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Beyond the Petermann limit: Prospect of increasing sensor precision near exceptional points
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Experiments near the lock-in region in maximally dissipative non-Hermitian systems, e.g., conventional laser
gyroscopes near the deadband, have run up against the Petermann limit, where excess noise exactly cancels any
scale-factor enhancement resulting in no overall enhancement in precision. As a result, one might be tempted to
conclude that exceptional points (EPs) generally cannot be used to increase the precision of laser sensors. Indeed,
using a linear eigenmode analysis we show that the Petermann limit applies not just to maximally dissipative
systems, but for any type of EP, owing to the fact that EPs are rotationally invariant. It turns out, however, that
this restriction comes from the assumption of linearity. We find that nonlinearity breaks the rotation symmetry
such that the different types of EPs are no longer equivalent above threshold. In particular, EPs in conservatively
coupled systems can lead to an increase in the fundamental precision beyond the Petermann limit as a result of
gain saturation. Importantly, we find that only one mode lases under these conditions. We show that the beat note
can be recovered by interference with an auxiliary mode, but that this has consequences for the quantum and
classical noise that depend on the recovery scheme. Thus, it remains to be seen whether practical experiments
can be designed that can take advantage of this enhancement.
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I. INTRODUCTION

Exceptional points (EPs) are singularities that arise in non-
Hermitian systems where the Hamiltonian becomes defective,
the eigenstates become maximally nonorthogonal, and the
eigenvalues and eigenvectors simultaneously coalesce into
a degeneracy. Prominent examples of these nonconservative
systems in the field of optics include coupled resonators (CRs)
and ring laser gyroscopes (RLGs) [1–5], materials with pe-
riodic potentials [6–9], and systems with parity-time (PT)
symmetry [10–15]. One reason EPs have been of recent in-
terest is because the sensitivity of the frequency difference
between the eigenstates to an external perturbation, i.e., the
scale factor, has been shown to diverge at an EP [16–22].
The boost in scale-factor sensitivity has now been demon-
strated experimentally in passive and active fast-light cavities
[21–29], optomechanical and nanoparticle detection schemes
[30,31], and CRs including RLGs [32–37].

A sensitivity enhancement, by itself, is not sufficient to
enhance measurement precision, however. In particular, the
enhancement in scale factor may lead to a concomitant in-
crease in measurement uncertainty. Indeed, it has long been
established that in non-Hermitian laser systems the funda-
mental laser linewidth increases above the Schawlow-Townes
limit as a result of the nonorthogonality of the resonant modes.
This broadening is characterized (at least in the linear limit)
by the Petermann excess-noise factor, which has been shown
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to diverge at an EP [38–45]. The excess noise arises from
correlations that occur between the noise sources of differ-
ent eigenmodes when they are not orthogonal. In effect, the
spontaneous emission in a given mode is affected not only by
noise photons in the same mode, but also by those in the other
modes. The divergence in linewidth occurs because the EP
is where the eigenmodes become maximally nonorthogonal
[41]. In this light, the crucial question for sensing applications
is whether the sensitivity diverges faster than the linewidth as
the singularity is approached.

We have pointed out previously that there are different
types of EPs in CRs [46]. One type of EP forms when the
coupling is conservative, there is no detuning, and the loss
difference is balanced by the coupling. This EP is also parity-
time (PT) symmetric. A second type of EP occurs when the
coupling is maximally dissipative, there is no loss difference,
and the detuning is balanced by the coupling. This EP is anti-
PT symmetric and corresponds to the edge of a lock-in region,
such as the deadband that occurs in conventional RLGs. Yet
a third type of EP is partially dissipative, involving a mixture
of the two types of coupling above. Nevertheless, it has been
shown that any 2 × 2 Hamiltonian with an EP can be trans-
formed into a PT-symmetric one by appropriate similarity
transformations (that include both rotation and scale), i.e., a
hidden PT symmetry is ever present [47]. In this light, an im-
portant question is whether the divergences of the sensitivity
and linewidth are the same for all these different types of EPs.
If so, a straightforward way to determine whether precision
can be enhanced would be to measure these quantities near the
RLG deadband edge. In fact, such an experiment has recently
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FIG. 1. Two coupled resonators.

been performed [35], which found that the excess noise com-
pletely counteracted the increase in sensitivity, resulting in no
overall benefit to measurement precision near this maximally
dissipative EP. In this work we attempt to answer whether
that result is specific to the particular type of EP and the
specific parameters used, or holds more generally for any type
of EP.

We start with a general linear eigenmode approach to
determine the enhancement in precision for any type of EP
and show that there is no set of parameters that results in an
enhancement in this linear limit. Furthermore, we demonstrate
that changing from one type of EP to another is equivalent
to a simple rotation in parameter space, so measurements
performed at any one type of EP also apply to other types
(Secs. II–IV) We then turn our attention to approaches that
account for the nonlinearity that is characteristic of lasers
pumped above threshold. We find that the nonlinearity breaks
the rotation symmetry such that the different types of EPs are
no longer equivalent. As a consequence, in contrast with the
linear results, we find that an enhancement in the quantum-
limited precision can occur when the coupling is conservative
(Secs. V–VIII). In Sec. V a quasilinear approach is taken
where the gain coefficients in the Petermann factor are simply
replaced by their saturated steady-state counterparts, whereas
in Sec. VI the nonlinear coupled equations are linearized
about the steady state to obtain the noise spectrum. By tak-
ing this more rigorous approach we find deviations from the
frequency-independent quasilinear Petermann factor due to
the coloring of the noise, the coupling of the noise fluc-
tuations, and the fact that the threshold conditions for the
coupled and uncoupled systems are different. In Sec. VII,
we explicitly calculate the enhancement in precision obtained
from this linearization approach. We also compare the coupled
system to an ideal (no lock-in) laser gyroscope, which reveals
that the enhancement can be even greater than expected. In
Sec. VIII, we show that only one mode lases in these systems,
resulting in zero beat frequency. Unlike the situation within
the gyro deadband, however, the beat frequency can be re-
covered because there is a frequency shift for the remaining
lasing mode. We describe a simple experimental approach that
demonstrates the beat frequency recovery by interference with
an auxiliary mode but show that any such scheme will incur
consequences for the quantum and classical noise. Finally, in
Sec. IX we show how our work explains the results of previous
experiments in these non-Hermitian systems.

II. SCALE-FACTOR ENHANCEMENT

Consider the problem of two CRs as shown in Fig. 1. The
resonators have resonant frequencies ω1 and ω2 when they are

uncoupled from one another, and any additional losses not due
to the coupling between the resonators are represented by the
photon loss rates γ1 and γ2.

The coupled-mode equations describing the field dynamics
are

Ė1(t ) = −iω̃1E1(t ) + i
κ̃1

2
E2(t ),

(1)

Ė2(t ) = −iω̃2E2(t ) + i
κ̃2

2
E1(t ),

where ω̃i = ωi − iγi/2 (i = 1, 2) are complex frequencies,
and κ̃i are complex coupling coefficients. We define a complex
detuning between the resonators as δ̃ ≡ ω̃1 − ω̃2 = δ − iγ /2,

where δ = ω1 − ω2 is the real-valued detuning and γ = γ1 −
γ2 is the difference in the loss rates. The eigenvalues of this
system of equations are

ω̃± = ω̃avg ± �̃

2
= ω± − i

γ±
2

, (2)

where �̃ = (δ̃2 + κ̃1κ̃2)
1/2

is the generalized Rabi frequency,
and ω̃avg = (ω̃1 + ω̃2)/2 = ωavg − iγavg/2. The eigenvalues
are in general complex but can be decomposed into real-
valued frequencies ω± and linewidths γ±, as shown.

