the cavity length for the primary mode,
corresponding to the parameters used in Fig. 4(a). The resulting
enhancement in stability is shown in Fig. 6(b). As can be seen, the
tuning vs. length change and (b) enhanced stability of the SLL.



Z. Zhou et al. / Optics Communications 358 (2016) 6–19 11
stability of the SLL can be 105~ times higher than that of a con-
ventional laser when operating near the center frequency.
4. Theoretical model of an actual SLL

The gain spectrum we have considered so far is, of course, only
an ideal one. The behavior of a real system would certainly deviate
from such a model. Here, we consider an atomic system that can
be tailored to produce a gain spectrum that is very similar to the
ideal one presented above, and determine the expected behavior
of an SLL potentially realizable using such a system.

The broad gain profile can be realized using an alkali vapor cell,
containing both naturally occurring isotopes of Rb (87Rb and 85Rb),
in the presence of a high pressure buffer gas of Ethane. Such a gain
medium has recently been used to make the so called DPAL (diode
pumped alkali laser). It has also been used recently by us to de-
monstrate a high-speed optical modulator [34]. The narrow gain
profile can be realized using a separate vapor cell, placed in series,
containing only 85Rb, configured for Raman gain.

In this case we find the dispersion and absorption of the media
by solving the density matrix equations in steady state. Specifi-
cally, we employ the Liouville equation, which describes the evo-
lution of the density matrix:

⎡⎣ ⎤⎦t
i

H
t t

, ,
8source dephasing

ρ ρ ρ ρ∂
∂

~ = −
ℏ

~ ~ + ∂~

∂
+ ∂~

∂ ( )
͠

where, ρ̃ is the density matrix in the rotating wave basis, H̃͠ is the
modified time independent Hamiltonian under rotating wave ap-
proximations (RWA) augmented by adding complex terms to its
diagonal elements in order to represent decays of atomic levels,

sourceρ~ represents the influx of atoms into a state due to decay from
another state, and dephasingρ~ accounts for the dephasing between
states induced by the buffer gas [35]. Given the different config-
uration and parameters used for the two cells, it is necessary to
solve the Liouville equation separately for each cell.

4.1. Modeling the broad gain system

For the cell that produces the DPAL-type gain, we use a laser
beam tuned to the D2 transition of Rb as the optical pump. The
specific parameters, including the frequency of this pump, are
specified later in this section. This pump couples atoms from both
hyperfine levels in the 5S1/2 states to the 5P3/2 manifold. The
presence of a high pressure buffer gas (�0.5 atm of Ethane) causes
Fig. 7. Transitions in the broad gain
rapid dephasing of the coherence corresponding to the 5S1/2,
F¼1–5P3/2 transition as well as the coherence corresponding to
the 5S1/2, F¼2–5P3/2 transition, thus producing a homogeneous
broadening of each of these transitions by �7 GHz (for 0.5 atm
pressure of Ethane). Furthermore, the buffer gas cause the atom in
the 5P3/2 manifold to decay rapidly to the 5P1/2 manifold, at a rate
that is much faster than the radiative decay rate for the atoms in
the 5P1/2 manifold. As a result, a population inversion is created
between the 5P1/2 manifold and the 5S1/2 manifold. This inversion
provides the broad band gain profile.

