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In this paper, we experimentally demonstrate a strong correlation between the frequencies of the Raman pump and
the Raman probe inside an optically pumped Raman laser. We show that the correlation is due to rapid adjustment
of the phase of the dipoles that produce the Raman gain, following a sudden jump in the phase of the Raman pump.
A detailed numerical model validates this interpretation of the phase correlation. The width of the spectrum of the
beat between the Raman pump and the Raman laser is significantly narrowed due to this correlation. As a result, the
minimum measurable change in the cavity length, for a given linewidth of the Raman pump laser, is substantially
reduced. Therefore, this finding is expected to enhance the sensitivity of such a laser in various metrological applica-
tions (e.g., accelerometry). ©2020Optical Society of America

https://doi.org/10.1364/AO.380614

1. INTRODUCTION

In recent years, we have been investigating superluminal lasers,
which can be used for high-precision metrology [1–9]. A super-
luminal laser is a laser inside which the group velocity of light
is much greater than the speed of light in vacuum, without
violating causality or special relativity [10]. Such lasers are
produced by using a negatively dispersive gain medium with a
broad gain profile accompanied by a narrow dip. Previously, we
demonstrated a superluminal laser using a diode-pumped alkali
laser (DPAL), augmented by a Raman depletion process, with
an enhancement factor of ∼190 [8]. However, a DPAL-based
superluminal laser is not suitable for some applications that
require bi-directional lasing in a single cavity, such as rotation
sensing [2]. Therefore, we developed a scheme in which the
broad gain profile is produced by the Raman process, corre-
sponding to what is known as a Raman laser [11,12]. Employing
this approach, we have recently reported a superluminal Raman
laser with an enhancement factor of ∼1080 [13]. In a related
work, we also reported earlier a Raman laser with subluminal
behavior [14]. The properties of a Raman laser are important in
the context of these superluminal and subluminal lasers based
on Raman gain. Here, we describe, experimentally as well as
theoretically, a property of the Raman laser that was not known
previously: the frequency of the Raman laser is highly correlated
with that of the Raman pump laser. We also show how this
property is expected to lead to enhancement in the sensitivity of

sensors, such as an accelerometer. It should be noted that inten-
sity correlations and anticorrelations between two fields applied
to a three-level system were observed earlier [15]. However, in
that process, the three-level system did not produce a laser field,
and no cavity was involved. As such, while somewhat related,
the process described here is significantly different from the one
reported in Ref. [15].

2. EXPERIMENTAL CONFIGURATION AND
RESULTS

The schematic of the experimental apparatus is shown in
Fig. 1(a). The cavity is composed of two curved perfect reflectors
and a flat output coupler with a reflectivity of∼90%. One of the
curved mirrors is attached to a piezo-electric transducer (PZT).
The total length of the cavity is 22.7 cm. The gain medium is
a glass cell (5 cm) filled with natural rubidium vapor, which is
heated to ∼90◦C. However, we only use the 85Rb isotope to
produce Raman gain. The Raman pump and the optical pump
are combined with a dichroic mirror and then coupled into
the cavity using a polarizing beam splitter (PBS). We then use
another PBS after the gain cell to extract the pump beams, which
is made possible by the fact that the polarizations of the Raman
pump and the Raman laser are orthogonal to each other, which
are controlled by half-wave plates (HWPs). The power of the
optical pump and the Raman pump are 432 mW and 4.2 mW,
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Fig. 1. (a) Schematic of the experiment configuration and
(b) relevant energy levels and optical fields in the gain medium.

respectively. To analyze the spectral property of the Raman laser,
we take a fraction of the Raman pump and combine it with the
output of the Raman laser using a beam splitter (BS). A high-
speed photodetector (PD) and a radio-frequency (RF) spectrum
analyzer are used to observe the spectrum of the beat signal. Both
the Raman pump and the optical pump are distributed Bragg
reflector (DBR) diode lasers.