Rotating to slowly varying amplitudes and introducing
Langevin noise terms fi results in

d

dt

(
e1

e2

)
= i

2

(−δ + iγ1 κ̃1

κ̃2 δ + iγ2

)(
e1

e2

)
+

(
f1

f2

)
. (3)

This unitary transformation eliminates ωavg from Eq. (2). The
noise terms have correlations 〈 fi(t )∗ f j (t ′)〉 = Rsp

i δi jδ(t − t ′)
where Rsp

i is the spontaneous emission rate in each resonator.
Note that while f1 and f2 are uncorrelated, a nonunitary trans-
formation is required to diagonalize the matrix above [48] and
this correlates the noise sources of the resultant eigenmodes,
leading to Petermann excess noise (see Sec. III).

For convenience we will assume κ̃1 = κ̃2 = κ̃ such that the
Hamiltonian is symmetric. In this case, the generalized Rabi
frequency is �̃ = (δ̃2 + κ̃2)

1/2
,

�̃ = [δ2 − (κ ′′)2 + (κ ′)2 − (γ /2)2 + i(2κ ′κ ′′ − δγ )]
1/2

,

(4)

where κ̃ ≡ κ exp(iθ ), with κ = [(κ ′)2 + (κ ′′)2]
1/2

and θ =
atan(κ ′′/κ ′). An EP occurs when the eigenvalues are fully
degenerate in both frequency and linewidth, i.e., when �̃ = 0.
There are three cases to consider:

(1) Conservative coupling (κ̃ = κ ′). An EP occurs when
δ = 0, and |γ /2| = |κ ′| This EP corresponds to the parity-
time (PT) symmetric phase transition.

(2) Maximally dissipative coupling (κ̃ ) = iκ ′′. An EP oc-
curs when γ = 0 and |δ| = |κ ′′|. This EP corresponds to the
edge of the deadband, the region of zero sensitivity that occurs
in conventional RLGs [2], and is associated with anti-PT
symmetry.

(3) Partially dissipative coupling (κ̃ = κ ′ + iκ ′′). An EP
forms when γ �= 0, |κ ′| = |γ /2|, |δ| = |κ ′′|, and κ ′κ ′′ =
δγ /2. These EPs are located along the unit circle shown in
Fig. 2. Other EP locations are possible if one relaxes the
assumption that κ̃1 and κ̃2 are equal in magnitude [37].
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FIG. 2. Parameters values for EPs. Conservative, maximally dis-
sipative, and partially dissipative EPs are represented on the unit
circle by black (vertical axis), orange (horizontal axis) and green
dots, respectively. Zero-sensitivity bands occur along the diameter
between any pair of EPs of the same color.

We can rewrite Eq. (4) as �̃ = (A + iB)1/2. The magnitude
of the scale-factor enhancement is then [46]

|S| ≡
∣∣∣∣d�′

dδ

∣∣∣∣ =
∣∣∣∣ δ̃

2 (δ̃2 + κ̃2)
1/2 + c.c.

∣∣∣∣, (5)

where

�′ = ω+ − ω− = 1√
2

[A +
√

A2 + B2]
1/2

(6)

represents the relative detuning between the real parts of the
eigenvalues or beat frequency [49]. For case (1) A = δ2 +
(κ ′)2 − (γ /2)2 and B = δγ . At sufficiently small detunings
|δ| we obtain [46,50]:

|S| =

⎧⎪⎨
⎪⎩

|γ /2|/[(γ /2)2 − (κ ′)2]
1/2 |κ ′| < |γ /2|

|γ /(2δ)|1/2/2 |κ ′| = |γ /2|
|δ|(κ ′)2

/[(κ ′)2 − (γ /2)2]
3/2 |κ ′| > |γ /2|

⎫⎪⎬
⎪⎭, (7)

where δ2 	 γ 2 applies to the middle equation, and δ2 	
|(κ ′)2 − (γ /2)2| applies to the other two equations. Note that
when δ = 0 the middle equation predicts a divergence in the
sensitivity at the EP, whereas the last equation predicts the
sensitivity drops to zero over a range of γ values correspond-
ing to the unbroken (exact) PT-symmetry region (between the
black dots) in Fig. 2.

For case (2) the beat frequency is also found from Eq. (6)
with B = δγ , but now A = δ2 − (κ ′′)2 − (γ /2)2. Thus, the re-
lations for the scale-factor enhancements and their associated
regimes of validity can be found by simply interchanging δ

and γ /2, and replacing κ ′ with κ ′′ in Eq. (7) [46]. The result-
ing equations apply for sufficiently small loss differences |γ |.
In this case the zero-sensitivity region occurs over a range of
detunings corresponding to the deadband region (between the
orange dots) in Fig. 2, which has the property of exact anti-PT
symmetry. Note that the appearance of these zero-sensitivity
regions implies that, provided the linewidth is nonzero, the
precision will drop precipitously to zero in these regions.

III. PETERMANN EXCESS-NOISE FACTOR

The Petermann excess-noise factor can be obtained from
[42,51]

K = 1

1 − |〈υ+/υ−〉|2 , (8)

where the eigenmodes of Eq. (1) are given by

|υ±〉 = N±

(
κ̃

δ̃ ∓ �̃

)
, (9)

and N± = (|κ̃|2 + |δ̃ ∓ �̃|2)
−1/2

are normalization factors.
The eigenmodes are not in general orthogonal but are skewed
such that 〈υ±/υ∓〉 �= 0. They are, however, biorthogonal, i.e.,
〈υ∗

±/υ∓〉 = 0 for a symmetric Hamiltonian. Our choice of
normalization is such that 〈υ±/υ±〉 = 1, which governs the
form of Eq. (8).

For case (1), the excess noise factor is

K =

⎧⎪⎨
⎪⎩

(γ /2)2/[(γ /2)2 − (κ ′)2] |κ ′| < |γ /2|
|γ /(2δ)|/2 |κ ′| = |γ /2|

(κ ′)2
/[(κ ′)2 − (γ /2)2] |κ ′| > |γ /2|

⎫⎪⎬
⎪⎭, (10)

where the middle equation applies for small detunings, i.e.,
δ2 	 γ 2, but the other two equations are derived at δ = 0
with no approximations and are the same as those found in
[42]. Again, for case (2) we simply interchange δ and γ /2,
and replace κ ′ with κ ′′ in Eq. (10).

For sensors utilizing resonant optical cavities the error in
the determination of the measurand (such as the rotation rate
for an RLG) scales as σ/s, where σ is the uncertainty to which
the center of the resonance line can be determined, and s is
the scale factor which relates changes in the resonance fre-
quency to changes in the measurand [25]. When the resonant
cavity is a laser operating under quantum-limited conditions
in the white frequency noise limit, σ is proportional to the
square-root of the Schawlow-Townes linewidth [52,53]. The
enhancement in precision in this case is, therefore, |S|/K1/2.
Comparing Eq. (7) and Eq. (10) we obtain

|S|
K1/2

=

⎧⎪⎨
⎪⎩

1 |κ ′| < |γ /2|
(1/2)1/2 |κ ′| = |γ /2|

0 |κ ′| > |γ /2|

⎫⎪⎬
⎪⎭, (11)

which applies at δ = 0. Similar relations apply for case (2)
at γ /2 = 0 after interchanging the parameters. These results
show that the best precision is obtained in the broken PT-
symmetry regime [or outside the deadband for case (2)], but
that the precision drops precipitously to zero in the region of
exact PT symmetry (or inside the deadband), and that the EP
represents a transition between these two sets of behavior. In
Fig. 3 the value of |S|/K1/2, obtained by evaluating Eq. (8)
and the r.h.s. of Eq. (5), is plotted versus the detuning and the
loss difference. Note that the values of the curves at δ = 0 in
Fig. 3(a), as well as at the points indicated on the dashed line
in Fig. 3(b), correspond to those found in Eq. (11).