The homogeneous broadening induced by the buffer gas is
significantly larger than the hyperfine splittings within the 5P1/2
and the 5P3/2 manifolds. However, it is of the order of the hy-
perfine splitting in the 5S1/2 manifold. Thus, we treat the 5P1/2 and
5P3/2 manifolds as single energy levels, but keep track of the two
hyperfine levels inside the 5S1/2 manifolds separately. Therefore,
we have a four level system, as shown in Fig. 7. Fig. 7(a) shows the
system for 85Rb. Here 1| 〉 is the 5S1/2, F¼2 state, 2| 〉 is the 5S1/2,
F¼3 state, 3| 〉 is the 5P1/2 manifold, and 4| 〉 is the 5P3/2 manifold.
The corresponding system for 87Rb is shown in Fig. 7(b), where 1| 〉
is the 5S1/2, F¼1 state, 2| 〉 is the 5S1/2, F¼2 state, 3| 〉 is the 5P1/2
manifold, and 4| 〉 is the 5P3/2 manifold. In our model, we consider a
cell that contains a natural mixture (72.16% of 85Rb, 27.84% of 87Rb)
of both stable isotopes of Rubidium. We compute the gain pro-
duced by each isotope separately, and add the weighted sum to
find the net gain. In doing so, we keep track of the differences in
the absolute frequencies of the transitions in these two isotopes.
For each isotope of Rb, we assume that the pump beam excites
both the 1 4| 〉 − | 〉 and the 2 4| 〉 − | 〉 transitions. We assume the
transition strengths (i.e. the Rabi frequencies) to be the same, for
both transitions, for simplicity. A more accurate calculation would
require taking into account the hyperfine levels within the 5P3/2
manifold, as well as the Zeeman sublevels within each hyperfine
states, and the various dipole-moment matrix elements among
them [35]. Such a calculation will be carried out and reported in
the near future. Similarly, for each isotope of Rb, we assume that
the probe beam excites both the 1 3| 〉 − | 〉 and the 2 3| 〉 − | 〉 transi-
tions, with equal transition strengths. Other potential issues in a
DPAL, such as non-Lorentzian behavior and bleaching of the pump
transition are not taken into account in our model [36,37].

The relevant decay and dephasing rates are illustrated schema-
tically in Fig. 8. In Fig. 8(a), we show only the rates of population
decays, due to radiative as well as non-radiative (i.e. collisional)
processes. Specifically, r3Γ and r4Γ are the radiative population
decay rates which are the inverses of the radiative lifetimes 27.7 ns
and 26.24 ns [38,39], respectively. Thus, 36.1 10 secr3

6 1Γ = × − , and
model for (a) 85Rb and (b) 87Rb.



Fig. 8. In the broad gain model: (a) population decay rates and (b) additional dephasing of coherence due to collisions.
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38.1 10 secr4
6 1Γ = × − . For simplicity, we again assume that the de-

cay rate of atoms from 4| 〉 to 1| 〉 is the same as that of atoms from 4| 〉
to 2| 〉, given by /2r4Γ . As noted earlier, use of a more accurate
branching ratio would require taking into account the dipole-mo-
ment matrix elements coupling all the Zeeman sublevels. A detailed
calculation of this type would be carried out and reported in the
near future. Similarly, we assume that the decay rates to 1| 〉 and 2| 〉
from state 3| 〉 are the same, given by /2r3Γ . The collisional decay rate,

43Γ , at a temperature of �100 °C, is known [24] to be
1.41 10 sec /Torr7 1~ × − . For a buffer gas pressure of 0.5 atm
(�380 Torr) assumed here, we thus have 5.36 10 sec43

9 1Γ ≃ × − . The
value of 34Γ is determined by assuming thermal equilibrium,
obeying the Boltzmann relation. Give that the number of Zeeman
sublevels in the 5P3/2 manifold is twice as large as the number of
Zeeman sublevels in the 5P1/2 manifold, for both isotopes, we have:

⎛
⎝⎜

⎞
⎠⎟

E
k T

2 exp ,
9B

34

43

43Γ
Γ

= − Δ
( )

where E43Δ is the energy difference between states 4| 〉 and 3| 〉, T is
the temperature in Kelvin, and kB is the Boltzmann constant. Given
that E43Δ is approximately the same in both 85Rb and 87Rb, we get
that 4.27 10 sec34

9 1Γ ≃ × − . Similarly, the decay rates 12Γ and 21Γ are
related to each other as:
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exp
E

,
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21

21Γ
Γ
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( )

where, for both isotopes, the ratio of the number of Zeeman sub-
levels in levels 2| 〉 and 1| 〉 is 5/3, and E21Δ is the energy difference
between levels 2| 〉 and 1| 〉. Since k T EB 21≫ Δ for both isotopes, we
get that 1.6712 21Γ Γ≃ . In the absence of buffer gas, the value of