The relevant energy levels and the optical fields are
shown in Fig. 1(b). The energy levels are denoted as follows:
|1〉 ≡ {5S1/2, F = 2}, |2〉 ≡ {5S1/2, F = 3}, |3〉 ≡ 5P1/2,
and |4〉 ≡ 5P3/2. The optical pump is tuned to the resonance
frequency of the |2〉↔ |4〉 transition to produce popula-
tion difference between |1〉 and |2〉. The Raman pump is
tuned to ∼900 MHz above the resonance frequency of the
|1〉↔ |3〉 transition. Such a configuration produces a Raman
gain along the |2〉↔ |3〉 transition, centered at the frequency
that, along with the Raman pump, is two-photon resonant for
the |1〉↔ |2〉 transition.

The power spectra of the beat signals are shown in Fig. 2.
Trace C is the beat-note between the Raman laser and the
Raman pump, displaying a spectral width of ∼15 kHz. For
comparison, the beat-note between the Raman pump laser and
a third (reference) DBR laser with nearly identical properties
is shown as trace A, which shows a width of ∼1.2 MHz. From
this, we can infer that the linewidth of the Raman pump as well
as that of the reference DBR laser is∼0.6 MHz. The beat-note
between the Raman laser and the reference DBR laser is shown
as trace B, which shows a width of∼1 MHz, which would imply
that the linewidth of the Raman laser is ∼0.4 MHz. As can be

seen, the spectral width of the beat-note between the Raman
laser and the Raman pump is much less than that of the other
two beat-notes. This indicates that there is a strong correlation
between the frequencies of the two laser fields involved in the
Raman process.

Before proceeding further, we note that we did not have the
tools (such as an ultra-narrow laser or an ultra-narrow optical
spectral analyzer) to determine the linewidth of any of these
three lasers (the Raman pump, the reference DBR, and the
Raman laser) independently. Thus, there is a possibility that,
in fact, the linewidth of the Raman pump and the Raman laser
are closer to each other (each being of the order of∼0.5 MHz)
than what is indicated by the estimates presented above. This
would be more consistent with the very narrow spectrum of the
beat-note between the Raman laser and the Raman pump.

3. MODELING OF THE FREQUENCY
CORRELATION BETWEEN THE RAMAN LASER
AND THE RAMAN PUMP

To understand the strong correlation observed between the
Raman pump and the Raman laser, we first develop a model in
which the frequency of the Raman laser is determined by both
the Raman gain profile and the cavity mode profile. Specifically,
we make use of the equation of motion for a single-mode laser
[16], which shows that the steady-state solution for the Raman
laser frequency is determined by the cavity resonance frequency,
as modified by the refractive index experienced by the laser field.
We consider first the case where the Raman gain is significantly
narrower than the cavity mode, corresponding to the conditions
used for generating the results shown in Fig. 2. Specifically, the
linewidth of the Raman gain is∼1 MHz [17], and the linewidth
of the cavity mode is ∼42 MHz. In Fig. 3(a), we show three
Raman gain profiles (shown as A, B, and C) that correspond to
three distinct frequencies of the Raman pump. These illustrate
the fact that the center of the Raman gain profile shifts with the
Raman pump frequency. The cavity mode profile corresponds
to the condition when the cavity is empty. In all cases, we define
the cavity resonance frequency as FC , the frequency at which
the cavity mode profile is peaked. For the case when the cavity is
empty, we define the cavity resonance frequency, FC , to be FREF.
The value of FREF is chosen to be such that when the Raman

Fig. 2. Experimentally observed phase–noise correlation between
the Raman laser and the Raman pump.
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Fig. 3. (a) Schematics of narrow Raman gain profiles (bottom axis
and left axis) and the cavity mode (top axis and right axis); (b) the cal-
culated Raman laser frequency shift as a function of the deviation of the
Raman pump detuning, away from the reference case corresponding to
gain profile B.

pump frequency corresponds to the gain profile B, the difference
between the Raman pump frequency and FREF matches the
difference between the energies of the two ground states, |1〉
and |2〉.

