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We present a protocol for an atomic interferometer that reaches the Heisenberg limit (HL), within a factor of
∼√

2, via collective state detection and critical tuning of one-axis twist spin squeezing. It generates a Schrödinger
cat state, as a superposition of two extremal collective states. When this Schrödinger-cat-state interferometer is
used as a gyroscope, the interference occurs at an ultrahigh Compton frequency, corresponding to a mesoscopic
single object with a mass of Nm, where N is the number of particles in the ensemble, and m is the mass of
each particle. For 87Rb atoms, with N = 106, for example, the interference would occur at a Compton frequency
of ∼2 × 1031 Hz. Under this scheme, the signal is found to depend critically on the parity of N . We present
two variants of the protocol. Under protocol A, the fringes are narrowed by a factor of N for one parity, while
for the other parity the signal is zero. Under protocol B, the fringes are narrowed by a factor of N for one
parity, and by a factor of

√
N for the other parity. Both protocols can be modified in a manner that reverses the

behavior of the signals for the two parities. Over repeated measurements under which the probability of being
even or odd is equal, the averaged sensitivity is smaller than the HL by a factor of ∼√

2 for both versions of the
protocol. We describe an experimental scheme for realizing such an atomic interferometer, and discuss potential
limitations due to experimental constraints imposed by the current state of the art, for both collective state detection
and one-axis-twist squeezing. We show that when the Schrödinger-cat-state interferometer is configured as an
accelerometer, the effective two-photon wave vector is enhanced by a factor of N , leading to the same degree
of enhancement in sensitivity. We also show that such a mesoscopic single object can be used to increase the
effective base frequency of an atomic clock by a factor of N , with a sensitivity that is equivalent to the HL, within
a factor of ∼√

2.
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I. INTRODUCTION

The phase sensitivity of an atomic interferometer, when
used as a gyroscope, depends on the Compton frequency, ωc =
mc2/h̄ of the individual particles interfering at nonrelativistic
velocities, where m is the mass of the particle, and c is the
velocity of light in vacuum [1–5]. Matter wave interferometry
with large molecules has successfully demonstrated the super-
position of quantum states with large mass [6]. However, these
interferometers, based on the Talbot effect, are not suited for
rotation sensing, owing to constraints in fabricating gratings of
small enough spacing, and associated effects of van der Waals
interaction. An alternative approach is to make a large number
(N ) of particles, each with a mass m, behave as a single object
with a mass of M ≡ Nm, and thus a Compton frequency of
Mc2/h̄. For a million 87Rb atoms, for example, this frequency
is ∼2 × 1031 Hz. In this paper, we describe a protocol that
enables the realization of an atomic interferometer where two
distinct quantum states of such a mesoscopic single object,
each with this Compton frequency, are spatially separated and
then recombined, leading to fringes that are a factor of N

narrower than what is achieved with a conventional atomic
interferometer. We show that the net metrological sensitivity
of this interferometer is equivalent to the Heisenberg limited
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(HL) sensitivity, within a factor of
√

2, of a conventional atomic
interferometer. Aside from the application to metrology, such a
mesoscopic Schrödinger-cat-state (SC) [7] interferometer may
serve as a test bed for the effect of gravitational interaction
on macroscopic decoherence and quantum state reduction
[8–12]. It also opens up a regime for exploring performance
of matter-wave clocks [13] in a regime with a much higher
Compton frequency.

When an atomic interferometer is configured as an ac-
celerometer, its sensitivity does not depend on the Compton
frequency. For a conventional Raman atomic interferometer
(CRAIN), for example, the phase shift is proportional to the
effective, two-photon wave vector keff, given by the sum of the
wave vectors of the fields used in producing the Raman excita-
tion. We show that, for the mesoscopic Schrödinger-cat-state
interferometer proposed here, the corresponding wave vector is
given by Nkeff, so that the fringes in this case are also narrowed
by a factor of N . As such, the net metrological sensitivity
of the Schrödinger-cat-state interferometer, when used as an
accelerometer, is also equivalent to the HL sensitivity, within
a factor of

√
2, of a conventional atom interferometric ac-

celerometer. We also show that such a mesoscopic Schrödinger
cat state can be used to increase the effective base frequency
of an atomic clock by a factor of N , with a sensitivity that is
equivalent to the HL, within a factor of

√
2, of a conventional

atomic clock.
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Recently, we presented a collective state atomic interferom-
eter (COSAIN) [14], where we showed that the effect of large
Compton frequency (when it is configured as a gyroscope) can
be observed indirectly by detecting one of the collective states.
These states, {|E0〉 , |E1〉 , . . . , |EN 〉}, commonly referred to as
the Dicke collective states, arise as a result of interaction of an
ensemble of identical independent atoms with a semiclassical
field [15–17]. The interferences between all of the collective
states lead to a reduction in signal linewidth by a factor of

√
N

as compared to a conventional Raman atomic interferometer.
However, this reduction by a factor of

√
N in linewidth is

countered by a corresponding reduction in the effective signal-
to-noise ratio (SNR) since the system now behaves as a single
particle. Therefore, the metrological sensitivity of a collective
state atomic interferometer is, under ideal conditions, the same
as that of a conventional Raman atomic interferometer. A
direct transition |E0〉 ↔ |EN 〉, bypassing all the intermediate
collective states, would result in a signal with a linewidth
narrowed by a factor of N , thus yielding HL phase sensitivity
despite the reduced SNR. However, there is no electric dipole
coupling between |E0〉 and |EN 〉 for noninteracting atoms, thus
excluding the possibility to achieve this goal with conventional
excitation.

Here, we propose a protocol that employs squeezing and a
rotation, followed by another rotation and unsqueezing [18–20]
in a collective state atomic interferometer to attain the HL
phase sensitivity, within a factor of

√
2. Explicitly, we apply

one-axis-twist (OAT) spin squeezing [21–27] around the ẑ axis
(defined as the spin-up direction) immediately following the
first π/2 pulse in a conventional Raman atomic interferometer,
which aligns the mean spin vector along the ŷ axis. Prior to the
application of the squeezing interaction, the population of the
collective states follow a binomial distribution, corresponding
to the coherent spin state [17]. As the strength of squeezing
is increased, the distribution begins to flatten out, eventually
generating a Schrödinger cat state corresponding to an equal
superposition of |E0〉 and |EN 〉 [28] when the one-axis-twist
squeezing is followed by a π/2 rotation around the x̂ axis.
The usual dark-π -dark sequence follows, at the end of which
we apply a corrective rotation by π/2 (rather than −π/2,
due to the state inversion caused by the π pulse) around
the x̂ axis, and then apply a corrective reverse-one-axis-twist
squeezing interaction about the ẑ axis. Finally, the last π/2
pulse effectuates interference between the collective states,
and the signal is detected by measuring the population of
one of the collective states. Since the process makes use of
a superposition of two mesoscopic quantum states, we name
this a Schrödinger-cat-state atomic interferometer (SCAIN).

In recent years, much theoretical and experimental work
has been carried out to improve the precision of atomic
sensors using quantum nondemolition measurements or spin
squeezing, both of which generate entanglement among the
atoms. For example, a reduction in variance by a factor of
5.6 dB was observed in Ref. [23] using 5 × 104 atoms, using
cavity assisted one-axis-twist spin squeezing. In Ref. [29], the
maximum reduction in variance observed was 8.8 dB, also
using 5 × 104 atoms, but employing quantum nondemolition
measurement. In Ref. [30], a suppression of variance by a
factor of 10.5 dB was achieved for 4.8 × 105 atoms, using
quantum nondemolition measurement. In Ref. [31], a reduction

in variance by a factor of 20.1 dB was observed for 5 × 105

atoms, using a combination of one-axis-twist spin squeezing
followed by a quantum nondemolition measurement. While
these results are impressive and encouraging, it should be
noted that the degree of improvement achieved is far below
the HL, under which the variance is reduced by a factor of
N compared to the standard quantum limit (SQL); for N =
5 × 105, for example, this would correspond to a suppression
of variance by a factor of 57 dB. Thus, it is clear that much work
remains to be done to reach the full potential of improving the
sensitivity of atomic sensor via use of quantum entanglement.
For the protocol proposed here, under ideal conditions, the
corresponding reduction in variance would be by a factor
of 54 dB, for N = 5 × 105 [32]. Of course, realization of
the protocol proposed here, under ideal conditions, would
be difficult using the types of experimental one-axis-twist
squeezing apparatus that have been implemented in various
laboratories, such as those in Refs. [23] and [31]. However,
it may be possible to devise alternative techniques or cavities
with much higher cooperativity factors to approach the degree
of improvement predicted by the protocol proposed here, as
discussed in Sec. IV.