/221Γ π( ) is 1 MHz~ . The exact effect of the high pressure buffer gas
(such as Ethane used to produce DPAL type gain) on this rate has, to
the best of our knowledge, not yet been studied, experimentally or
theoretically. We assume this effect to be small, and choose

2 10 sec21
6 1Γ π≃ × − , so that 2 1.6 10 sec12

6 1Γ π≃ × × − . These decay
terms also contribute to dephasing of the coherence among these
states. Specifically, if a state i| 〉 has a net population decay rate of iγ ,
and state j| 〉 has a net population decay rate of jγ , then the ijρ̃ co-

herence decays at the rate of i j
1
2

γ γ( + ). As mentioned above, the
population decay rates, as well as the dephasing due to these de-
cays, are taken into account by adding a term i /2jγ− ℏ to the j-th
diagonal element of the Hamiltonian. The influxes of atoms into
various states, on the other hand, are taken into account by the
second term in Eq. (8).

The coherence between two states can undergo additional
dephasing due to collisions with the high pressure buffer gas.
These buffer-gas-induced (BGI) dephasing rates are illustrated in
Fig. 8(b), and are accounted for by the third term in Eq. (8). The BGI
dephasing rates of 13ρ̃ , 23ρ̃ , 14ρ̃ , and 24ρ̃ are nearly equal to one
another, denoted as dΓ . The value of dΓ is known [24,40] to be

2 2 10 sec /Torr7 1π~ × × − , when Ethane is used as a buffer gas. Thus,
for a buffer gas pressure of 0.5 atm (�380 Torr) assumed here, we
get 2 7.6 10 secd

9 1Γ π≃ × × − . On the other hand, the BGI dephasing
rates of 34ρ̃ and 12ρ̃ for high pressure buffer gases have not been
investigated theoretically or experimentally. However, based on
the physical processes involved in producing the BGI dephasing of
the optical coherences (i.e. 13ρ̃ , 23ρ̃ , 14ρ̃ , and 24ρ̃ ), it is reasonable to
assume that these rates are comparable to dΓ . Specifically, we write
the BGI dephasing rate of 12ρ̃ ( 34ρ̃ ) as dαΓ ( dβΓ ), where α and β are
parameters with values of the order of unity. Since the amount of

12ρ̃ or 34ρ̃ coherence produced by the probe is expected to depend
very weakly on the actual value of α and β , as we will show later.
Based on these findings, we will use 1α β= ≃ for our model.

The modified time independent Hamiltonian under RWA aug-
mented by adding complex terms to its diagonal elements of 85Rb
and 87Rb can be written as:
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where the subscript k refers to 85Rb or 87Rb; sΩ and pΩ are the Rabi
frequencies of the signal field and the optical pump field, respec-
tively; sδ is the detuning of the signal field with respect to the
1 3| 〉 − | 〉 transition; pδ is the detuning of the pump field with re-
spect to the 1 4| 〉 − | 〉 transition; and kω is the energy difference
between levels 2| 〉 and 1| 〉 with the different values for the two
isotopes. The influx of atoms into various states is:

t
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2 3 3 4 4 , 12
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And the matrix which describes the BGI dephasing is:
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A typical gain spectrum of the DPAL with 85Rb, 87Rb, and
Ethane buffer gas is shown in Fig. 9. The parameters used in the



Fig. 9. A typical spectrum of the gain in the DPAL with Ethane as the buffer gas.
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calculation, such as cell length, temperature, buffer gas pressure,
etc., are listed in Table 2.