In Fig. 4 the enhancement in precision |S|/K1/2 is plotted
versus the detuning and the loss difference. The value of
|S|/K1/2 never rises above unity. Indeed, a deep dipole-shaped
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FIG. 3. |S|/K1/2 plotted vs (a) detuning and (b) loss difference
for case (1). The order of the curves is the same as that shown in
the legend from top to bottom. In (a) the bottom two curves are
PT-symmetric at δ = 0 and approach |S|/K1/2 = 0, whereas the top
two curves are in the PT-symmetry broken regime, and approach
|S|/K1/2 = 1. All the curves approach |S|/K1/2 = 1 at large at |δ|. In
(b) a discontinuity is observed between the broken and unbroken PT-
symmetry regimes, showing the effect of the zero-sensitivity region.
The maximum and minimum values at the EP are indicated by solid
and open black dots, respectively.

hole is formed between the EPs, demonstrating the deleterious
effect of the EPs. Both Figs. 3 and 4 are plotted for conser-
vative coupling [case (1)], but the plots for the maximally
dissipative result [case (2)] are identical as they are obtained
by a simple interchange of δ and γ /2, i.e., a rotation of θ =
90◦ in Figs. 2 and 4. The partially dissipative case is obtained
by a rotation of θ = atan(κ ′′/κ ′). In this case δ and γ /2 must
be varied simultaneously to reproduce the results shown in
Figs. 3(a) and 3(b), because the zero-sensitivity region now
occurs along the green dashed line in Fig. 2.

This brings up an important point: EPs are invariant under
rotation in the parameter space spanned by the detuning and
the loss difference. In practice there is a difference between
EP types because a single tuning parameter is typically used.
For example, if δ is the tuning parameter then for maxi-
mally dissipative coupling |S|/K1/2 would be unity outside
the deadband [Fig. 3(b)], whereas for conservative coupling
|S|/K1/2 would drop below unity as the system is detuned
[Fig. 3(a)]. Nevertheless, we take advantage of this invariance
in Appendix A to prove that |S|/K1/2 � 1 for any choice of
parameters.

FIG. 4. A hole forms in the enhancement in precision in the
vicinity of the EPs. In (a) maximum and minimum values at the EP
are indicated by solid and open black dots, respectively. The contour
plot in (b) reveals dipole-like curves of constant |S|/K1/2, with the
hole becoming circular when |S|/K1/2 = (1/2)1/2.

IV. GENERAL LINEAR SOLUTION

Note that Eq. (11) only applies at δ = 0 for conservative
coupling and at γ /2 = 0 for maximally dissipative coupling
and so does not predict the value of |S|/K1/2 at the other
parameter values shown in Fig. 3. In addition, we have yet to
derive a relation for the case of partially dissipative coupling.
To deal with this more general situation, first note that the
excess-noise factor can be obtained directly from the Hamil-
tonian H representing Eq. (1) through the relations [54]

H0 = H − Tr(H )/2 =
(−δ̃ κ̃

κ̃ δ̃

)
(12)

and

K = 1

2

[
1 + Tr(H†

0 H0)∣∣Tr
(
H2

0

)∣∣
]

= 1

2

[
1 + |δ̃|2 + κ2

|�̃|2
]
. (13)

The relation for |S| is then obtained by setting A = (κ ′)2 −
(γ /2)2 + δ2 − (κ ′′)2 and B = 2κ ′κ ′′ − δγ in Eq. (6) and
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differentiating to obtain

|S|
K

=
∣∣∣∣ δ

�′

∣∣∣∣
{

1 − κ ′′[κ ′′ + κ ′γ /(2δ)]

(�′)2 + (γ /2)2 + (κ ′′)2

}
, (14)

where the relations (A2 + B2)1/2 = |�̃|2, and |δ̃|2 + κ2 +
|�̃|2 = 2[(�′)2 + (γ /2)2 + (κ ′′)2] have been used. By taking
the limit δ → κ ′′ and administering L’Hôpital’s rule we then
find that |S|/K1/2 = √

1/2 for any type of EP. Indeed, with
the general solution now in hand, it is straightforward to show
that |S|/K1/2 � 1 for any set of parameters; see Appendix A.

V. ABOVE-THRESHOLD BEHAVIOR:
QUASILINEAR APPROACH

Until now our eigenmode analysis has been entirely linear,
i.e., we have assumed the parameters δ, γ , κ ′, and κ ′′ do not
depend on the fields. Therefore, in a strict sense the results do
not apply above threshold, where γ depends on the intracavity
intensities as a result of gain (and possibly absorption) satu-
ration. Nevertheless, if one is only interested in steady-state
behavior, the linear theory has been shown to work well in
some cases for systems pumped above threshold [35–37,46]
provided saturated (steady-state) values of the gain coeffi-
cients are used in the analysis. In this quasilinear approach,
the beat frequency and the excess-noise factor are still de-
termined by Eqs. (6) and (13), respectively (with substitution
of saturated gain values). On the other hand, the scale-factor
enhancement must be modified owing to the dependence of
γ on the detuning, �′ (δ, γ (δ)), as dictated by the threshold
condition [46]. In accordance with the chain rule,

S = d�′

dδ
= ∂�′

∂δ
+ ∂�′

∂γ

∂γ

∂δ
. (15)

Note that from the first term on the r.h.s. we recover
Eq. (14) after dividing by K. Thus, if not for the additional
second term, our previous conclusion that S2/K � 1 would
still stand. The extra term, however, leads to situations where
the scale factor diverges faster than expected [37,46,55] such
that S2/K can increase above unity. After dividing by K, the
second term can be written as∣∣∣∣ δ

�′

∣∣∣∣ (�′)2 − δ2 + 2κ ′κ ′′δ/γ
(�′)2 + (γ /2)2 + (κ ′′)2

∣∣∣ γ

2δ

∣∣∣ψ −→
EP

1

|2S|
∣∣∣ γ

2δ

∣∣∣ψEP, (16)

where the factor ψ = |∂δγ /2| represents the saturation im-
balance. Just as before, we have taken the limit δ → κ ′′ to
obtain the result on the r.h.s. of Eq. (16), which applies at the
EP. Pulling together the results at the EP from Eqs. (14) and
(16) we have

S2

K
= 1

2

(
1 +

∣∣∣∣ κ ′

κ ′′

∣∣∣∣ψEP

)
, (17)

where the factor ψEP should be evaluated at the EP after taking
the partial derivative. The term outside the parentheses is the
result without saturation, and is also obtained when ψ = 0
because the saturation is balanced, resulting in no change in S
or K. On the other hand, S2/K increases above unity when

|κ ′ |ψEP > |κ ′′| . (18)

To evaluate the partial derivative ψ in the steady
state, we set γ± = γavg ∓ �′′ = 0, and use the fact that