The rest of the paper is arranged in the following way.
In Sec. II, we review briefly the theory of the conventional
Raman atomic interferometer and the collective state atomic
interferometer. Section III provides a detailed description of
the protocols employed for a Schrödinger-cat-state atomic
interferometer, as well as the resulting signal fringes and
sensitivities. Section IV gives a brief description of the two key
experimental components for implementing a Schrödinger-
cat-state atomic interferometer (namely, collective state de-
tection and one-axis-twist squeezing), and a discussion about
the practical challenges and limitations. In Appendix A, we
discuss how the physical interpretation for the phase mag-
nification in the Schrödinger-cat-state atomic interferometer
is different for different modes of operation: enhancement of
the Compton frequency for rotation sensing, and enhancement
of the effective two-photon wave vector for accelerometry.
Finally, in Appendix B, we present a detailed description of
the Schrödinger-cat-state atomic clock (SCAC).

II. BRIEF REVIEW OF THE CONVENTIONAL RAMAN
ATOMIC INTERFEROMETER AND THE COLLECTIVE

STATE ATOMIC INTERFEROMETER

In order to illustrate clearly the mechanism for realizing the
Schrödinger-cat-state atomic interferometer, and the charac-
teristics thereof, as well as to establish the notations employed
in the rest of this paper, it is useful to recall briefly the relevant
features of a conventional Raman atomic interferometer and a
collective state atomic interferometer. A conventional Raman
atomic interferometer makes use of N noninteracting identical
three-level atoms with metastable hyperfine states |↓, pz = 0〉
and |↑, pz = h̄k〉, (where k = k1 + k2, with k1 and k2 being the
wave numbers for the two counterpropagating beams, and pz

being the z component of the linear momentum), and an excited
state |e〉, in the � configuration, reduced to an equivalent two-
level model [33]. We represent these atoms by a collective spin
Ĵ = ∑N

i ĵi , where ĵi represents the pseudospin-1/2 operator
for each atom. The ensemble is initially prepared in a coherent
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spin state: |−ẑ〉 ≡ |E0〉 = ∏N
i=1 |↓i〉. Here, we have employed

the notation that |ŵ〉 represents a coherent spin state where the
pseudospin of each atom is aligned in the direction of the unit
vector ŵ. Under a pulse sequence of π/2-dark-π -dark-π/2,
each atom’s wave packet first separates into two components,
then gets redirected and finally recombined to produce an
interference which is sensitive to any phase difference φ

between the two paths. As an example, we consider the case of
rotation where an atomic interferometer gyroscope rotating at
a rate �G about an axis normal to the area � accrues a phase
difference φ = 2ωc��G/c2 between its trajectories [34]. The
effect of the overall phase shift φ due to rotation is uniformly
spread throughout the interferometric sequence. However, for
theoretical convenience, we introduce it in two equal parts
during each of the dark zones (a justification of this approach
can be found in Ref. [35]). The final state of the atoms is
given by

|ψ〉 = e−i(π/2)Ĵx ei(φ/2)Ĵz e−iπĴx e−i(φ/2)Ĵz e−i(π/2)Ĵx |−ẑ〉

=
N∏

i=1

−1

2
e−iφ/2[(1 + eiφ ) |↓i〉 + i(1 − eiφ ) |↑i〉]. (1)

In a conventional Raman atomic interferometer, φ is
measured by mapping it onto the operator representing the
difference in spin-up and spin-down populations: Ĵz = (N̂↑ −
N̂↓)/2, where N̂↑ = �i |↑i〉 〈↑i | and N̂↓ = �i |↓i〉 〈↓i |. The
signal, which is a measure of the population of |↓〉 is,
therefore, SCRAIN = J + 〈−Ĵz〉 = N cos2(φ/2), where J =
N/2. The corresponding fringe linewidth is given by � =
c2/(2ωc�). The measurement process causes wave-function
collapse of the individual spins from the superposition state
to |↓〉, resulting in quantum projection noise in the mea-
sure of the signal [36], �SCRAIN = �(−Ĵz) = √

N/4 sin(φ),
where �Ĵz is the standard deviation of Ĵz. Assuming ideal
quantum efficiency, the quantum fluctuation in rotation-
rate (QFR) is given by ��G|CRAIN = |�(−Ĵz)/∂�G

〈−Ĵz〉| =
c2/2ωC�

√
N , where ∂�G

≡ ∂/∂�G.
The collective state atomic interferometer differs from a

conventional Raman atomic interferometer in that the mea-
surement of the signal is done on a Dicke collective state
of the ensemble, instead of a single atomic state [14]. The
Dicke states are eigenstates of Ĵz and can be represented as

|En, pz = nh̄k〉 = �
(N

n )
k=1Pk |↓N−n ⊗ ↑n〉 /

√
(Nn ), where Pk is

the permutation operator [15]. As a result of the first π/2 pulse,
the initial state |E0, pz = 0〉 is coupled to |E1, pz = h̄k〉, which
in turn is coupled to |E2, pz = 2h̄k〉, and so on, all the way up to
|EN, pz = Nh̄k〉. This causes the ensemble to split into N + 1
trajectories. The dark zone that immediately follows imparts a
phase einφ/2 to |En〉. At this point, the π pulse generates a flip
in the individual spins, causing |En〉 to become |EN−n〉, and
vice versa. The second dark zone lends a phase ei(0.5N−n)φ

to |En〉. The mathematical derivation of this mechanism is
discussed in detail in Ref. [14]. The last π/2 pulse causes
each of the collective states to interfere with the rest of the
states. The collective state atomic interferometer can, thus, be
viewed as an aggregation of interference patterns due to (N + 1

2 )
interferometers working simultaneously.

The narrowest constituent signal fringes are derived from
interferences between states with the largest difference in
phase, i.e., |E0〉 and |EN 〉. The width of this fringe is �/N .
The widths of the rest of the signal components range from �

to �/(N − 1). The signal, which is the measure of population
of |E0〉, is the result of the weighted sum of all the pairwise
interferences with this state. This is detected by projecting
the final state of the ensemble, |ψ〉 on |E0〉. Thus, SCOSAIN =
〈Ĝ〉 = cos2N (φ/2), where Ĝ ≡ |E0〉 〈E0|. The quantum pro-
jection noise is the standard deviation of Ĝ, given by
�SCOSAIN = cosN (φ/2)

√
1 − cos2N (φ/2). The QFR of the

collective state atomic interferometer is thus ��G|COSAIN =
|�Ĝ/∂�G

〈Ĝ〉|. Under quantum noise limited operation,
this equals (��G|CRAIN/

√
N )|

√
sec4J (φ/2) − 1/ tan(φ/2)|.

Therefore, for �G → 0, the rotation sensitivity of the col-
lective state atomic interferometer is the same as that of a
conventional Raman atomic interferometer, which is the SQL,
assuming all the other factors remain the same. One way
of surpassing the SQL is to suppress the contribution of the
constituent fringes broader than �/N . This is precisely what
happens in the Schrödinger-cat-state atomic interferometer,
which makes use of a squeezed spin state of the ensemble:
|ψe〉 = e−iμJ 2

z |ŷ〉, where μ is the squeezing parameter, and ŷ
is the quantum state produced by the first π/2 pulse.

III. SCHRÖDINGER-CAT-STATE ATOMIC
INTERFEROMETER

The Schrödinger-cat-state atomic interferometer can be
operated under two different protocols, which differ by the
choice of the axis around which we apply the rotation that
maximizes the degree of observed squeezing. In one case
(protocol A), the rotation is around the x̂ axis while in the
other (protocol B), the rotation is around the ŷ axis.

A. Protocol A

We first consider protocol A, focusing initially on the special
case where the squeezing parameter μ is π/2, as illustrated
in Fig. 1, with the case of an arbitrary value of μ to be
discussed later. The one-axis-twist spin squeezing effect is
achieved by applying the squeezing Hamiltonian, HOAT =
h̄χJ 2

z , for a duration of time τ such that μ = χτ . For even N ,
HOAT transforms |ŷ〉 to |ψe〉 = (|ŷ〉 − η |−ŷ〉)/

√
2, where η =

i(−1)N/2, representing a phase factor with unity amplitude.
Rotating |ψe〉 by an angle of ν = π/2 about the x̂ axis yields
the Schrödinger cat state |ψSC〉 = (|E0〉 + η |EN 〉)/

√
2. At the

end of the intermediate dark-π -dark sequence, the state of
the ensemble is eiφJz/2e−iπJx e−iφJz/2 |ψSC〉 = (eiNφ/2η |EN 〉 +
e−iNφ/2 |E0〉)/

√
2. As discussed above, the interference be-

tween states with a phase difference Nφ produces signal
fringes narrowed by a factor of N . To measure φ, we seek
to undo the effect of squeezing on the system. This is accom-
plished in two steps. First, we apply another rotation ν = π/2
(rather than −π/2, as noted earlier, due to the state inversion
caused by the π pulse) about the x̂ axis. Thereafter, the
untwisting Hamiltonian −HOAT is applied. Finally, the last π/2
pulse is applied to catalyze interference between the resulting
states. The signal arising from this interference depends on φ

as SSCAIN = 〈Ĝ〉 = sin2(Nφ/2).
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FIG. 1. Illustration of the Schrödinger-cat-state atomic interferometer scheme for protocol A. For even N : (a) For μ = π/2, the Husimi
quasiprobability distribution is split into two circular components located on the opposite faces normal to the ŷ axis of the Bloch sphere.
(a) → (b) The Husimi quasiprobability distribution of the squeezed spin state (|ψe〉) is rotated by π/2 about the x̂ axis to yield the Schrödinger
cat state; note the components on both top and bottom of the Bloch sphere in (b). (c) Distribution of collective states in the rotated squeezed
spin state, showing 50% in state |E0〉 and 50% in state |EN 〉. For odd N : (d) For μ = π/2, the Husimi quasiprobability distribution is split
into two circular components located on the opposite faces normal to the x̂ axis of the Bloch sphere. (d) → (e) rotation about x̂ axis does not
transform the squeezed spin state. (f) Distribution of collective states in the rotated squeezed spin state. These results also hold for the case of
atomic clocks, as described in Appendix B.