In Fig. 10, we illustrate how the gain is very weakly dependent
on the values of the parameters α and β . Consider first Fig. 10(a).
Here, the solid line shows the single-pass peak amplitude gain
(i.e., the peak value of the gain spectrum as a function of the de-
tuning, as shown in Fig. 9) through a DPAL cell with a fixed length,
plotted as a function of the parameter α for 85Rb. The dashed line
shows the value of 12ρ̃ . As expected, the value of 12ρ̃ decreases
with increasing α. However, it should be noted that even the lar-
gest value of 12ρ̃ is very small, in keeping with our observation
made earlier. Finally, we see that the value of the peak gain
Table 2
Parameters used in the numerical model.

Parameters Value

Total cavity length 0.72 m
Gain cell length 0.1 m
Raman cell length 0.1 m
Gain cell temperature
Raman cell temperature
D1 transition wavelength 795 nm
D1 transition life time 27.7 nsec
D2 transition wavelength 780 nm
D2 transition life time 26.24 nsec
Radiative decay rate from 2| to 1| 2 1 10 sec6 1π × × −

Radiative decay rate from 1| to 2| 2 1.6 10 sec6 1π × × −

Effective decay rate from 1| to 2| 2 1.6 10 sec7 1π × × −

Ethane buffer gas pressure 380 Torr 0.5 atm( )
Collisional decay rate from 4| to 3| 2 8.536 10 sec8 1π × × −

Collisional decay rate from 3| to 4| 2 6.796 10 sec8 1π × × −

BGI dephasing rate between 1| and 2| 2 20 10 sec Torr6 1π × × ( ⋅ )−

BGI dephasing rate between 3| and 4| 2 20 10 sec Torr6 1π × × ( ⋅ )−

BGI dephasing rate between any other two levels 2 20 10 sec Torr6 1π × × ( ⋅ )−

Frequency difference between 1| and 2| (85Rb) [38] 2 3.034 10 sec9 1π × × −

Frequency difference between 1| and 2| (87Rb) [39] 2 6.835 10 sec9 1π × × −

Frequency difference between 1| of 85Rb and 1| of
87Rb

2 2.501 10 sec9 1π × × −

Rabi frequency of the DPAL pump 2 1.516 10 sec9 1π × × −

Rabi frequency of the Raman pump 2 2.873 10 sec8 1π × × −

Raman pump detuning 2 1.6 10 sec9 1π− × × −

Saturated intensity 120 W/m2
remains virtually unchanged as a function of α, also in keeping
with the observation made earlier. Fig. 10(b) shows the peak gain
as a function of α (solid line) and 12ρ̃ for 87Rb. Here also, we see
that the gain remains virtually unchanged as a function of α. Fig. 10
(c) and (d) illustrate the corresponding plots as functions of β , for
85Rb and 87Rb, respectively. In these cases also we see that the gain
remains virtually unchanged as a function of β . These results
justify our use of 1α β= ≃ in the model.

4.2. Modeling the narrow gain system

As stated above, the narrow gain profile is realized by inserting
a separate vapor cell (Raman cell) inside the cavity to produce
Raman Gain. This vapor cell is filled with pure 85Rb without any
buffer gas. The basic scheme for this system is shown in Fig. 11(a).
Briefly, an optical pumping beam couples state 1| 〉 to state 4| 〉. This
produces a population inversion among levels 1| 〉 and 2| 〉. A Raman
pump is now applied on the 2 3| 〉 − | 〉 transition, but detuned sig-
nificantly above resonance. Under this condition, the probe beam
(which is now assumed to excite the 1 3| 〉 − | 〉 transition only) ex-
periences a narrow-band Raman gain centered around the two
photon resonance condition (i.e. the frequency difference between
the probe and the Raman pump matches the energy separation
between 1| 〉 and 2| 〉.

In Fig. 11(b), we show the effective 3-level system and the
various decay rates relevant to this excitation. For simplicity, we
assume that the radiative decay rates from 3| 〉 to 2| 〉 and that from
3| 〉 to 1| 〉 are equal ( /2r3Γ ). The decay rate from 2| 〉 to 1| 〉 is 21Γ , and
that from 1| 〉 to 2| 〉 is op12 12Γ Γ Γ′ = + . Here, 12Γ and 21Γ are collisional
decay rates that are related to each other by Eq. (10), which in turn
implies that 1.6712 21Γ Γ≃ . The additional decay from 1| 〉 to 2| 〉 at the
rate of opΓ accounts for the effect of the optical pumping. The
density matrix equation of evolution for this system can now be
written as:
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A typical gain spectrum of the Raman cell is shown in Fig. 12.
The parameters used in the calculation are listed in Table 2.