For each gain profile, there is a corresponding dispersion
profile. Thus, the peak of the cavity mode (i.e., the value of
FC ) is different for each value of the Raman pump detuning.
This effect is illustrated by the dashed line in Fig. 3(b), which
shows the value of (FC − FREF) as a function of the deviation
of the Raman pump detuning away from the reference case that
produces the gain profile B. As can be seen, FC shifts linearly
with the frequency of the Raman pump. Even at the reference
condition corresponding to the gain profile B, it should be
noted that the value of FC is slightly different from FREF. This
is due to differential light-shifts experienced by the two ground
states. The frequency of the Raman laser, for each of the three
cases (A, B, and C), is found via numerical simulation to be the
same as the cavity resonance frequency, as expected from the
single-frequency laser model. This is illustrated by the solid
line in Fig. 3(b). The important point to note here is that the
Raman laser frequency is correlated with the Raman pump
frequency. However, the slope, S, of this correlation line is
∼0.25, which is not high enough to explain the data shown

Fig. 4. (a) Schematic of broad Raman gain profiles (left axis) and the
cavity mode (right axis); (b) the calculated Raman laser frequency shift
as a function of the deviation of the Raman pump detuning away from
the reference case corresponding to gain profile B.

in Fig. 2. As shown earlier, the spectral width of the Raman
pump laser is∼0.6 MHz. If we use the result of this condition in
which the correlation between the Raman pump and the Raman
laser is ∼0.25, the spectral width of the beat-note between
the Raman pump and the Raman laser can be estimated to be
(0.6 MHz)× (1−S)∼ 0.45 MHz, which is much larger than
the linewidth of trace C (∼15 kHz) in Fig. 2.

To investigate the role of the relative values of the linewidths
of the Raman gain and the cavity mode on the amplitude of
the correlation slope, we have also considered the complimen-
tary case where the Raman gain profile is broader than the
cavity mode, as shown in Fig. 4(a). In Fig. 4(b), we show the
shift in the cavity resonance frequency (dashed line) and the
shift in the Raman laser frequency (solid line) as functions of
the deviation of the Raman pump detuning away from the
reference case that produces the gain profile B. Just as in the
case of the first condition, the Raman laser frequency is the
same as the cavity resonance frequency, as expected. Similarly,
just as in the case of the first condition illustrated in Fig. 3,
we see that the Raman laser frequency is correlated with the
Raman pump frequency. However, in this case, the correla-
tion slope, S, is much smaller, ∼0.02. However, in this case
the correlation slope (S) is even smaller, ∼0.02. Thus, the
spectral width of the beat-note between the Raman pump and
the Raman laser, under this condition, can be estimated to be
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(0.6 MHz)× (1−S)∼ 0.59 MHz. Again, this is much larger
than the linewidth of the trace C (∼15 kHz) in Fig. 2. Thus,
we conclude that the shift in the cavity resonance frequency is
not adequate enough to explain the strong degree of frequency
correlation found experimentally.

In the results we have shown in Figs. 3 and 4, we have
employed the steady-state solutions of the laser equation. To
explore additional factors that produce the strong frequency cor-
relations, it is necessary to consider the gain process dynamically,
as shown in the next section.

4. DYNAMIC MODELING OF THE PHASE–NOISE
CORRELATION

The linewidth of a continuous wave laser can be modeled as
being due to random jumps in its phase [16]. The amount of
phase change in each jump, and how often these jumps occur,
together determine the linewidth. This process is illustrated
schematically in Fig. 5(a) for the Raman pump. The observed
condition, as shown in Fig. 2, indicates that these jumps cause
corresponding changes in the phase of the Raman laser, as illus-
trated qualitatively in Fig. 5(b). The goal of the model described
below is to determine the manner in which the Raman laser
phase may be affected by a jump in the phase of the Raman laser,
and the resulting degree of correlation.

We consider the gain medium (85Rb) to be a three-level sys-
tem, as shown in Fig. 6. The relevant energy levels are denoted
as follows: |1〉 ≡ {5S1/2, F = 2}, |2〉 ≡ {5S1/2, F = 3}, and
|3〉 ≡ 5P1/2. The Raman pump is tuned above the |1〉↔ |3〉
transition by an amount δRP. The Raman laser field is tuned
above the |2〉↔ |3〉 transition by an amount δRL. For simplicity,
we assume that the rate of decay from 5P1/2 to 5S1/2, F = 2
and 5S1/2, F = 3 are equal, indicated as 0/2 in Fig. 6. We also
assume collisional decay rates from |1〉 to |2〉 (γ12) and |2〉 to |1〉
(γ21) to be equal. The optical pump is modeled as an effective
decay from |2〉 to |1〉, which is denoted as0OP in the schematic.