When N is odd, initial squeezing produces |ψe〉 = (|x̂〉 +
ζ |−x̂〉)/

√
2, where ζ = i(−1)(N+1)/2, also representing a

phase factor with unity amplitude. For φ = 0, the se-
quence e−iνJx eiφJz/2e−iπJx e−iφJz/2e−iνJx only causes an iden-
tical phase change in each of these states. Application of the
unsqueezing Hamiltonian −HOAT then restores the system to
|ŷ〉, and the final π/2 pulse places the system in the |ẑ〉 state,
which is the same as the collective state |EN 〉. Since we detect
the collective state |E0〉, the whole sequence thus generates
a null signal. For reasons that are not manifestly obvious
due to the complexity of the states, but can be verified via
simulation, the same conclusion holds for an arbitrary value
of φ. Over repeated measurements, the probability of N being
even or odd is equal. Thus, for M trials, the average signal
of the Schrödinger-cat-state atomic interferometer in this
regime is SSCAIN = M sin2(Nφ/2)/2. The associated quantum
projection noise is �SSCAIN = √

M/2 sin(Nφ). The QFR is
thus, ��G|SCAIN = c2/

√
2MNωC�, which is a factor of

√
2

below the HL.

B. Protocol B

Next we consider protocol B. In this protocol, the rotation
is always around the ŷ axis while the rotation angle ν is
chosen so as to maximize (right after the squeezing interaction)
the fluctuations along the ẑ axis. For a given value of N ,
ν increases with μ, reaching a maximum value of π/2 at
μ = μ0 (a typical value of μ0 is 0.095π for N = 200, for
example). Once the squeezed spin state is optimally aligned,

the usual dark-π -dark sequence follows. To undo the effect
of the squeezing, we first apply another rotation ν about the
ŷ axis, and then apply −HOAT. Finally, the last π/2 pulse is
applied to catalyze interference between the two paths of the
interferometer.

In Fig. 2, we show the Husimi quasiprobability distribution
evolutions for protocol B with μ < π/2. After the first π/2
pulse, the system is in the coherent spin state |ŷ〉, as shown
in Fig. 2(a). Following the application of the squeezing inter-
action, the quantum fluctuations are twisted in the x-z plane,
as depicted in Fig. 2(b). We then apply a rotation around the
ŷ axis by an angle ν which is chosen so as to maximize the
fluctuations along the ẑ axis, as illustrated in Fig. 2(c). For
a given value of N , ν increases with μ, reaching a maximum
value of π/2 at μ = μ0 (for N = 200, μ0 = 0.095π ). Once the
squeezed spin state is optimally aligned, the usual dark-π -dark
sequence follows, where the first and second dark zones each
impart a phase of φ/2 to the squeezed spin state, while the
π pulse inverts the states. These are shown in Figs. 2(d)–2(f).
To undo the effect of the squeezing, we first apply another
rotation ν about ŷ axis, and then apply −HOAT, as depicted in
Figs. 2(g)–2(h). Finally, the last π/2 pulse is applied to catalyze
interference between the two paths of the interferometer, as
shown in Fig. 2(i).

In Fig. 3, we show the collective state population distribu-
tions right after the squeezing interaction for different values
of μ, under protocol B. For μ = 0, the squeezed spin state
has the same binomial distribution of the collective states as
in the original coherent spin state, as depicted in Fig. 3(a). As
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FIG. 2. The evolutions of Husimi quasiprobability distribution
for protocol B with μ < π/2. The initial coherent spin state |ŷ〉
(a) evolves under HOAT to (b) which is then rotated by an angle ν

(b) → (c) so as to maximize the fluctuations along ẑ. (d) The first
dark zone imparts a phase φ/2. (e) The Bloch sphere is rotated to
show the other face where the squeezed spin state is situated after the
π pulse. (f) The second dark zone imparts an additional φ/2 phase.
(d) → (g) The spins are unrotated by the same angle ν and then (h)
unsqueezed, by applying the inverse of HOAT. (i) The final π/2 pulse
causes interference between the two paths of the interferometer.

μ increases, the distribution begins to flatten out, as shown
in Fig. 3(b). When μ becomes large enough, the distribution
starts to invert, and the relative proportion of the extremal states
increases. However, the exact state distribution depends on the
parity of N , as demonstrated in Fig. 3(c). At μ = π/4, the
distribution is trimodal for even values of N , as depicted by
the blue line in Fig. 3(d). On the other hand, for odd values of
N , the distribution is bimodal, as shown by the orange line in
Fig. 3(d).

C. Signal fringes under the two protocols

In Fig. 4(a), we show the signal fringes produced using
protocol A, for the special case of μ = π/2. As described
earlier, in this case, we get a purely sinusoidal fringe pattern
for even values of N , and a null signal for odd values of N .
The averaged signal, therefore, is also purely sinusoidal. The
width of these fringes is a factor of N narrower than what
is observed in a conventional Raman atomic interferometer.
It should be noted that the phase factors η and ζ (as defined
for the superpositions of collective states generated via the
first application of one-axis-twist squeezing under protocol
A described above) depend, respectively, on the supereven
parity, representing whether N/2 is even or odd, and the
superodd parity, representing whether (N + 1)/2 is even or
odd. However, in each case, the shapes of the fringes as well
as the values of QFR are not expected to depend on the value
of supereven parity and superodd parity, as we have verified
explicitly.

FIG. 3. Collective state population distributions right after the
squeezing interaction for different values of μ, under protocol B. Both
even (blue line) and odd (orange line) values of N are considered.
These results also hold for the case of atomic clocks, as described in
Appendix B.

The signal fringes under protocol B are illustrated in
Figs. 4(b)–4(f), for various values of μ. The red lines are
for even values of N , and the blue (dashed or solid) lines
for odd values of N . For different values of μ (except for
μ = π/2), the central fringe as a function of φ is essentially
identical for both odd and even values of N . Thus, for M trials,
the average signal is independent of the parity of N for the
central fringe, which is the only one relevant for metrological
applications. In contrast, the noncentral fringes, averaged over
the odd and even cases, have different shapes, heights, and
widths. However, the central fringe always has full visibility,
and its width first decreases sharply with increasing values of
μ, and then saturates at μ = μ0. Consequently, the fluctuations
in rotation sensitivity plummets, attaining the minimum value
��G|SCAIN = e1/3c2/2

√
MNωC�, at μ = μ0.

For the limiting case of μ = π/2, protocol B produces very
different results for odd and even values of N . Specifically,
for odd values of N , this protocol produces uniform fringes,
each with a width that is a factor of N narrower than what is
observed in a conventional Raman atomic interferometer, thus
yielding HL sensitivity. In this case, the ideal Schrödinger cat
state is realized, in a manner analogous to what we described
above for protocol A (with μ = π/2). For odd values of N , this
protocol also produces uniform fringes, but each with a width
that is the same as that observed for collective state atomic
interferometer (which is a factor of

√
N narrower than what

is observed in a conventional Raman atomic interferometer),
thus yielding SQL sensitivity. The average of these two signals,
for many repeated measurements, would produce a sensitivity
that, for large N , is lower than the HL by a factor of

√
2 [35]. In

addition, due to the mixing of the suboptimal signal contributed
by the instances corresponding to even values of N , protocol
B, even for μ = π/2, is not well suited for experiments aimed
at studying the effects of gravity on clear superposition of just
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FIG. 4. Signal fringes for various values of μ. N = 200 is indicated by red lines, N = 201 by blue (dashed or solid) lines. Panel (a)
employs protocol A, while panels (b)–(f) employ protocol B. The phase span is 1/20-th of 2π ; as such, we see ten red fringes in panel (a), thus
demonstrating a factor of N reduction in the width of fringes for protocol A.

two macroscopic states [8–11], and realizing a matter-wave
clock with very high Compton frequency [13].