4.3. Combined effective susceptibility of the SLL

After solving the density matrix equation of evolution for the
two media in steady state, we can calculate the susceptibilities of
the two media using the expression [35]:
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where nD and nR are the number density of the atoms in the DPAL
and Raman media, respectively, and sat (in unit of Watts/m2) is
the saturation intensity which corresponds to a field that produce

/2s sat r3Ω Ω Γ= ≡ . We assume this saturated intensity to be twice as
big as that for the strongest transition in the D2 manifold. Then we



Fig. 10. (a) The solid line shows the peak value of single-pass amplitude gain (i.e., the peak value of the gain spectrum) through a DPAL cell for a fixed length, as function of α
for 85Rb. The dashed line shows the amplitude of the coherence between state 1| 〉 and 2| 〉, i.e., 12ρ̃ . (b) Same as figure (a), but for 87Rb. (c) The solid line shows the peak value
of single-pass amplitude gain as a function of β for 85Rb. The dashed line shows the amplitude of the coherence between state 3| 〉 and 4| 〉, i.e., 34ρ̃ . (d) Same as figure (c), but
for 87Rb.

Fig. 11. In the narrow gain model: (a) transitions, (b) effective 3-level model. Here opΩ , sΩ , and RpΩ are the Rabi frequencies for the optical pump, the signal field, and the
Raman pump field, respectively. s Rpδ δ( ) is the detuing of the signal (Raman pump) from the 1 3 2 3| 〉 − | 〉 (| 〉 − | 〉) transition, ν is the frequency of the signal, and 0ν is defined as
the value of the signal frequency corresponding to two photon resonance (i.e. s Rpδ δ= ).
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Fig. 12. A typical gain spectrum produced by the Raman cell.
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can write the effective susceptibility of the media in the SLL as:

L
L

L
L

0.72 0.28 , 19eff
D

D D
R

R85 87( )χ χ χ χ= + + ( )

where L is the cavity length, and LD and LR are the DPAL cell length
and the Raman cell length, respectively. The real and imaginary
parts of effχ must satisfy Eqs. (1) and (2) in steady state. Thus, Eq.
(19) and the steady state version of Eqs. (1) and (2) have to be
solved simultaneously, in a self-consistent manner. This requires
the use of an iterative algorithm to find the value of sδ and sΩ
(which in turn yields the frequency ν and the field amplitude E)
that satisfy these equations; which is described next.

4.4. Iterative algorithm for finding the frequency and the amplitude
of the SLL

The flow chart shown in Fig. 13 illustrates how the algorithm
works. For a certain cavity length, this algorithm is able to find the
frequency ν and the intensity of the laser field in steady state.
The frequency and the intensity of the field can be calculated from

sδ and sΩ using the following equations:

, 20Rp s0ν ν δ δ= − + ( )
Fig. 13. Flow-chart of the algorithm for solving the model for an actual SLL.
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where 0ν , Rpδ , sδ are as defined in Fig. 11.
The algorithm starts by assuming a pair of values of sδ and sΩ .

These yield a value of effχ , by evaluating Eq. (19). This value of effχ
(real and imaginary parts) is then fed into the steady state forms of
the laser equations (Eqs. (1) and (2) to find the values of sδ′ and sΩ′.
These values are then compared with the values of sδ and sΩ . If the
differences s sδ δ− ′ and s sΩ Ω− ′ are each below chosen threshold
values, the algorithm stops. If not, then either sδ′ or sΩ′ or both are
increased of decreased by a suitable step size, and the loop is re-
peated, until a convergence is found. We note that, under certain
conditions, there exist more than one set of solutions (i.e. com-
bination of laser frequency and intensity) for a given set of para-
meters and cavity length. In these cases, we have found that an
alternative form of the algorithm is more convenient to use. In this
form, we fix the value of the laser frequency, and then iterate to
find the values of the laser intensity and the cavity length that
satisfy the relevant equations.