(�′′)2 = (�′)2−A, to obtain the threshold condition A0 =
(B0/2γavg,0)2−γ 2

avg,0, which for conservative coupling be-
comes

(κ ′)2 = −γ1,0 γ2,0[1 + (δ/γavg,0)2], (19)

where the subscript “0” indicates steady state. Restricting the
result to the steady state in this way essentially collapses the
plot in Fig. 4(a) to two dimensions because not all the values
along the γ axis are accessible. This allows a determination
of S2/K in the steady state when the system is pumped above
threshold, either directly at the EP via Eq. (17), or in the
more general case of arbitrary parameters by using Eqs. (15),
(16), and (14). Unfortunately, except for the particular case
of ψ = 0 (balanced saturation), Eq. (19) does not uniquely
determine ψ0 if both γ1 and γ2 are saturating, i.e., it requires
one of these coefficients to be held constant. When both res-
onators saturate we must instead resort to numerical solution
of the coupled nonlinear equations that result from replacing
the constant coefficients γ1 and γ2 in Eq. (1) with saturable
ones of the form γi(Ii) = γ s

i (Ii ) + γ n
i = γ u

i /(1 + βiIi ) + γ n
i

(i = 1, 2) where βi are the self-saturation coefficients, Ii are
the intensities in the resonators, and γ s

i , γ n
i , and γ u

i are the
saturable, nonsaturable (constant), and unsaturated loss coef-
ficients, respectively [56].

Equation (17) shows that the greatest enhancement in S2/K
is achieved at the conservative coupling EP where κ ′′ = 0. In
Fig. 5 the beat frequency �′ [Fig. 5(a)] as well as the value
of |S|/K1/2 [Fig. 5(b)] are plotted versus δ for conservative
coupling at increasing values of the saturation imbalance ψ0,
with the system set to saturate to the EP at threshold in each
case. Three cases are shown: (1) the gain in both resonators
saturates equally (blue dashed curve), but the nonsaturable
loss coefficients are different, i.e., γ n

1 /κ ′ = 0 and γ n
2 /κ ′ = 2;

(2) only the first resonator saturates (green dotted curve) with
equal nonsaturable losses γ n

1 /κ ′ = γ n
2 /κ ′ = 1; (3) the satu-

ration is equal in magnitude but opposite in sign (red solid
curve), i.e., the gain (loss) in the first (second) resonator satu-
rates. The nonsaturable losses are both set to zero in this case,
i.e., γ n

1 /κ ′ = γ n
2 /κ ′ = 0. For each case we have set β1 = β2 =

1. The saturation imbalance is ψ0 = 0, ψ0 = |∂∂γ1,0|, and
ψ0 = 2|∂∂γ1,0|, respectively. In Fig. 5(a) the yellow surface
represents the beat frequency obtained from Eq. (6) for all
possible combinations of δ and γ . The curves, on the other
hand, result from restricting the result to steady state. The two-
dimensional projections of these curves are shown in the inset
of Fig. 5(b). The beat frequency changes nonlinearly near the
EP at δ = 0 in each case. The data points in Fig. 5(b) are from
numerical solutions of the nonlinear coupled equations [57]
for the saturated gain coefficients, which were then substituted
into Eqs. (6) and (13) to obtain �′ and K, respectively. The
scale factor enhancement was then calculated numerically
from �′. On the other hand, the curves (with the exception
of the red curve), are analytic solutions of Eq. (15) with ψ0

determined from Eq. (19). The good agreement validates these
relations. For the red curve both resonators saturate, and do so
at different rates with increasing δ, so the steady-state value
of ψ must be determined from the numerical computation.

The effect of the saturation imbalance is clear: when
ψ0 = 0 the value of γ0 is independent of δ, resulting in no
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FIG. 5. (a) Beat frequency |�′| and (b) |S|/K1/2 vs detuning for
conservative coupling (κ ′′ = 0) at varying levels of saturation im-
balance: ψ0 = 0 (blue dashed), ψ0 = |∂∂γ1,0| (green dotted), ψ0 =
2|∂∂γ1,0| (red solid). The gain in the first resonator −γ1 is set
to saturate, and the saturation imbalances are achieved by setting
the second resonator so that it experiences an equal amount of
saturable gain (blue), constant gain (green), and an equal amount of
saturable loss (red). In each case the system saturates to threshold,
and the nonsaturable losses are set so the threshold corresponds to
the EP at δ = 0. The data points are determined from numerical
solutions of the nonlinear coupled-mode equations, while the curves
are analytic solutions of Eq. (15) (the red curve requires determina-
tion of ψ0 from the numerical computation). The inset in (b) shows
the projections of the curves in (a). The unsaturated parameters
are: γ u

1 /κ ′ = γ u
2 /κ ′ = −1.8/1.4 (blue); γ u

1 /κ ′ = −2.5 and γ u
2 = 0

(green); and γ u
1 /κ ′ = −γ u

2 /κ ′ = −1.5 (red), corresponding to the
saturation imbalances above.

change from the linear result, but for nonzero ψ0 the curves in
Fig. 5(a) take trajectories of varying γ0, leading to an increase
in S and thus in |S|/K1/2 as shown in Fig. 5(b). For case (1)
ψ0 = 0 and the gain saturation has no effect. The beat fre-
quency displays the same square-root relation predicted by the
linear equations, and |S|/K1/2 is the same as the dashed curve
in Fig. 3(a), remaining below unity for all detunings. For case
(2), on the other hand, the saturation imbalance ψ0 = |∂∂γ1,0|
causes the scale factor to increase more than expected, and
|S|/K1/2 exceeds unity over a large bandwidth of about 0.2
in dimensionless units. For case (3) ψ0 = 2 |∂∂γ1,0|, which
maximizes the saturation imbalance. Aside from the narrow
cusp around δ = 0, the response is the same as that of the

PT-symmetric case in the absence of gain saturation with
κ ′ = 2|γ0/2|. The enhancement bandwidth effectively drops
to zero in this case. Thus, there is an inverse relationship
between the bandwidth and the maximum enhancement. In
addition, according to Eq. (17), for pure conservative coupling
(κ ′′ = 0) the enhancement always diverges unless the satura-
tion is balanced. This absurdity is obviated by the fact that in
practice there will always be some dissipation involved in the
coupling.

In contrast, for maximally dissipative coupling κ ′ = 0.
Moreover, the saturation is always balanced (ψ0 = 0) be-
cause γ0(δ) = 0 for all values of δ regardless of how far
the system is pumped above threshold. Therefore, the con-
dition for enhancement, Eq. (18), cannot be satisfied in this

case. Indeed, outside the deadband �′ = [δ2 − (κ ′′)2]
1/2

and
S = δ/�′ [from Eq. (7) with interchanged parameters]. In
addition, since B0 = γ0δ = 0, the threshold condition is A0 =
δ2 − (κ ′′)2 = −γ 2

avg,0. Substituting |�̃|2 = (A2
0 + B2

0)1/2 = A0

into Eq. (13) we have K = (δ/�′)2 which agrees with Eq. (10)
with interchanged parameters. In other words, S and K are
independent of γ , so gain saturation does not affect them and
there is no variation from the linear case.

Therefore, gain saturation can remove the rotational in-
variance of EPs, and studies performed near the EP at the
deadband edge should not be expected to be indicative of
the precision at the PT-symmetric EP. In fact, gain satura-
tion can break the rotation symmetry even when there is
no saturation imbalance. Near the maximally dissipative EP
(the deadband edge) gain saturation distorts the beat signal
resulting in harmonics that pull the beat frequency to larger
values than that expected from Eq. (6) [37]. The same distor-
tion is not expected to occur near the conservative coupling
(PT-symmetric) EP [46].