D. QFR−1 under the two protocols

In Fig. 5, we summarize the results for both protocols, for
squeezing parameters ranging from μ = 0 to μ = π/2. Here,
we show the inverse of the QFR, normalized to the same for the
HL for N = 100, as a function of μ. Horizontal lines indicate
the HL (black solid), and the SQL (black dashed), where for
N = 100, the HL corresponds to a gain in sensitivity by a factor
of 10 compared to the SQL. The dashed blue lines correspond
to an odd value of N (N = 101) and the red lines correspond
to an even value of N (N = 100). The left panel shows the
result of using protocol B. The value of QFR−1 increases
monotonically, reaching a peak value at μ = μ0, and then

FIG. 5. QFR−1 of Schrödinger-cat-state atomic interferometer as
a function of the squeezing parameter μ, normalized to the HL for
N = 100. Note that, for this value of N , the HL corresponds to a
gain in sensitivity by a factor of 10 compared to the SQL. Horizontal
lines indicate the HL (black solid) and the SQL (black dashed). The
dashed blue lines correspond to odd value of N (N = 101) and the
red lines correspond to even value of N (N = 100). The left (right)
panel shows the results for protocol B (A).

remains flat until getting close to μ = π/2, with virtually no
difference between the odd and even values of N , as discussed
in detail earlier. Near μ = π/2, the value of QFR−1 begins to
diverge, reaching the HL (SQL) for odd (even) values of N at
μ = π/2. The right panel shows the result of using protocol
A. At μ = π/2, QFR−1 is at the HL for even values of N , and
vanishes for odd values of N . For μ < π/2, the amplitude
of the signal for even values of N decreases rapidly, with
corresponding decrease in the value of QFR−1. It should be
noted that a vanishing value of QFR−1 is due simply to the
vanishing of the signal itself.

IV. EXPERIMENT CONSIDERATIONS FOR REALIZING
THE SCHRÖDINGER-CAT-STATE ATOMIC

INTERFEROMETER

In this section, we describe the experimental steps envi-
sioned for realizing the Schrödinger-cat-state atomic interfer-
ometer, and discuss potential limitations. The basic protocol
is akin to that employed for the conventional Raman atomic
interferometer, with the addition of auxiliary rotations, one-
axis-twist squeezing, and collective state detection. In what
follows, we first summarize briefly the experimental approach
for one-axis-twist squeezing and collective state detection that
are well suited for the Schrödinger-cat-state atomic interferom-
eter. This is followed by a discussion of the complete protocol
for the Schrödinger-cat-state atomic interferometer. We discuss
both protocols A and B, but limit the description to the case of
μ = π/2. The case for μ < π/2 can be easily inferred from
this discussion.

There are several experimental schemes for realizing one-
axis-twist squeezing [22–25,31,37–41]. For concreteness, we
consider here the approach based on cavity feedback dynamics
[22–24,31,38,39]. In this approach, a probe is passed through
a cavity, at a frequency that is tuned halfway between the two

013636-6



HIGH-COMPTON-FREQUENCY, PARITY-INDEPENDENT, … PHYSICAL REVIEW A 98, 013636 (2018)

legs of a � transition in which the spin-up and spin-down
states are coupled to an intermediate state. The cavity is tuned
to be below resonance for the probe. The energy levels of the
spin-up and spin-down states are light shifted due to the probe,
in opposite directions. The resulting dispersion shifts the cavity
resonance frequency by an amount that is proportional to Jz,
the z component of the total spin for all atoms. The intracavity
probe intensity changes linearly with this cavity shift, since it is
on the side of the resonance, thus affecting the light shifts. The
net result is an energy shift for all the atoms that is proportional
to the square of Jz, so that the interaction Hamiltonian can
be expressed as HOAT = h̄χJ 2

z , where χ is a parameter that
determines the strength of the squeezing process. Changing the
sign of the cavity detuning reverses the sign of the Hamiltonian,
thus producing unsqueezing.

The collective state detection technique is detailed in
Sec. IV of Ref. [14], where a null-detection scheme is em-
ployed to measure population of one of the extremal Dicke
collective states. The probe is one of the two counterpropagat-
ing Raman beams, which induces Raman transitions within
the atomic ensemble unless it is in the desired extremal
collective state. As a result, there will be photons emitted
corresponding to the other leg of the Raman transition. The
probe and the emitted photons are combined and sent to a
high-speed detector, which produces a dc signal along with a
beat signal. This beat signal is at the same frequency as that of
the signal produced by the frequency synthesizer that drives the
acousto-optic modulator (AOM), for example, used to generate
the beam that excites one leg of the Raman excitation from the
beam that excites the other leg of the Raman excitation, but
with a potential difference in phase. To extract the amplitude,
the beat signal is bifurcated and one part is multiplied by the
frequency synthesizer signal, while the other is multiplied by
the frequency synthesizer signal phase shifted by 90◦. The
signals are then squared before being recombined and sent
through a low-pass filter to derive a dc voltage. This dc voltage
is proportional to the number of scattered photons. A lower
limit (ideally zero) is set for the voltage reading, and any value
recorded above it indicates the presence of emitted photons.
If no photon is emitted, the voltage will be at or below the
limit, indicating that the ensemble is in the desired extremal
collective state; otherwise at least one photon will be emitted
and the ensemble will be in a combination of other collective
states. This process is then repeated many times for a given
value ofφ. The fraction of events where no photons are detected
will correspond to the signal for this value of φ. This process
is then repeated for several values of φ, producing the signal
fringe.

For the complete Schrödinger-cat-state atomic interferom-
eter experiment, we assume that the source atoms are caught
in a magneto-optic trap (MOT), followed by polarization
gradient cooling and evaporative cooling, to a temperature of
about 0.5 μK, with a phase-space density less than what is
required for Bose-Einstein condensation (BEC). The atoms
are then pushed out, forming a sequential beam of N atoms in
each sequence. An initial (counterpropagating) Raman pulse,
corresponding to a rotation of π/2 around the x axis, splits
each atom, originally in the spin-down state, into an equal
superposition of spin-up and spin-down states. The atoms then
pass through a transverse ring cavity set up for one-axis-twist

squeezing. The squeezing process is carried out for a duration
corresponding to μ = π/2, followed by an auxiliary rotation
(produced by another pair of Raman beams) by an angle of
π/2 around the x axis. This creates the Schrödinger cat state,
as a superposition of two extremal Dicke collective states: one
in which all atoms are in the spin-down state, and another in
which all atoms are in the spin-up state. The two components
in the Schrödinger cat state get spatially separated during the
first dark zone evolution. This is followed by another Raman
pulse which produces a rotation of π around the x axis. This
pulse redirects the velocities of the two components. After
the second dark zone, another Raman pulse is applied for a
duration that produces a rotation of π/2 around the x axis. This
is followed by an unsqueezing pulse, of duration corresponding
to μ = −π/2, which is produced by sending the atoms through
a second transverse ring cavity, with a cavity detuning that is
equal and opposite to the one applied in the first cavity. After the
unsqueezing, the final π/2 rotation around the x axis, produced
by another Raman pulse, causes the two paths to interfere. The
collective state detection process is then used to determine the
population of the atoms in the collective state in which all the
atoms are in the spin-down state, representing the signal for the
Schrödinger-cat-state atomic interferometer, under protocol A
and the limiting case of μ = π/2.

For implementing protocol B, for μ = π/2, the basic
sequence is the same as what is described above, with the
following modifications. Note that, in the sequence described
above, there are five different pairs of Raman beams; three of
these are used for the conventional pulse sequences necessary
for a conventional Raman atomic interferometer, while the
other two are used for auxiliary rotations. In the case of protocol
B, the auxiliary rotations are around the y axis. The phase
of the beat signal between the two frequencies employed for
Raman excitation determines the axis of rotation. Thus, this
phase for the two pairs of Raman beams used for the auxiliary
rotations has to be shifted by 90◦ compared to the same for the
three pairs of Raman beams used for the conventional Raman
atomic interferometer pulse sequence. To see how this phase
shift can be produced, we note that (as also mentioned in the
discussion for the collective state detection above) for each pair
of Raman beams, we start with a laser beam at a frequency that
excites one leg of the � transition. The second laser frequency,
which excites the other leg of the � transition, is produced by
shifting the frequency of a piece of the first laser beam by
passing it through an AOM, for example. The frequency that
drives the AOM is generated from a frequency synthesizer.
Thus, to generate the phase shift needed for protocol B,
we lock the difference between the phase of the frequency
synthesizer used for the auxiliary Raman beams and that of the
frequency synthesizer used for the conventional Raman atomic
interferometer Raman beams to a value of 90◦. As a result, the
auxilary Raman beams will produce rotations of π/2 around
the y axis, as needed for protocol B.