To explore the relationship between the lasing frequency and
cavity length variations, we use this algorithm to find the lasing
frequency in steady state for different cavity lengths. Then the
stability improvement of the SLL can be calculated by comparing
the derivative of the frequency shift as a function of the cavity
length with that of a conventional laser.

4.5. Results

In Fig. 14(a), we show the output frequency as the cavity length
is varied. Here, L0 is a reference cavity length for which one of the
cavity modes matches the value of 0ν (note that the free spectral
range is much larger than the width of the Raman gain). As can be
seen, the shift in the laser frequency is small for a significant
spread in LΔ . Furthermore, there is a range of cavity lengths for
which multiple frequencies satisfy the equations. This is similar to
the behavior described in our analytical model earlier. In Fig. 14(b),
we again show a plot of the laser frequency as a function of the
cavity length, but for a different set of parameters. As can be seen,
there is a range around L L0= for which the frequency has a un-
ique value, with a small slope, corresponding to reduced stability.
The shaded area corresponds to the range of cavity length for
which the laser frequency is not unique, same as what we ob-
served earlier in Fig. 4(b). As we had noted earlier, a detailed
calculation involving nearly-degenerate multiple modes and the
gain competition between these modes is needed to determine
the exact behavior of the SLL in this region. Such a calculation
entails the use of an interaction Hamiltonian that cannot be ren-
dered time independent via rotating wave transformation. As
such, many higher orders terms in the solution of the density
matrix equations have to be computed, in a manner akin to what is
done in Ref. [41], although in a different context. This analysis will
be carried out and reported in the near future. Outside the shaded
area, the frequency is again unique. However, the asymptotic slope
is now much larger than that around L L0= , corresponding to the
normal sensitivity.

In Fig. 15(a), we show the laser power as a function of the cavity
length, for same parameters we used in producing Fig. 14(b). As
can be seen, the intensity has a unique value for some ranges of
the cavity length, but has multiple possible values over the ranges
for which the frequency also has multiple values (see Fig. 14(b)).
Again, this behavior is similar to what we presented earlier for the
analytical model. In Fig. 15(b), we show the output intensity as a
function of the laser frequency. This plot is generated by



Fig. 14. Relationship between cavity length and lasing detuning for the practical SLL for (a) extremely high stability enhancement and (b) relatively low stability
enhancement.
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combining the information presented in Figs. 14(b) and 15(a). As
can be seen, there is a one-to-one correspondence between the
intensity and the frequency, for all values of the cavity length.

In Fig. 16(a), we show the laser frequency as a function of the
cavity length, for the primary mode, corresponding to the para-
meters used in Fig. 14(a). The resulting enhancement in stability is
shown in Fig. 16(b). The sensitivity of the laser is reduced by a
factor of 105 when the lasing frequency is at 0ν ν= , corresponding
to L L0= . Finally, Fig. 17 shows the real part of the effective dis-
persion, effχ , as a function of the laser frequency. As can be seen,
the effective dispersion has qualitatively the same shape as that of
the analytical approach.
Fig. 15. Output power as a function of (a) length change an
5. Quantum noise limited linewidth of the SLL

As mentioned earlier, an interesting and potentially very im-
portant aspect of the SLL is its quantum noise limited linewidth.
For a conventional laser with a very flat gain spectrum, the STL can
be expressed simply as [42]:

P2
,

22STL
out c

2γ ω
τ

= ℏ
( )

where ω is the laser frequency, Pout is the output power, and τc is
the lifetime of the empty cavity, which can also be expressed
simply as the inverse of the empty cavity linewidth. In the pre-
sence of a non-negligible normal dispersion (but not for anom-
alous dispersion [43]), this expression is modified significantly
[44] as follows:
d (b) laser frequency, for the model for a practical SLL.