VI. ABOVE-THRESHOLD BEHAVIOR:
LINEARIZATION APPROACH

The results above still rely on the use of the Petermann
factor, which is fundamentally linear. We have simply sub-
stituted saturated gain coefficients for nonsaturable ones in
Eq. (8). Consequently, we cannot discount the possibility that
a proper treatment of the excess noise might eliminate the
enhancement illustrated in Fig. 5. The nonlinear coupled-
mode equations can be made stochastic by the addition of a
Langevin noise term to Eq. (1). These equations have already
been solved for the case of maximally dissipative coupling
[42,54,58]. Outside the deadband (|δ| > |κ ′′|) where two
modes lase and beat together, the laser phase obeys the Adler
equation. This equation is anharmonic owing to the gain
saturation, resulting in the appearance of harmonics in the
beat-note spectrum as mentioned above [35,37,42,58]. Inject-
ing quantum noise into the Adler equation via a Langevin term
and calculating the fundamental linewidth via the Fokker-
Planck equation results in a small correction factor, 1 +
(κ ′′)2

/2δ2, which should be multiplied by the Petermann fac-
tor obtained from Eq. (10), δ2/[δ2 − (κ ′′)2] [42,53,58]. Note
that this factor is never larger than 3/2, taking its largest value
at the EP. Indeed, experiments performed in this region have
shown that the linear theory works remarkably well [42,54].
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For frequencies inside the deadband |δ| < |κ ′′|, on the
other hand, only one mode lases and the beat frequency is
zero, i.e., there is a stable steady state. In this region the non-
linear coupled-mode equations, which include the Langevin
noise terms, can be linearized around this steady state. The
excess noise can then be determined from the noise power
spectrum [59]. Using this approach, Van der Lee et al. have
shown that while the intensity excess noise follows the linear
Petermann factor (with nonsaturable coefficients), the phase
noise is strongly modified by the saturation, and can be greatly
reduced at high steady-state laser intensities [59]. This result
demonstrates that when the system is pumped above thresh-
old, the excess-noise factor can deviate significantly from the
linear prediction, even with the use of saturated coefficients.
Unfortunately, the reduction in excess noise is not beneficial
to the application discussed here, because the scale factor and
thus the precision are zero within the deadband region.

Nevertheless, we can take a similar approach to derive the
excess-noise factor for conservative coupling in the single
mode, a.k.a., lasing-without-gain (LWG) [46], regime. The
approach is valid in the good cavity limit, where the polariza-
tion and inversion can be adiabatically eliminated. We assume
the addition of the lossy resonator does not invalidate this ap-
proximation. In addition, the system is assumed to be not too
far above threshold, i.e., in the weak-gain-saturation regime,
so that noise due to stimulated processes can be neglected,
leaving spontaneous emission as the dominant quantum noise
source. These conditions allow a single Langevin noise term
to be used in Eq. (3). At the same time, we assume the system
is not so close to threshold that the linearization procedure
itself becomes invalid (due to amplitude noise becoming large
relative to the laser intensity).

The presence of the loss coefficients in Eq. (3) makes
the procedure a bit more complicated than for the maxi-
mally dissipative coupling case (which assumes γ1 = γ2 =
0), but it proceeds along similar lines. We first make the
weak-saturation approximation γi(Ii ) = γ s

i (Ii ) + γ n
i ≈ γ̂ u

i −
β̂iIi (i = 1, 2), where β̂i = βi γ

u
i and γ̂ u

i = γ u
i + γ n

i . We then
transform to a more convenient basis consisting of the orthog-
onal variables 2θ = φ1 − φ2, 2φ = φ1 + φ2, tan χ = (E1 −
E2)/(E1 + E2), and I = E2

1 + E2
2 , by setting ei = Ei exp(iφi) as

shown in [59], to obtain the following coupled equations:

θ̇ = (δ/2) − (κ ′/2) tan 2χ cos 2θ + fθ , (20a)

φ̇ = (κ ′/2) cos 2θ/ cos 2χ + fφ, (20b)

χ̇ = (κ ′/2) sin 2θ − (γ /4) cos 2χ + fχ , (20c)

İ/2I = − (γavg/2) − (γ /4) sin 2χ + fI , (20d)

where γ = γ̂ u − βd I − βsI sin 2χ , γavg = γ̂ u
avg −

(βd I/2) sin 2χ − βsI/2, γ̂ u = γ̂ u
1 − γ̂ u

2 , γ̂ u
avg = (γ̂ u

1 + γ̂ u
2 )/2,

βd = (β̂1 − β̂2)/2, and βs = (β̂1 + β̂2)/2. The correlation
relations for the Langevin terms { fθ , fφ, fχ , fI} are given in
Appendix B. Note that Eq. (20a) is the analog of the Adler
equation for conservatively coupled systems.

Linearizing around the stable steady state (whose solutions
are also given in Appendix B), i.e., making the substitutions
θ = θ0 + �θ , χ = χ0 + �χ , and I = I0(1 + 2�I ) results in

the following coupled equations:

�θ̇ = γavg,0 �θ + p�χ + fθ , (21a)

φ̇ = γ0 �θ/2 + q�χ + fφ, (21b)

�χ̇ = A �χ + B�I + fχ , (21c)

�İ = C�χ + D�I + fI , (21d)

where p = −2δ/(sin 2χ0 cos 2χ0), q = δγ0/(κ ′ sin 2θ0), A =
(γ̂ u − γ0) γavg,0/γ0 + (γ̂ u

avg−2γavg,0), B = κ ′ sin 2θ0(γ̂ u −
γ0)/γ0, C = κ ′ sin 2θ0(γ̂ u−2γ0)/γ0, and D = − (γ̂ u −
γ0) γavg,0/γ0 + (γ̂ u

avg − γavg,0). Thus, for the amplitude
variables {χ, I} the dependency on detuning occurs implicitly
via γ0 and γavg,0, and explicitly through sin 2θ0, whereas
for the phase variables {θ, φ} there is an additional explicit
dependency owing to the p and q terms. Note also that the
factors A, B, C, and D are implicitly dependent on intensity
via the unsaturated quantities γ̂ u and γ̂ u

avg, indicating that
the excess noise will depend on how far above threshold the
system is pumped.

Taking the Fourier transform and applying the Wiener-
Khintchine theorem yields the noise power spectra

〈|�θ (ω)|〉2 = 1

ω2 + γ 2
avg,0

[Dθ + p2〈|�χ (ω)|〉2], (22a)

〈|φ(ω)|〉2 = 1

ω2

[
(γ0/2)2

ω2 + γ 2
avg,0

(Dθ + p2〈|�χ (ω)|〉2)

+Dφ + q2〈|�χ (ω)|〉2

]
, (22b)

〈|�χ (ω)|〉2 = (D2 + ω2)Dχ + B2 DI

(AD − BC − ω2)2 + (A + D)2ω2
, (22c)

〈|�I (ω)|〉2 = (A2 + ω2)DI + C2 Dχ

(AD − BC − ω2)2 + (A + D)2ω2
. (22d)

Note that (1) due to the mutual coupling between �χ and
�I , fI projects onto �χ and fχ projects onto �I , (2) these
noise sources project onto the phase variables only when δ �=
0, and (3) there is a one-way coupling between �θ and φ, so
fθ projects onto φ but fφ does not project onto �θ . As we
will see, the one-way coupling between the phase variables
leads to only a small departure from the quasilinear Petermann
result, whereas the mutual coupling of the amplitude variables
leads to a much larger deviation.