To elucidate potential practical limitations in implementing
the Schrödinger-cat-state atomic interferometer protocol ex-
perimentally, as envisioned above, consider first the situation
where the one-axis-twist squeezing and unsqueezing processes
are ideal. In that case, the relevant issues pertain to the
potential imperfections in generating the ideal collective states.
In Refs. [14] and [15], we discussed the issues that are relevant
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in this context, and how these issues may limit the performance
of the collective state atomic interferometer. Essentially the
same issues are expected to constrain the performance of the
Schrödinger-cat-state atomic interferometer. In what follows,
we summarize the findings of the analysis presented in these
two references [14,15], in the context of the Schrödinger-cat-
state atomic interferometer, using 87Rb atoms for specificity.
First, we noted that for a Raman excitation based atomic
interferometer (such as the collective state atomic interfer-
ometer and the Schrödinger-cat-state atomic interferometer),
the collective states must be defined in a manner so that the
spin-down state represents the atom being in the ground state of
the internal energy, and in a momentum eigenstate of the center-
of-mass motion, and the spin-up state represents the atom being
in a higher-energy but metastable internal state, and in another
momentum eigenstate of the center-of-mass motion. Since the
atom is in a wave packet with respect to the center-of-mass
motion, the spin-down state, for example, is in a superposition
of momentum eigenstates. Similarly, the spin-up state is also in
a superposition of momentum eigenstates, even if we assume
that the two-photon recoil imparted by the Raman beams is
exactly the same for each atom. In Sec. 4 of Ref. [15], we
addressed this issue explicitly, and showed that if the effective
Rabi frequency of the off-resonant Raman transition (i.e.,
the Raman Rabi frequency) is much larger than the Doppler
shift due to the center-of-mass momentum of each of the
constituent plane waves in the ground-state wave packet, then
the description of the semiclassical collective states (which
ignores the center-of-mass motion), as employed here and in
virtually all descriptions of collective states in the literature,
remains valid. For the temperature of 0.5 μK mentioned above
for the Schrödinger-cat-state atomic interferometer, it should
easily be possible to realize an effective Rabi frequency large
enough to satisfy this condition.

Second, we considered the effect of the variations in the
intensity profiles of the laser beams, which in turn cause
variations in the Raman Rabi frequency. The effect of this
inhomogeneity can be mitigated by increasing the ratio ρ of
the diameter of the Raman beams to the diameter of the atomic
cloud. For ρ = 10, the upper bound of the useful value of N

was found to be ∼1.2 × 105. Third, we considered the effect
of the velocity distribution, which causes variations in the
two-photon detuning. We found that at a temperature of 0.5 μK
this inhomogeneity limits the useful value of N to ∼2 × 104.
The useful value of N can, in principle, be increased further
by using colder atoms, as long as the phase-space density is
kept below the value at which BEC occurs.

Fourth, we considered the effect of spontaneous emission,
since there is a small fraction of atoms in the intermediate state
during the application of the Raman pulses. A proper analysis
of the effect of spontaneous emission would require the use of a
density matrix based model in the basis of the collective states.
Coherent excitation of the atoms only populates the (N + 1)
symmetric collective states [15–17]. However, the total number
of collective states, which includes the asymmetric ones, is 2N ,
the size of the Hilbert space for N two-level atoms [15]. All
of these states must be taken into account when considering
the effect of spontaneous emission, which can couple to both
symmetric and asymmetric states. Thus, even for a modest
number of N that would be relevant for a Schrödinger-cat-state

atomic interferometer, such an analysis is intractable (as also
noted in the Supplemental Material of Ref. [38]). For large
N , one must rely on experiments to determine the degree to
which the generation and detection of the Schrödinger cat state
would be affected by the spontaneous emission process during
Raman excitations. However, it should be noted that the effect
of spontaneous emission can be suppressed to a large degree by
simply increasing the optical detuning while also increasing the
laser power. This is the approach used, for example, in reducing
the effect of radiation loss of atoms in a far-off resonant trap.

Finally, we considered the effect of the fluctuations in the
value of N . In our discussion for the Schrödinger-cat-state
atomic interferometer above, we have already assumed an
averaging over odd and even parities of atoms, for the case
where atoms are released from a trap. In addition, one must
consider the fact that the mean value of N itself is expected to
fluctuate in this case. As we have shown in Ref. [14], such a
fluctuation would simply cause of the width of the fringes due
to interference between the extremal collective state to deviate
from the ideal value, which is a factor of N narrower than the
fringes in a conventional Raman atomic interferometer. Thus,
for example, a fluctuation in the value of N by 1% would cause
an ∼1% fluctuation in the value of the QFR−1.

We also note that, in general, these constraints are much
less stringent for the case of the Schrödinger-cat-state atomic
clock, as described in Appendix B, which is based on the use of
copropagating Raman beams or a direct microwave excitation.
For example, as shown in Ref. [42], for the case of copropgating
Raman excitation, the velocity distribution limits the useful
value of N to ∼2 × 106 even for a temperature as large as
138 μK. Similarly, for ρ = 20, the effect of laser intensity
inhomogeneity limits the useful value of N to ∼2 × 106 as
well.

Consider next the challenge in implementing the idealized
one-axis-twist process as envisioned above. In the experiments
done to date, employing one-axis-twist squeezing, such as
those in Refs. [23] and [39], the typical maximum value of the
squeezing parameter μ is ∼0.01. To the best of our knowledge,
the highest value of μ, ∼0.0125, was observed in Ref. [23]. For
the protocol proposed here, the ideal value of μ that produces
the Schroedinger cat states is π/2. Under ideal conditions,
this value can be achieved by increasing the duration of
the squeezing pulse, or increasing its intensity, for example.
However, because of the various nonidealities, as discussed in
detail in several papers, including the Supplemental Material
of Ref. [38], it is clear that, for the current experimental
implementations, the quantum state after such a strong degree
of squeezing interaction would be severely degraded. The
nonidealities that degrade the quantum state of the ensemble
include the effect of back-action due to the cavity decay, as well
as due to spontaneous emission that causes spin flips. As noted
in Ref. [38], the effect of both of these nonidealities can be
suppressed by increasing the cooperativity parameters for the
cavity (e.g., by making the cavity mode small enough so that
the vacuum Rabi frequency would be much stronger than both
the cavity decay rate and the rate of spontaneous emission).

However, it should be noted that, for the one-axis-twist
squeezing based protocols that have been considered so far, the
maximum useful squeezing is produced for very small values
of μ, of the order of ∼0.01 for ∼ half a million atoms. Because
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of other nonidealities, such as poor quantum efficiency of
detection, the currently achieved values of squeezing are not
limited by the values of μ. Furthermore, under conventional
protocols employing one-axis-twist squeezing, the Hussimi
quasiprobability distribution begins to get distorted when μ is
increased beyond ∼0.01, and the magnitude of the normalized
Bloch vector starts getting smaller than unity. In fact, the factor
of improvement in sensitivity due to squeezing drops to unity
and even less than unity for μ far below the value of π/2. As
such, experimental efforts to date have been focused on elim-
inating these nonidealities, instead of constructing apparatus
that would increase the cooperativity parameter significantly,
or exploring new schemes for one-axis-twist squeezing that
would be more robust again dephasing processes.

An important point of this paper is to show that there is a
regime of one-axis-twist squeezing (namely when μ = π/2)
that produces ideal quantum states, such as a superposition of
two extremal Dicke collective states, without distortion and
any reduction in the amplitude of the Bloch vector. Previously,
such a state has only been demonstrated for very few ions
(such as in Ref. [43]). For a very large value of N , the number
of particles, generating such a state requires knowing the parity
of N . Therefore, no previous study has been carried out to show
how to construct a protocol under which the Heisenberg Limit
(within a factor of

√
2) can be reached even when averaging

over both parities of N . This is the main point of this paper. We
believe that the results shown in this paper would identify the
need for, and generate an interest in, developing improvements
in experimental implementation of one-axis-twist squeezing in
a manner that makes it possible to reach a value of μ = π/2,
without significant degradation of coherence.