The Hamiltonian of such a system after applying rotating
wave approximation can be written as

Fig. 5. (a) Schematic of illustration of a random phase jump1φRP

introduced for the Raman pump. (b) Schematic illustration of the cor-
responding phase jump 1φRL that may be experienced by the Raman
laser.

Fig. 6. Relevant energy levels, optical fields, and decay rates in the
gain medium.

H/~=

 ω1 0 �RP
2 e i(ωRPt+φRP)

0 ω2
�RL

2 e i(ωRLt+φRL)

�RP
2 e−i(ωRPt+φRP) �RL

2 e−i(ωRLt+φRL) ω3

 .

(1)

Here, ~ω j ( j = 1, 2, 3) is the energy of the state | j 〉,�RP(�RL)

is the Rabi frequency for the Raman pump (Raman laser), ωRP

(ωRL) is the angular frequency of the Raman pump (Raman
laser), and φRP (φRL) is the phase of the Raman pump (Raman
laser). To eliminate the time dependence of the Hamiltonian as
well as the phases in the off-diagonal terms, we first carry out a
rotating wave transformation, under which the quantum state
|ψ〉 is transformed to |ψ̃〉 as follows:

|ψ̃〉 ≡ Q1|ψ〉, (2)

where Q1 is defined as

Q1 ≡ e−i(θ1t+η1) |1〉 〈1| + e−i(θ2t+η2) |2〉 〈2|

+ e−i(θ3t+η3) |3〉 〈3| , (3)

with θ1 =ω1, η1 = φRP, θ2 =ω2 + δRP − δRL, η2 = φRL,
θ3 =ω3 + δRP, and η3 = 0. We define a matrix M such that
d Q1/dt = i MQ1, so that

M = θ1|1〉〈1| + θ2|2〉〈2| + θ3|3〉〈3|. (4)

The effective Hamiltonian [18] then becomes H̃ =
Q1 H Q−1

1 − ~M:

H̃/~=

 0 0 �RP/2
0 −δRP + δRL �RL/2

�RP/2 �RL/2 −δRP

 . (5)

The atomic decay and collisional decays can be taken into
account by adding complex terms to the Hamiltonian:

H̃/~=

−i γ12
2 0 �RP

2
0 −δRP + δRL − i γ21+0OP

2
�RL

2
�RP

2
�RL

2 −δRP − i 02

 . (6)

In terms of this Hamiltonian, the equation of motion can be
expressed as the Liouville equation:
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·

ρ̃ =−
i
~
[H̃ρ̃ − ρ̃ H̃∗] +

∂

∂t
ρ̃source, (7)

∂

∂t
ρ̃source =

[
(γ21 + 0OP) ρ̃22 + (0/2) ρ̃33

]
|1〉 〈1|

+
[
γ12ρ̃11 + (0/2) ρ̃33

]
|2〉 〈2| , (8)

where ρ̃ is the density matrix. We use the steady-state solution of
this equation as the initial conditions for the subsequent model-
ing of the effect of the phase jump.

We introduce a phase jump1φRP in the Raman pump. The
phase of the Raman laser is changed by an amount1φRL, which
is to be determined. The value of the phase jump1φRL can be
established by requiring [19] that it would maximize the gain
experienced by the Raman laser, which is proportional to the
imaginary part of the term ρ̃23 of the density matrix. We first
apply a transformation to the Hamiltonian to find the suscep-
tibility experienced by the Raman laser field after the Raman
pump phase jump occurs. Since the phases of the Raman pump
and the Raman laser have changed, the values of η1 and η2 in the
Q1 matrix of Eq. (3) should be updated accordingly. This can
be accomplished by simply carrying out an additional transfor-

mation with a matrix Q2 so that ˜̃H = Q2 H̃ Q−1
2 , where Q2 is

defined as

Q2 = e−i1φRP |1〉 〈1| + e−i1φRL |2〉 〈2| + |3〉 〈3| . (9)

The resulting complex Hamiltonian can be expressed as

˜̃H/~=

 −i γ12
2 0 �RP

2 e−i1φRP

0 δRL − δRP − i γ21+0OP
2

�RL
2 e−i1φRL

�RP
2 e i1φRP �RL

2 e i1φRL −δRP − i 02

 .