The excess-noise factors are then found by taking the ratio
of the noise spectrum at an arbitrary coupling to that at zero
coupling (κ ′ → 0). As we are primarily interested in the be-
havior near the EP, in what follows we will set δ = 0 such that
all the variables reach steady state and the terms containing p
and q vanish. For the phase difference this results in

Kθ (ω) = ηθ

[
ω2 + (γ0/2)2

κ ′=0

ω2 + γ 2
avg,0

]
= ηθKω, (23)

where

ηθ = Dθ

Dθ |κ ′=0
(24)
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is an intensity-dependent factor arising from the modified
autocorrelation in the coupled system. At ω = 0 Eq. (23)
reduces to Kθ (0) = (ηθ�)K , where � = (γ0/2)2

κ ′=0/(γ0/2)2

and K = (γ0/2γavg,0)2 is the usual Petermann factor (with
saturated coefficients). Thus, the factor ηθ� modifies the ex-
cess noise factor from that predicted by the quasilinear result.
Assuming spontaneous emission in only the first resonator
(Rsp

2 = 0), we obtain ηθ = [I1]κ ′= 0/I1, which asymptotes to its
minimum value of ηθ = 2 at the EP in the limit of large pump-
ing. If, in addition, equal nonsaturable losses are assumed
(γ n

1 = γ n
2 ) we find that � = 1/4 at the EP, regardless of the

level of pumping. These deviations from the Petermann result
occur because at a particular pumping rate, characterized by
Rsp

1 , the steady-state coefficients (�) and intensities (ηθ ) must
be different for the coupled and uncoupled systems. Note that
�K is exactly what we would expect to find had we prop-
erly generalized the Petermann factor [see top of Eq. (10)],
to account for the different saturation behaviors, while the
additional factor ηθ arises from the fact that the conventional
linewidths of the two systems are different.

For the overall phase, at ω = 0, we obtain

Kφ (0) = ηθ

[
(γ0/2)2 − (κ ′)2

/2

(γ0/2)2 − (κ ′)2

]
. (25)

The factor in brackets differs from the Petermann result by
the factor 1 − (2κ ′/γ0)2

/2, which has a maximum of 1/2 at
the EP (where |κ ′| = |γ0/2|), i.e., KEP

φ (0) = ηθK/2. Thus, for
the phase variables {θ, φ} the dependence of the excess noise
on laser intensity occurs solely through the factor ηθ . As we
have already pointed out, the same is not true for the intensity
quantities {χ, I} whose intensity dependence also arises from
the factors A, B, C, and D.

For the amplitude variables, setting κ ′ = 0 in Eqs. (21c)
and (21d), uncouples the equations (B = C = 0) resulting in
the noise spectrum for the higher-gain (first) resonator

〈|�I (ω)|〉2 =
[

DI

ω2 + D2

]
κ ′=0

, (26)

where D|κ ′= 0 = −γ n
1 γ̂ u

1 /γ u
1 . Therefore, the intensity excess

noise factor at ω = 0 is

KI (0) = A2 DI + C2 Dχ

(AD − BC)2

[
D2

DI

]
κ ′=0

. (27)

Note that because of the coupling, the divergence is now
determined by the zero in the determinant rather than by being
at the EP. At the EP, Eq. (27) reduces to

KEP
I = ηI

[ (
2γ̂ u

avg

)2 + (γ̂ u − 2γ0)2(
2γ̂ u

avg

)2 − (γ̂ u − γ0)(γ̂ u − 2γ0)

](
γ n

1 γ̂ u
1

γ u
1

)2

,

(28)
where ηI = DI/[DI ]κ ′=0. Importantly, KEP

I does not necessar-
ily diverge but remains finite for a wide set of {γ u

1 , γ u
2 } values.

An exception is when the system is pumped at (not above)
threshold. In this case KEP

I diverges because the term in square
brackets on the r.h.s. reduces to the Petermann result, and in
addition ηI diverges. In the limit of large pumping, on the
other hand, ηI = 1/2 at the EP (assuming Rsp

2 = 0).
To verify the results of the linearization procedure de-

scribed above, we numerically solved the coupled nonlinear

equations as described in Fig. 5, but now with noise injected
via Langevin terms added to the real and imaginary parts
of Eq. (1) to obtain Kθ and KI . This involves computing
�θ = θ − θ0 and �I = (I/I0 − 1)/2, taking the fast Fourier
transform to obtain Eqs. (22a) and (22d), then repeating the
procedure and normalizing to the results obtained at κ ′ = 0.

This was repeated at a variety of different couplings and
detunings. We assume in these calculations that only the first
resonator saturates and that there is no spontaneous emission
in the second resonator, i.e., Rsp

2 = 0. Thus, ηθ = [I1]κ ′= 0/I1

and ηI = [I]κ ′= 0/2I . In addition, Kθ and KI were calculated
from the same data, i.e., the same noise sources and value
of Rsp

1 were used. The system was pumped only slightly
above threshold (γ̂ u/γ0 = 1.02) to ensure the validity of the
weak-saturation approximation at the EP. In addition, as in the
green curve of Fig. 5, we set γ n

1 = γ n
2 = κ ′ and γ u

2 = 0, which
allows convenient analytic determination of the intensity I0.

In Fig. 6 Kθ is plotted against frequency, coupling, and
detuning. The detuning is constant (δ = 0) in Figs. 6(a)–6(c),
whereas the coupling is held constant (κ ′ = 0.999κEP) in
Fig. 6(d). The linearized model (solid curves) matches the
numerical computation in each of the individual figures. In
Fig. 6(a) noise power spectra are plotted for three different
coupling values, from which the curves of Kθ versus fre-
quency are constructed in Fig. 6(b). Each spectrum represents
an average of 30 individual spectra. Note that the phase noise
in Fig. 6(a) is colored, being dominated by white noise at
low frequencies and random walk at high frequencies. The
transition between these regimes occurs at ω = |γavg,0|, which
redshifts as the coupling increases, approaching ω = 0 at
the EP. Consequently, for the top curve (κ ′ = 0.999κEP) the
transition frequency is too low to observe, as it falls below the
smallest frequency, ωα , in the spectrum, determined by the du-
ration of our numerical simulation. Note also that in Fig. 6(b)
Kθ diverges in the limit ω → 0 as the EP is approached but
otherwise remains finite. In Figs. 6(c) and 6(d) Kθ is plotted
versus coupling and detuning, respectively, at ωα . The dashed
indigo curve in Fig. 6(c) is a plot of Kω, whereas the green
dotted curve is the quasilinear theory, K. The data exceed Kω

by the factor ηθ and also exceed K even when κ ′ = 0.999κEP,
because the system is far below the strong pumping limit.
But even in this weak pumping case, for the particular case
of κ ′ = κEP, K diverges and thus exceeds Kθ (which, again,
remains finite even at the EP because of the nonzero frequency
ωα). In Fig. 6(d) the linearized model matches the data at
small δ, but at higher detunings the threshold drops and the
intensity grows sufficiently high that the weak-saturation ap-
proximation (βiIi 	 1) is no longer valid. Again, the green
dotted curve shows the quasilinear theory underestimates the
data owing to the weak pumping and subexceptional coupling
(κ ′ = 0.999κEP).