V. CONCLUSION

In this paper, we have presented a protocol for an atom
interferometer that reaches the Heisenberg limit (HL), within a
factor of ∼√

2, via collective state detection and critical tuning
of one axis twist spin squeezing. It generates a Schrödinger
cat state, as a superposition of two collective states. When
this Schrödinger cat atom interferometer is configured as a
gyroscope, the interference occurs at an ultrahigh Compton
frequency, corresponding to a mesoscopic single object with
a mass of Nm, where N is the number of particles in the
ensemble, and m is the mass of each particle. The signal for the
Schrödinger-cat-state atomic interferometer is found to depend
critically on the parity of N . We present two variants of the
protocol. Under protocol A, where the auxiliary rotation occurs
around the x axis, the fringes are narrowed by a factor of N for
one parity, while for the other parity the signal is zero. Under
protocol B, where the auxiliary rotation occurs around the y

axis, the fringes are narrowed by a factor of N for one parity,
and by a factor of

√
N for the other parity. Both protocols

can be modified in a manner that reverses the behavior of
the signals for the two parities. We describe an experimental
approach where atoms are first caught in a magneto-optic
trap, followed by polarization gradient cooling and evaporative
cooling, then pushed out in a sequence, and passed through
seven interaction zones: three for the conventional Raman
atomic interferometer process, two for auxiliary rotations, and
two for one-axis-twist squeezing, produced via interaction

with a detuned probe in a cavity. Over repeated measurements
under which the probability of being even or odd is equal,
the averaged sensitivity is smaller than the HL by a factor of
∼√

2 for both versions of the protocol. We describe potential
limitations of the proposed approach due to experimental
constraints imposed by the current state of the art, for both
collective state detection and one-axis-twist squeezing. We
show, in Appendix A, the physical interpretation of why
the phase magnification in the Schrödinger-cat-state atomic
interferometer, when configured as a gyroscope, is due to
an enhancement of the Compton frequency by a factor of
N . On the other hand, we show, also in Appendix A, that
when the Schrödinger-cat-state interferometer is configured
as an accelerometer, the phase magnification is due to an
enhancement of the effective two-photon wave vector by a
factor of N , leading to the same degree of enhancement in
sensitivity. We also show that such a mesoscopic single object
can be used to increase the effective base frequency of an
atomic clock by a factor of N , with a sensitivity that is
equivalent to the HL, within a factor of ∼√

2. The scheme
for this Schrödinger-cat-state atomic clock is described in
Appendix B.
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APPENDIX A: DIFFERENT PHYSICAL
INTERPRETATIONS FOR PHASE MAGNIFICATION

IN SCHRÖDINGER-CAT-STATE ATOMIC
INTERFEROMETER FOR DIFFERENT MODES:

ENHANCEMENT OF COMPTON FREQUENCY FOR
GYROSCOPY AND ENHANCEMENT OF EFFECTIVE

TWO-PHOTON WAVE VECTOR FOR ACCELEROMETRY

For a gyrosocope based on a planar Mach-Zehnder in-
terferometer, a rotation normal to its plane causes a phase
shift �φ that is proportional to the rotation rate �, due to
the Sagnac effect [34,44]. To derive the phase shift, one can
compute the Sagnac path difference of the two arms, given
by �LS = 2A�/vp, where vp is the phase velocity of the
waves propagating along the two arms, and A is the area of the
interferometer. The phase shift is then given by multiplying
this path difference by the wave vector. Alternatively, one
can compute the Sagnac time delay between the two paths,
which is found to be �TS = 2A�/c2, where c is the vacuum
speed of light. It should be noted that this delay is a geometric
property of the interferometer loop [45], and the parameter
c appears in this expression due to the use of the relativistic
formula for addition of velocities, having nothing to do with
the velocity of the waves propagating along the two arms
[44]. The phase shift is then given by multiplying this time
delay by the angular frequency. For an optical gyroscope,
the wave vector and the angular frequency are simply related
by the speed of light, and it is easy to see the equivalence
between these two methods. However, for a matter-wave gy-
roscope, the relationship between these two approaches is less
obvious.
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To elucidate the equivalence of these two approaches for
matter waves, note first that in this case the angular frequency
is given by the Compton frequency wc, defined as E/h̄, where
E is the relativistic energy of the particle, while the wave
vector is kdB , which is 2π times the inverse of the de Broglie
wavelength, and is given by p/h̄, where p is the relativistic
momentum of the particle. These two quantities are related
by the Lorentz transformation [13,14,46]. It is well known
that E/c and p form a four-vector; as such, wc/c and kdB

also form a four-vector. In the rest frame of the particle,
we have E = mc2, p = 0, where m is the rest mass of the
particle. In the frame where the particle is moving at velocity v,
using Lorentz transformation, we have E = γmc2, p = γmv,
where γ = 1/

√
1 − (v/c)2. Therefore for a moving particle,

we have wc = γmc2/h̄ and kdB = γmv/h̄. It then follows
that the phase shift for the two approaches yield the same
value: �φ = wc�TS = kdB�LS = 2mA�/h̄, where we have
assumed v  c so that γ ≈ 1.

To see transparently why the fringes are amplified by a
factor of N for the Schrödinger- cat-state atomic interferom-
eter, we recall first that the ensemble can always be viewed
as a single particle with a mass of Nm, even when there is
no entanglement, if a description based on collective states
is employed. This was illustrated in our earlier paper on
the collective state atomic interferometer [14], for which the
experimental configuration is identical to that of a conventional
Raman atomic interferometer, as discussed in Sec. II. For
the conventional Raman atomic interferometer as well as the
collective state atomic interferometer, the sum of the quantum
states of N atoms can be expressed, equivalently, as the sum
of N collective states, each of which has a mass of Nm.
The trajectory of each of these collective states during the
traversal through the interferometer depends on the momentum
imparted to it, which in turn depends on the fraction of atoms
that are in the spin-up state. As such, there are many closed
loops, each with a different effective area. Thus, the fringe
pattern for each of these loops has a different width. The
final quantum state represents interference between all the
collective states. If the population of one of the collective
states (e.g., the one where all atoms are in the spin-down
state) is detected, as in the case of the collective state atomic
interferometer, then the resulting fringes become akin to that of
a Fabry-Perot interferometer, and the central fringe is narrowed
by a factor of

√
N compared to the width of the fringes

observed in a conventional Raman atomic interferometer. In
the case of the Schrödinger-cat-state atomic interferometer,
there is only one closed loop, because the quantum state is a
superposition of only two collective states. The area of this
loop is the same as that for each atom in a conventional Raman
atomic interferometer. However, the mass of each of these two
collective states is Nm. As such, the Compton frequency for
each of these two collective states is amplified by a factor of
N . Alternatively, the de Broglie wavelength for each of these
two collective states is reduced by a factor of N . For either
view, it then follows immediately that the phase is magnified
by a factor of N . The discussion in the preceding paragraph
shows that these two views are equivalent, since the spatial
phase variation due to the de Broglie wavelength is merely a
Lorentz transformation induced manifestation of the temporal

phase variation due to the Compton frequency in the rest frame
of the particle. However, the interpretation based on the de
Broglie wavelength is somewhat misleading, since the actual
phase shift does not depend on the velocity—and, therefore
the de Broglie wavelength—of the particle. The interpretation
based on the Compton frequency makes it manifestly obvious
that the phase shift has no dependence on the velocity of the
particle.

Next, we note that when a conventional Raman atomic
interferometer is used for measuring acceleration rather than
rotation, the phase shift is given by �φ = keffgT 2, where
keff = k1 + k2 is the effective two-photon wave vector, given by
the sum of the wave vectors for the two legs of the � transition,
and T is the interaction time. This result can be understood by
noting that in this case what is measured are the phases of
the laser fields. In the rotating waves picture, which is akin to
the use of atoms dressed with photons, the spin-down state is
dressed by the photon with wave vector of k1, while the spin-up
state is dressed with a counterpropagating photon with wave
vector of k2; as such, the phase difference between the dressed
spin-up state and the dressed spin-down state is the difference
of the phase variations of the two counterpropagating photons,
at the spatial rate of keff. It can be shown that, for the
Schrödinger-cat-state atomic interferometer, the phase shift
for the interferometer is amplified by a factor of N: �φ =
NkeffgT 2. This is because the collective state E0 is dressed by
N photons, each with a wave vector of k1, while the collective
state EN is dressed by N photons, each with a wave vector of
k2; as such, the phase difference between the dressed collective
state EN and the dressed collective state E0 is the difference of
the phase variations of N pairs of counterpropagating photons,
at the spatial rate of Nkeff. For both the conventional Raman
atomic interferometer and the Schrödinger-cat-state atomic in-
terferometer, when used for accelerometry, the interferometer
phase shift has no dependence on the mass of the atoms; as
such, the Compton frequency plays no role in either case.