(10)

For a specific set of 1φRP and 1φRL, by evolving the density
matrix using the Liouville equations, we can find the gain in the
Raman laser as a function of time, which starts oscillating after
introducing a phase jump, as illustrated in Fig. 7(a). Eventually,
the density matrix reaches steady state again, and it is identical
to the solution before adding phase jumps in the system, as
shown in Fig. 7(b). Before reaching steady state, the mean value
of the imaginary part of ρ̃23 (the gain in the Raman laser) also
oscillates, as shown in Fig. 7(c). The solid line in Fig. 7(c) is
calculated by averaging the imaginary part of ρ̃23 over 25 ns. For
a given 1φRP, the gain experienced by the Raman laser before
reaching steady state varies as a function of1φRL. For example,
consider the gain at time tA in Fig. 7(c). This value corresponds
to the condition where 1φRP =1φRL =−π/4. If we now
vary 1φRL, the gain at time tA will vary. This is illustrated in
Fig. 8(a). As can be seen, for 1φRP =1φRL (indicated by the
vertical dashed line), the gain has the maximum value, which
is the same as the value shown in Fig. 7(c) at time tA. When the
value of1φRL is scanned around this point, it always decreases.
The same behavior is observed (not shown) at any other time
point (such as tB and tC ) in Fig. 7(c). Thus, we conclude that the
transient value of the locally averaged (over 25 ns) gain is always
maximized when1φRP =1φRL. We have confirmed the same

Fig. 7. Normalized gain as functions of time for (a) a short
period of time after introducing a phase jump, (b) approaching
steady state. (c) The mean value of the normalized gain over a short
period of time as a function of time. The figures are generated using
1φRP =1φRL =−π/4.

behavior at other values of 1φRP, as illustrated in Figs. 8(b)–
8(d). In each of these cases, we see that the peak gain occurs
when1φRP =1φRL, as indicated by the vertical dashed lines.

In Fig. 9, we show the deviation of the Raman laser frequency
as a function of the deviation of the Raman pump detuning
away from the reference point for different models, as well as
the result inferred from the experimental data. Line A and Line
B are reproductions of the results shown in Figs. 3(b) and 4(b),
respectively. Line C is the result concluded from the model
presented in this section. If we use the observed linewidth
(∼15 kHz) to calculate the corresponding slope, we find S to
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Fig. 8. (a) Normalized gain at Ttotal = tA of Fig. 7(c), as a function of
1φRL, with1φRP fixed at−π/4. (b), (c), and (d) Similar variations in
gain, at a fixed Ttotal, as functions of1φRL, for three other fixed values of
1φRP:−π/2,−3π/4, and−π , respectively.

Fig. 9. Deviation of the Raman laser frequency as functions of
the deviation of the Raman pump detuning away from the reference
frequency.

be (1−15 kHz/0.6 MHz)∼ 0.975, which is shown as Line
D in Fig. 9. As can be seen, the slope of Line C is approaching
the slope of Line D, with a 2.5% difference. We can thus infer
that this model explains well the strong correlation between the
Raman laser and the Raman pump.

5. REQUIREMENT OF SPECTRAL
CHARACTERISTIC FOR THE RAMAN PUMP
EMPLOYED FOR SENSING APPLICATIONS

As noted earlier, a superluminal ring laser (SRL) employing the
Raman gain and Raman depletion processes, as described in
Refs. [13,14], can be used to measure the change in the cavity
length with extremely high sensitivity. When such a system

is used for measuring rotation rates, the signal is measured
by monitoring the beat frequency between two counter-
propagating SRLs, so that all common mode jitters due to
excess noise are cancelled out, and the sensitivity is determined
by the quantum-noise-limited linewidths of the SRLs only.
However, when such a device is used for measuring an unidirec-
tional effect, such as acceleration (with one of the cavity mirrors
mounted on a metallic diaphragm, which acts as a transducer,
for example), the signal is measured by monitoring the beat
frequency between an unidirectional SRL, and a reference laser.
A convenient choice for the reference laser is the Raman pump
used for producing the Raman gain for the SRL (note that the
Raman pump used for producing the Raman depletion is off-
set phase locked to the Raman pump used for producing the
Raman gain). Under this scenario, the linewidth of the Raman
gain pump and the correlation between the Raman gain pump
and the Raman laser (which is the SRL) together determine the
effective linewidth of the beat frequency, assuming that this is
much larger than the quantum-noise-limited linewidth of the
Raman gain pump and that of the SRL. In what follows, we carry
out a quantitative analysis, showing how the correlation pre-
sented in Fig. 2 enhances the sensitivity of such a measurement
significantly, for a given linewidth of the Raman gain pump.