Figure 7 shows the same sort of plots for KI . The param-
eters are the same as in Fig. 6, except that in Fig. 7(c) an
additional set of data (blue (bottom) curve and crosses) is
included to demonstrate the effect of pumping farther above
threshold (γ̂ u/γ0 = 1.25, same pumping level as green curve
in Fig. 5). One key difference from the data in Fig. 6 is that
KI does not diverge at the EP. Thus, in Figs. 6(c) and 6(d)
the zero-frequency value of KI can be plotted. Moreover, in
Fig. 7(c) the linearized model matches the data only near the
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FIG. 6. Phase excess-noise factor, Kθ , vs frequency (b), coupling
(c), and detuning (d) as obtained from numerical solution of the
nonlinear coupled-mode equations including Langevin noise terms
and compared with the analytic solution obtained from linearizing
around the steady state (solid curves). In (a)–(c) the detuning is
δ = 0, while in (d) the coupling is κ ′ = 0.999κEP. In (a) noise power
spectra are shown for three values of κ ′/κEP{0, 0.86, 0.999}, from
which the curves in (b) are constructed. In (c) and (d) Kθ is plotted
against κ ′/κEP and δ, respectively, at ωα , the smallest frequency
present in the spectrum in (b). The dashed indigo curve is Kω,
whereas the dotted green curve is the Petermann prediction, K. The
frequencies along the horizontal axes in (a) and (b) are normalized
to |γavg,0|κ ′=0 such that the white-noise to random-walk transition for
the bottommost (κ ′ = 0) curve in (a) occurs at unity.

EP. This is because the intensity I0 grows as the coupling de-
creases to the point that the weak-saturation approximation is
no longer valid. This is underscored by the results at stronger
pumping where the intensity is higher and the agreement is
even worse. Note that in both cases KI remains finite even at
the EP and is lower at stronger pumping in accordance with
Eq. (28). In addition, the coloring of the intensity excess noise
is much different than in Fig. 6. A resonance peak appears
in the spectrum owing to the zero in the denominator of
Eqs. 22(c) and 22(d). The peak becomes stronger, moves to
higher frequencies, and broadens as the pumping increases,
characteristic of a relaxation oscillation. In this case, the os-
cillation is induced by the quantum noise and would not be
observable if not for the enhancement near the EP as shown
in Fig. 6(a).
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FIG. 7. Noise power spectra (a) and intensity excess-noise factor,
KI , vs frequency (b), coupling (c), and detuning (d), compared with
the linearized theory (solid curves). In (a) the value of κ ′/κEP is
indicated under the curves (1 and 0). The curve in (b) is the ratio
of the two curves in (a). In (b) the system saturates to the EP,
corresponding to the leftmost data points in (c) and (d). In (c) and
(d) only the zero-frequency value of KI is plotted. In (c) the effect
of pumping farther above threshold is shown (blue (bottom) curve
and crosses), which decreases the excess noise factor. The intensity
is sufficiently high in this case that the analytic solution no longer
predicts the data, even at the EP. The dashed curve in (d) is the
quasilinear prediction, i.e., the Petermann factor K with saturated
coefficients, which diverges at the EP. Note that KI remains finite and
there is a region of detunings near the EP where KI � K . In this case
the frequencies in (a) and (b) are normalized to |D|κ ′=0 in accordance
with Eq. (26).

In Fig. 7(d) the effect of detuning is shown. A large peak
occurs that is not predicted by the linearized model. This is
again due to the breakdown of the weak-saturation approx-
imation as the detuning increases. In particular, the mutual
coupling in KI requires lower intensities to satisfy the ap-
proximation than is the case for Kθ . The quasilinear model
is also shown (dashed curve). The two models cross, with the
linear model overestimating the noise at small detunings and
underestimating it at larger detunings. Increasing the unsatu-
rated gain −γ u

1 results in higher intensities, I0, which reduces
the value of KEP

I (at δ = 0) and moves the crossing point
to higher detunings. Hence, there is a region near the EP
where the intensity excess noise is lower than expected from
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FIG. 8. Excess noise factors near the EP (δ = 0, κ ′ =
0.999 κEP ) vs relative pumping level. Numerical data (open circles)
are compared with the linearized (solid orange curve) and quasilinear
(dotted green) models, as well as with Kω (dashed indigo). The
nonsaturable gain was equal for the two resonators and the pumping
level was varied by increasing the saturable gain in the first resonator,
with no saturable gain included in the second resonator.

the quasilinear theory (KI � K ) over a bandwidth and by an
amount that increases with increased pumping.

In summary, in conservatively coupled systems both phase
and intensity excess noise factors can be decreased through
increased pumping via the factor η and by the coupling of the
noise fluctuations, which has a greater effect on KI . At the
EP KI remains finite even at ω = 0, decreasing with higher
steady-state intensities, while Kφ and Kθ still diverge at ω = 0
but are multiplied by factors of ηθ/2 and ηθ�, respectively.
In the strong pumping limit ηθ = 2 such that Kφ = K and
Kθ = 2Kω = K/2 (assuming equal nonsaturable losses). This
reduction of the excess noise with pumping in shown in Fig. 8,
where Kθ and KI are plotted near the EP versus the pumping
level relative to threshold. For small pumping levels the excess
noise is higher than the quasilinear prediction (which does
not change with pumping) because η > 1, but as the pumping
increases KI falls below unity whereas Kθ approaches 2Kω.
Note that Kω falls farther below the quasilinear result than
the factor � would predict, i.e., Kω < �K , due to the nonzero
frequency ωα . In both cases the data are better represented
by the linearized nonlinear model and are reduced below the
quasilinear prediction. Our use of saturated coefficients in
Eqs. (15)–(19), therefore, appears to be a worst-case scenario.
At the small detunings of interest for gyroscopes, the precision
can be even higher than predicted by the quasilinear analysis.

These results for conservative coupling are complementary
to the results found previously for maximally dissipative cou-
pling that the phase excess noise can be reduced to unity in
the limit of strong pumping, while the intensity noise is un-
changed from the Petermann result [59]. In contrast, here the
intensity noise is significantly reduced while the phase noise is
less affected. In both cases, the deviation from the Petermann
result at strong pumping occurs because fluctuations in the
orthogonal variables are coupled. In the case of dissipative
coupling the phase {φ,�θ} and amplitude {�χ,�I} variables
are coupled, i.e., �χ is coupled to φ and �θ is coupled to �I .

FIG. 9. Phase noise power spectrum for an uncoupled (κ ′ = 0,
dashed brown curve) and a coupled system near the EP (κ ′/κEP =
1, δ/ κ ′ = 1.5 × 10−4, solid magenta curve) in the strong pumping
limit (γ̂ u � γ0). Region I: white phase noise dominates in both
systems. Region II: random walk phase noise (white frequency noise)
dominates in the coupled system, but white phase noise dominates in
the uncoupled system. Region III: random walk phase noise dom-
inates in both systems. The unshaded areas are transition regions.
The vertical axes are normalized such that the power spectrum of the
uncoupled system is unity in region I.