Fig. 16. Desired region of operation in the model for a practical SLL: (a) laser frequency as a function of cavity length and (b) stability as a function of laser frequency.

Fig. 17. Real part of the effective dispersion in steady state of the model for a
practical SLL.
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with iχ χ χ≡ ′ + ″ being the complex susceptibility of the gain
medium, and E is the amplitude of the laser field. The measured
linewidth, MEASγ , of a laser depends, of course, on the measurement
bandwidth, MΓ , which is the inverse of the measurement time, Mτ .
It has been shown [45–47] that the value of MEASγ is given simply
by the geometric mean of STLγ and MΓ , so that we can write:
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which can also be written as:

n P
1

2
1 ,

26MEAS
g c out M

2( )γ
τ

ω
τ

α= ⋅ ℏ +
( )

We consider first the expected value of α for the SLL. From the
definition of α and Eq. (24), it follows that:
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We recall that in Eqs. (6) and (7), we had defined I as being E 2.
Thus, we can use these equations to determine the numerator and
the denominator in Eq. (27):
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Since the SLL operates at a frequency that is very close to 0ν , we
have e 0Γ ν ν≫ − . Furthermore, since the background gain profile
is very broad, compared to the laser Rabi frequency, we can as-
sume Ee eΓ ξ≫ . Since Ge is much less than unity (see 0), we can
thus ignore the first terms in both Eqs. (28) and (29). We then get:
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For a typical range of values of 0ν ν− within the primary mode
zone, 1α ≪ . Thus, this parameter has a negligible effect on the
linewidth of the SLL. It should be noted that, in general, the effect
of α is found to be dominant only in systems where the laser
frequency is far away from resonances in the gain media (such as
in a semi-conductor laser [44]), and is negligible in a typical gas
laser [44,45] where the laser frequency is generally close to the
resonance in the gain medium.

Consider next the effect of the group index. As can be seen from
Eq. (26), the linewidth decreases with increasing value of ng . In-
tuitively, this can be understood as follows. The propagation of a
pulse is slowed down by a factor of ng . Thus, the effective travel
time for a pulse as it propagates in the cavity increases by a factor
of ng . Therefore, the effective cavity decay time is nc eff g c,τ τ= .

As we have noted above, Eq. (26) is not expected to be valid for
a superluminal laser, since the dispersion in that case is anomalous
(as noted before Eq. (23). The extent to which Eq. (26) is valid for a
very large value of ng has not yet been tested experimentally.
Realization of an SLL, followed by a careful measurement of MEASγ ,
would be a definitive way of answering this question. If Eq. (26)
turns out to be valid for large values of ng , then the SLL could also
become potentially very useful as a source of radiation with ex-
tremely high spectral purity.
6. Conclusions

In this paper, we have described a subluminal laser which is
extremely stable against perturbations of the cavity length. It
makes use of a composite gain spectrum consisting of a broad
background along with a narrow peak, produced via Raman gain
in a lambda-type three level system. The stability of the laser is
enhanced by a factor given by the group index, which can be as
high as 105 for experimentally realizable parameters. We have also
shown that the quantum noise and measurement bandwidth
limited linewidth of such a laser is expected to be smaller by the
same factor. We first presented an analysis where the gain profile
is modeled as a superposition of two Lorentzian functions. We
then presented a numerical study based on a physical scheme for
realizing the composite gain profile. In this scheme, the broad gain
is produced by a high pressure buffer-gas loaded cell of rubidium
vapor, pumped along the D2 transition. The narrow gain is pro-
duced by using a second rubidium vapor cell, where optical
pumping is used to produce a population inversion among the two
ground state hyperfine sublevels, and a Raman pump is used to
produce the gain. We have shown close agreement between the
idealized model and the explicit model. A super-stable subluminal
laser of this type, with reduced linewidth, may find many
applications.
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