For a given acceleration rate A, the laser frequency shift, f A

(in Hz), can be expressed as

f A = ξ ·6 · A, (11)

where, ξ is the superluminal enhancement factor, and 6 is
the scale factor, which is determined by the parameters of the
cavity and the transducer. Here, we assume the transducer to
be a MEMS (micro electro-mechanical system)-based mirror,
suspended on a spring-like structure. Then the scale factor can
be written as

6 =
(m

k

) 2c
Lλ cos (θ/2)

, (12)

where, m is the mass of the MEMS mirror, k is the spring con-
stant of the MEMS support, c is the speed of light in vacuum,
L is the perimeter of the laser, λ is the laser wavelength, and θ
is the full-angle of the cavity mode at the MEMS mirror. We
denote as 0RP the linewidth of the Raman pump and assume
that it is much larger than its quantum-noise-limited linewidth.
Similarly, we denote as γRL the linewidth of the Raman laser and
assume that it is much larger that its quantum-noise-limited
linewidth. Then, in the absence of any correlation between
the frequencies of the Raman pump and the Raman laser, the
linewidth of the beat-note is expected to be approximately
(0RP + γRL). However, as we have shown in Fig. 2, there is a
strong correlation between the frequencies of the Raman pump
and the Raman laser. Let us denote the effective correlation
factor as ζ , defined so that the spectral width of the beat-note
can be expressed as 1 f A = 0RP/ζ . The minimum measurable
acceleration (MMA), Amin, can be then expressed as

Amin =
1

ξ6
1 f A =

1

ξ6

0RP/ζ

η
, (13)
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where η is a dimensionless number representing the signal-to-
noise ratio (SNR), which depends on the integration time. Here
we define η0 as the SNR for an integration time of 1 second.
Then we can express Eq. (13) as

Amin =
1

ξ6
1 f A =

1

ξζ6

0RP

η0
√
τ
, (14)

where τ is a dimensionless number, given by the integration
time divided by 1 second. The value of η0 is given by the square-
root of the number of photons falling on the beat detector in 1
second. If we denote the quantum efficiency of the detection
process as ρ, and denote the power of the SRL output as P (in
watts), we can find

η0 =
√
ρP/ (~ω0), (15)

where ω0 is the frequency of the Raman pump (in rad/s). By
combining Eqs. (14) and (15), we can express the Raman pump
linewidth as

0RP = Aminξζ6
√
ρP/ (γB~ω0), (16)

where γB is defined as the dimensionless operating bandwidth,
γB ≡ 1/τ . Based on a typical MEMS-based transducer, we
consider, for example, the value of 66 to be 4× 106 Hz/g,
where g is the gravitational acceleration. For the data shown
in Fig. 2, we determined the value of ζ to be ∼25. For an SRL
output power of 1 µW, and ρ = 0.25, we find η0 ' 1.4× 106.
If we choose the operating bandwidth γB to be 103, corre-
sponding to a detection bandwidth of 1 kHz, for MMA of
1 pico− g (10−12g), the maximum spectral width of the
Raman pump is ∼320 kHz, which is not a very challenging
requirement for a typical diode laser.

6. SUMMARY

To summarize, we have experimentally demonstrated a strong
correlation between the frequencies of the Raman pump and
the Raman probe inside an optically pumped Raman laser. We
have also shown that the correlation is due to rapid adjustment
of the phase of the dipoles that produce the Raman gain follow-
ing a sudden jump in the phase of the Raman pump. We have
described the results of a detailed numerical model that validates
this interpretation of the phase correlation. Since the width of
the spectrum of the beat between the Raman pump and the
Raman laser is significantly narrowed as a result of this corre-
lation, the minimum measurable change in the cavity length,
for a given linewidth of the Raman pump laser, is substantially
reduced. Therefore, this finding is expected to enhance the
sensitivity of such a laser in various metrological applications
(e.g. accelerometry).
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