In this context, it is relevant to note the recent controversy
surrounding a paper [47] in which the measurement using
a conventional Raman atomic interferometer, operating as
an accelerometer, was reinterpreted as a measurement of
gravitational redshift of a clock operating at the Compton
frequency of a single atom. While the authors of Refs. [48–51]
dispute this reinterpretation, the authors of the original paper
stand by their claim [52]. If the authors of the original paper
are correct, then it follows that the Compton frequency can be
used to interpret the signal for a conventional Raman atomic
interferometer or Schrödinger-cat-state atomic interferometer
even when measuring acceleration. On the other hand, if the
objecting authors are correct, then we conclude that the use
of the Compton frequency is irrelevant and unnecessary for
determining the signal for the conventional Raman atomic
interferometer or Schrödinger-cat-state atomic interferometer
when measuring acceleration; this is in keeping with the
arguments we presented in the preceding paragraph. However,
either of these conclusions is irrelevant when considering
the use of the conventional Raman atomic interferometer
or Schrödinger-cat-state atomic interferometer for measuring
rotation; in that case, it is clear that the use of Compton
frequency is valid, based on the arguments we presented above.
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Finally, it should be noted that, for a conventional Raman-
Ramsey atomic clock (RRAC), as summarized in Appendix
B (where we describe the Raman-Ramsey atomic clock as a
background for describing the Schrödinger-cat-state version
thereof), the phase shift is given by �φ = 2πf TD , where f

is the clock detuning (in Hz), and TD is the time separation
between the two Ramsey zones. This can be viewed as resulting
from the fact that (in the rotating waves picture, which is akin
to the use of atoms dressed with photons) the spin-down state
is dressed with a photon at frequency f1, corresponding to one
leg of the � transition, while the spin-up state is dressed with
a photon at frequency f2, corresponding to the other leg of the
� transition. As such, the clock frequency is defined by the
difference between the frequencies of the two photons: fclk =
f1 − f2. At the same time, the energy difference between the
bare atom in spin-up and spin-down states is hfatm, so that the
net energy difference between the dressed spin-up state and
the dressed spin-down state is given by hf = h(fclk − fatm),
which in turn implies a clock detuning of f . As shown in detail
in Appendix B, for the Schrödinger-cat-state atomic clock, the
phase shift is amplified by the factor N : �φ = 2πNf TD . This
is because the collective state E0 is dressed by N photons, each
with a frequency f1, while the collective state EN is dressed
by N photons, each with a frequency f2. As such, the energy
difference between the dressed EN state and the dressed E0

is Nhf = Nh(fclk − fatm), which implies a clock detuning
of Nf . For both the Raman-Ramsey atomic clock and the
Schrödinger-cat-state atomic clock, the phase shift does not
depend on the atomic mass; as such, the Compton frequency
plays no role for either version of the clock.

APPENDIX B: SCHRÖDINGER-CAT-STATE
ATOMIC CLOCK

In this Appendix, we present the results obtained by ap-
plying the proposed protocols to atomic clocks. As mentioned
in the main body of the paper, the combination of one-axis-
twist spin squeezing, followed by a rotation, inversion of
rotation, and unsqueezing, along with collective state detection
can also be used to realize a parity-independent, mesoscopic
Schrödinger-cat-state atomic clock with Heisenberg limited
sensitivity, within a factor of

√
2. In order to describe how

the Schrödinger-cat-state atomic clock works, we consider
first a configuration where the ground states |↓〉 and |↑〉 of
a three-level atom interact with an excited state |e〉 via two
copropagating laser beams. One of the beams, detuned from
resonance by δ1 and with Rabi frequency �1, couples |↓〉 to
|e〉. The other beam, with Rabi frequency �2 and detuning δ2,
couples |e〉 to |↑〉. For δ � �1,�2,�, where δ = (δ1 + δ2)/2,
and � is the decay rate of |e〉, the interaction can be described as
an effective two-level system excited by an effective traveling
wave with a Rabi frequency � = �1�2/2δ, and detuning
� = δ1 − δ2. It should be noted that this is formally equivalent
to a conventional microwave atomic clock that couples |↓〉
to |↑〉. However, since a Raman transition is needed for the
detection of collective states, we choose to describe it here
as a Raman clock. In practice, all results presented here would
remain valid for a conventional microwave excitation, which is
preferable because a Raman clock may suffer from fluctuations
in light shifts.

In a conventional Raman-Ramsey atomic clock, an ensem-
ble of N effective two-level atoms is first prepared in the
coherent spin state, denoted as |−ẑ〉 ≡ |E0〉 = ∏N

i=1 |↓i〉. The
initial π/2 pulse rotates the coherent spin state about the x̂ axis
and brings it to the ŷ axis, producing the state e−i(π/2)Jx |−ẑ〉 =
|ŷ〉 = ∏N

i=1(|↓i〉 − i |↑i〉)/
√

2. The collective spin is then left
to evolve without any interaction for time TD , during which
each constituent spin acquires a phase φ = 2πf TD , where
f = �/2π is the (two-photon) detuning of the clock in Hertz.
This is equivalent to a rotation by φ about the ẑ axis. At this
point, a second π/2 pulse is applied, which establishes the
final state, |ψ〉 = ∏N

i=1[(1 − eiφ ) |↓〉 − i(1 + eiφ ) |↑〉]/2. The
aim of the Raman-Ramsey atomic clock is to measure φ, and
therefore, f as precisely as possible.

In an ideal Raman-Ramsey atomic clock, φ is measured
by mapping it onto the operator representing the difference
in spin-up and spin-down populations: Ĵz. The signal, which
is a measure of the population of |↑〉 is, therefore, SRRAC =
J + 〈Ĵz〉 = N cos2(φ/2). The associated quantum projection
noise is �SRRAC = �Ĵz = √

N/4 sin(φ). The stability of the
measurement of f is an indicator of the performance of an
atomic clock. The stability of the clock is attributed to the
quantum fluctuation in frequency (QFF), analogous to the QFR
described in the main body of this paper. The QFF can be
written as

QFF = �f =
∣∣∣∣

�Jz

∂〈Jz〉/∂f
∣∣∣∣

= (2πTD

√
N )−1 ≡ γ /

√
N. (B1)

where γ is the width of the Raman-Ramsey atomic clock
fringes.

As is the case for a collective state atomic interferometer, a
collective state atomic clock (COSAC) differs from a conven-
tional Raman-Ramsey atomic clock in that the measurement
of the signal is done on a collective state of the ensemble,
instead of single atom measurements [42]. In the picture based
on collective states (which is equivalent to the picture based
on individual atoms), the first π/2 pulse couples the initial
state |E0〉 to |E1〉, which in turn is coupled to |E2〉, and so
on, effectively causing the ensemble to split into N + 1 states.
During the dark zone, the nth collective state |En〉 picks up a
phase e−inφ . When the ensemble interacts with the last π/2
pulse, each of the collective states interferes with the rest
of the states. The collective state atomic clock can, thus, be
viewed as the aggregation of interference patterns due to (N + 1

2 )
Raman-Ramsey atomic clocks working simultaneously. The
mathematical derivation of this mechanism is discussed in
detail in Ref. [42]. The narrowest constituent signal fringes
are derived from interferences between states with the largest
difference in phase, i.e., |E0〉 and |EN 〉. The width of this fringe
is γ /N . The widths of the rest of the signal components range
from γ to γ /(N − 1). The signal, which is the measure of
the population of |EN 〉, is the result of the weighted sum of
all the pairwise interferences with this state. This is detected
by projecting the final state of the ensemble, |ψ〉 on |EN 〉.
Thus, SCOSAC = 〈Q̂〉 = cos2N (φ/2), where Q̂ ≡ |EN 〉 〈EN |.
The quantum projection noise is the standard deviation of Q̂,
given by �SCOSAC = cosN (φ/2)

√
1 − cos2N (φ/2). The QFF
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of the collective state atomic clock is thus

�f |COSAC =|�Q̂/∂f 〈Q̂〉|
= (�f |CRAIN/

√
N )|

√
sec4J (φ/2) − 1/ tan(φ/2)|.

(B2)

Therefore, for f → 0, the frequency sensitivity of the collec-
tive state atomic clock is the same as that of a Raman-Ramsey
atomic clock, assuming that all the other factors remain the
same.

The Schrödinger-cat-state atomic clock is based on the same
process of squeezing followed by a rotation and then another
rotation and unsqueezing as that employed for the Schrödinger-
cat-state atomic interferometer. The coherent spin state after
the first π/2 pulse is squeezed via the one-axis-twist spin
squeezing Hamiltonian, HOAT = h̄χJ 2

z , yielding the squeezed
spin state of the ensemble |ψe〉 = e−iμJ 2

z |ŷ〉, where μ = χτ is
the squeezing parameter, and τ is the duration of the squeezing
interaction. This squeezed spin state must be rotated by an
angle ν about an appropriate axis, the choice of which depends
on the degree of squeezing, and follows the same rules as
described in the main body of the paper.

Similar to the Schrödinger-cat-state atomic interferometer,
the Schrödinger-cat-state atomic clock can be operated under
two different protocols, which differ in the choice of the axis
around which we apply a rotation that maximizes the degree
of observed squeezing. In one case (protocol A), the rotation
is around the x̂ axis, while in the other case (protocol B), the
rotation is around the ŷ axis. We first consider protocol A,
focusing initially on the special case where μ = π/2, with the
case of an arbitrary value of μ to be discussed later. For even N ,
HOAT transforms |ŷ〉 to |ψe〉 = (|ŷ〉 − η |−ŷ〉)/

√
2, where η =

i(−1)N/2, representing a phase factor with unity amplitude.
As we noted in the main body of this paper, this phase factor
depends on the supereven parity; however, the shapes of the
fringes, as well as the values of QFF, are not expected to
depend on the value of the supereven parity, as we have verified
explicitly. Rotating |ψe〉 by ν = π/2 about the x̂ axis yields the
Schrödinger cat state |ψSC〉 = (|E0〉 + η |EN 〉)/

√
2. At the end

of the dark zone, the state of the ensemble is (eiNφ/2η |EN 〉 +
e−iNφ/2 |E0〉)/

√
2. We now apply a rotation of ν = π/2 about

the x̂ axis (ideally inversion of the rotation would require the
application of rotation of ν = −π/2. However, we have found
[35] that changing the sign of this rotation simply inverts the
final fringes. This is also true for the Schrödinger-cat-state
atomic interferometer protocol. It should also be noted that
experimentally, ν = −π/2 actually corresponds to ν = 3π/2,
which requires a longer duration or more power. Therefore,
for both the Schrödinger-cat-state atomic interferometer and
the Schrödinger-cat-state atomic clock, we choose to use a
corrective rotation of π/2 rather than −π/2), followed by the
untwisting Hamiltonian, −HOAT. Finally, the last π/2 pulse is
applied to catalyze interference between the resulting states.
The signal arising from this interference depends on φ as
SSCAC = 〈Q̂〉 = sin2(Nφ/2).

When N is odd, initial squeezing produces |ψe〉 = (|x̂〉 +
ρ |−x̂〉)/

√
2, where ρ = i(−1)(N+1)/2, representing a phase

factor with unity amplitude. As noted in the main body of
the paper, this phase factor depends on the superodd parity;

however, the shapes of the fringes, as well as the values
of QFF, are not expected to depend on the value of the
superodd parity, as we have verified explicitly. For φ = 0, the
sequence e−iνJx e−iφJze−iνJx causes a π phase shift in each of
the components of this state. Application of the unsqueezing
Hamiltonian −HOAT then moves the system to |−ŷ〉, and the
final π/2 pulse places the system in the |−ẑ〉 state, which
is the same as the collective state |E0〉. Since we detect the
collective state |EN 〉, the whole sequence thus generates a
null signal. Again, just as in the case of the Schrödinger-
cat-state atomic interferometer, the same conclusion holds for
an arbitrary value of φ, for reasons that are not manifestly
obvious due to the complexity of the states, but can be verified
via simulation. Over repeated measurements, the probability
of N being even or odd is equal. Thus, for M trials, the
average signal of the Schrödinger-cat-state atomic clock in this
regime is SSCAC = M sin2(Nφ/2)/2. The associated quantum
projection noise is �SSCAC = √

M/2 sin(Nφ). The QFF is
thus �f = 1/

√
2MπNTD , which is a factor of

√
2 below

the HL.
Next, we consider protocol B, in which the rotation is

always around the ŷ axis while the rotation angle ν is chosen
so as to maximize (right after the squeezing interaction) the
fluctuations along the ẑ axis. For a given value of N , ν

increases with μ, reaching a maximum value of π/2 at μ = μ0

(μ0 = 0.095π for N = 200). Once the squeezed spin state
is optimally aligned, the dark zone follows. We now apply
another rotation −ν about the ŷ axis (note that this rotation is
a reversal of the original rotation, unlike the case for protocol
B in Schrödinger-cat-state atomic interferometer), then apply
−HOAT. Finally, the last π/2 pulse is applied to establish the
final state. The signal fringes as a function of φ under protocol
B are illustrated in Figs. 6(a)–6(e), for various values of μ. The
results for even values of N (N = 200) are indicated by the
dashed blue lines, and those for the odd values of N (N = 201)
are indicated by the red lines. The dotted black lines indicate the
average signal. Until the value ofμgets close toπ/2, the central
fringe as a function of frequency is essentially identical for
both odd and even values of N . Thus, for M trials, the average
signal is independent of the parity of N for the central fringe,
which is the only one relevant for metrological applications.
For different values of μ, the noncentral fringes, averaged over
the odd and even cases have different shapes, heights, and
widths. However, the central fringe always has full visibility.
Its width first decreases sharply with increasing values of μ,
and then saturates at μ = μ0. Consequently, the fluctuations
in frequency drops significantly, attaining the minimum value
�f |SCAC = e1/3/

√
M2πNTD , at μ = μ0.

For the limiting case of μ = π/2, protocol B produces
very different results for odd and even values of N , as shown
in Fig. 6(e). Specifically, for odd values of N , this protocol
produces uniform fringes, each with a width that is a factor of
N narrower than what is observed in a conventional Raman-
Ramsey atomic clock, thus yielding HL sensitivity. In this
case, the ideal Schrödinger cat state is realized, in a manner
analogous to what we described above for protocol A (with
μ = π/2). For odd values of N , this protocol also produces
uniform fringes, but each with a width that is the same as that
observed for the collective state atomic clock (which is a factor
of

√
N narrower than what is observed in a Raman-Ramsey
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FIG. 6. Signal fringes for various values of μ, TD = 50 μs. N =
200 is indicated by dashed blue lines, N = 201 by red lines. The
dotted black lines indicate the average signal. Panels (a)–(e) employ
protocol B, while panel (f) employs protocol A. The time interval
between the π/2 pulses is 50 μs, so that the peak-to-peak width of a
conventional clock fringe would be 20 kHz. The peak-to-peak width
of the blue fringes in panel (f) is seen to be 100 kHz, corresponding
to a factor of N reduction for protocol A.

atomic clock), thus yielding SQL sensitivity. The average of
these two signals, for many repeated measurements, would
produce a sensitivity that, for large N , is lower than the HL by
a factor of

√
2 [35]. In Fig. 6(f), we show the corresponding

fringes produced using protocol A, for the special case of
μ = π/2. As described earlier, in this case, we get a purely
sinusoidal fringe pattern for even values of N , and a null
signal for odd values of N . The averaged signal, therefore,
is also purely sinusoidal. The width of these fringes is a
factor of N narrower than what is observed in a conventional
Raman-Ramsey atomic clock.

In Fig. 7, we summarize the results for both protocols,
for squeezing parameters ranging from μ = 0 to μ = π/2.
The behavior is essentially identical to that shown in Fig. 5

FIG. 7. QFF−1 of Schrödinger-cat-state atomic clock vs the
squeezing parameter μ, normalized by the same for the HL for
N = 100. Horizontal lines indicate the HL (black solid), and the
SQL (black dashed). The dashed blue lines corresponds to odd value
of N (N = 101) and the red lines corresponds to even value of N

(N = 100). The left (right) panel shows the results for protocol B
(A). The cyan line in the left panel shows the corresponding result
for the squeezing-unsqueezing protocol proposed in Ref. [38] and
demonstrated subsequently in Ref. [39].

in the main body of the paper for the Schrödinger-cat-state
atomic interferometer. Here, we show the inverse of the QFF,
normalized to the same for the HL for N = 100, as a function
of μ. Horizontal lines indicate the HL (black solid), and the
SQL (black dashed). The blue lines corresponds to odd value
of N (N = 101) and the red lines corresponds to even value
of N (N = 100). The left panel shows the result of using
protocol B. The value of QFF−1 increases monotonically,
reaching a peak value at μ = μ0, and then remains flat until
getting close to μ = π/2, with virtually no difference between
the odd and even values of N . Near μ = π/2, the value of
QFF−1 begins to diverge, reaching the HL (SQL) for odd
(even) values of N at μ = π/2. The cyan line in the left
panel shows, for comparison, the corresponding behavior of the
squeezing-unsqueezing protocol recently proposed in Ref. [38]
and demonstrated subsequently in Ref. [39]. This protocol
also produces a sensitivity close to the HL, but only for a
particular value of μ, and then drops off rapidly for both
decreasing and increasing values of μ. In contrast, the protocol
B proposed here reaches a sensitivity that is slightly higher than
that attainable for the squeezing-unsqueezing protocol, and is
highly insensitive to the precise value of μ after reaching the
plateau, as shown in the left panel of Fig. 7. The right panel
shows the result of using protocol A. At μ = π/2, QFF−1 is at
the HL for even values of N , and vanishes for even values of N .
For μ < π/2, the amplitude of the signal for even values of N

decreases rapidly, with corresponding decrease in the value of
QFF−1. Just as in the case of the Schrödinger-cat-state atomic
interferometer, the vanishing value of QFF−1 is due simply to
the vanishing of the signal itself.
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