The reduced phase excess noise comes about as a result of
the coupling with the amplitude fluctuations, which are sup-
pressed due to gain saturation, especially far above threshold.
The same thing happens in conservatively coupled systems,
except in this case there is greatly reduced amplitude to phase
coupling [�θ is coupled to φ and �χ is coupled to �I at
δ = 0; see Eqs. (21)], so the noise suppression is isolated to
the intensity excess noise. Essentially, the saturation acts as a
negative feedback on the amplitude fluctuations and this can
also affect the phase excess noise in situations where there
is amplitude to phase coupling. The decoupling of the phase
and amplitude noise components in conservatively coupled
systems also leads to a sinusoidal temporal response (instead
of the anharmonic response that characterizes dissipative cou-
pling) and elimination of harmonics from the beat spectrum
(subsequent to its recovery as described in Sec. VIII). Further-
more, whereas the one-way coupling of φ to �θ leads to only
a small change from the Petermann result, the mutual coupling
of the amplitude variables leads to a dramatic reduction in the
intensity excess noise. This mutual coupling does not occur
for dissipative coupling [59] and explains why the intensity
excess noise factor can fall well below unity under strong
pumping.

VII. MEASUREMENT PRECISION FOR
COLORED QUANTUM NOISE

The metric S/K1/2, established in Sec. III for the measure-
ment precision, relies on the assumption that the frequency
noise in both the uncoupled and coupled systems is white.
However, we observed in the previous section that the excess
quantum noise is colored. The coloring of the noise, as shown
in Fig. 9, thus complicates the determination of the preci-
sion. For laser gyroscopes the relevant excess noise factor
is for the relative phase, i.e., Kθ . Note that when p = 0 = δ,
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Eq. (22a) describes Gauss-Markov noise with a characteristic
decay rate given by |γavg,0|. There are three limiting regions
identified in the figure. In region I the phase noise in both the
coupled and uncoupled systems is white because ω2 	 γ 2

avg,0

(which also ensures that ω2 	 γ 2
avg,0|κ ′=0

). In this limit the
single-sided noise power spectral density (PSD), determined
from Eq. (22a), reduces to Sθ = Dθ /γ

2
avg,0. Converting to a

frequency noise PSD we have Sω = ω2Sθ = Dθ (ω/γavg,0)2,
corresponding to an Allan variance σ 2

ω = 3 fhSω, where fh

is the cutoff frequency of the low-pass filter (the highest
possible measurement rate). Assuming fh is the same for the
two systems, the relative error for a frequency measurement
is then given by ε ≡ σω/[σω]κ ′=0 = K1/2

θ = (ηθKω )1/2 and we
recover our original metric for the enhancement in precision
S/ε = S/K1/2

θ .
In region III we are in the opposite limit where ω2 �

γ 2
avg,0|κ ′=0

(which also ensures that ω2 � γ 2
avg,0), and the

phase noise is dominated by random walk (equivalent to
white frequency noise) in both systems. In this case Sθ =
Dθ /ω

2 and Sω = ω2Sθ = Dθ , corresponding to σ 2
ω = Sω/2τ ,

where τ = 1/ω is the measurement time. For white fre-
quency noise the linewidth can be obtained analytically to
be πSω. Thus, in this region we can explicitly associate the
increased error with an increase in the laser linewidth. The
measurement times cancel leaving ε = η

1/2
θ = K1/2

θ since in
this limit Kω is unity. In region II, on the other hand, random
walk phase noise dominates in the coupled system (ω2 �
γ 2

avg,0), but white phase noise dominates in the uncoupled
system (ω2 � γ 2

avg,0|κ ′=0
). In this limit the times and cut-

off frequencies do not cancel so ε is no longer simply the
ratio of the square root of the PSDs for the two systems.
Instead, we have ε = (Dθ /2τ )1/2/(3 fhDθω

2/γ 2
avg,0)1/2

κ ′=0 , i.e.,
the relative error becomes frequency dependent. In summary,
we have

ε =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K1/2
θ = (ηθKω )1/2 Region I(

γ 2
avg,0

∣∣
κ ′=0ηθπ

3 ω ωh

)1/2

Region II

K1/2
θ = η

1/2
θ Region III

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (29)

where ωh = 2π fh.
Note, however, that although ε diverges at the EP (δ =

0, κ ′ = κEP), the decay rate simultaneously drops to γavg,0 =
0, such that region I becomes infinitely small at ω = 0. Thus,
near an EP, the predominant mode of operation at low fre-
quencies will be in region II because measurement frequency
cannot be zero. In addition, according to the middle equation
above, the relative error decreases as the frequency increases,
resulting in larger enhancements in precision at higher values
of ω. If we set the measurement rate to the maximum, i.e.,
ω = ωh, we find in region II that

ε = (ηθKω )1/2(π/3 )1/2 ≈ K1/2
θ , (30)

where we have used the fact that Kω = (γ0/2)2
κ ′=0/ω

2 in re-
gion II. Thus, we find that our original metric S/K1/2

θ provides
a good estimate for the enhancement in precision for all three
regions.

FIG. 10. Relative measurement precision ς for colored noise vs
detuning in the strong pumping limit, from the quasilinear prediction
S/K1/2 (dotted green curves) and from Eq. (29) in the white-noise
limit (solid orange curves) and in the random-walk white-noise
limit (dashed blue curves). The dashed curves are valid in the
red-shaded region II. The frequencies are ω/|γavg,0|κ ′= 0 = 1.32 ×
10−5/0.7 (left) and 4.4 × 10−3/0.7 (right), while the couplings are
κ ′/κEP = 0.9999 (top) and κ ′/κEP = 1 (bottom). As in Fig. 6, γ n

1 =
γ n

2 = κ ′ and γ u
2 = 0. The dash-dotted black curves represent the en-

hancement with respect to an ideal gyro, i.e., ςgyro = S/(Kθ, gyro )1/2.

In Fig. 10 we plot the precision ς ≡ S/ε as obtained
from the top (solid orange curves) and middle (dashed blue
curves) equations of Eq. (29) versus the detuning. The region
of validity for the solid curve is region I (shaded green),
while that for the dashed curve is region II (shaded red).
The top two figures are slightly subexceptional (κ ′/κEP =
0.9999), while the bottom figures are at κ ′/κEP = 1. In ad-
dition, higher (lower) frequencies are shown on the right (left)
to demonstrate the effect of increasing the measurement rate.
The frequencies are set to ω /|γavg,0|κ ′= 0 = 1.32 × 10−5/0.7
(left) and ω /|γavg,0|κ ′= 0 = 4.4 × 10−3/0.7 (right). The first
corresponds, for example, to a realistic measurement rate
and passive-cavity photon decay time of ω/2π = 300 Hz and
1/|γavg,0|κ ′= 0 = 10 ns, respectively. The latter is more ambi-
tious, corresponding to ω/2π = 1 KHz and 1/|γavg,0|κ ′= 0 =
1 μs. In both cases ω = ωh so that Eq. (30) is valid, as demon-
strated by the fact that the solid and dashed curves overlap in
region II.

In Fig. 10(a) the frequency is sufficiently low that the sys-
tem is in region I over the full range of detunings shown (the
normalized frequency given above is small compared to the
normalized decay rate, |γavg,0|/|γavg,0|κ ′= 0 = 2 × 10−4/0.7).
Note that the while the quasilinear theory (dotted green curve)
predicts an enhancement in precision for certain detunings, the
solid curve shows that the precision is less than unity (ς � 1)
over most of the detuning range except for a small region
around δ = 0 where the enhancement is only slightly greater
than unity. On the other hand, in Fig. 10(b) we have ς > 1
in region II, but ς � 1 in region I. The enhancement occurs
because the frequency is nonzero, such that a crossing into
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region II is obtained at sufficiently low detunings. The same
crossing does not occur in Fig. 10(a) owing to the subexcep-
tional coupling and the low measurement frequency. However,
in Fig. 10(c) the frequency is increased and again a crossing is
observed into region II with a corresponding enhancement in
precision. The effect of increasing the measurement frequency
can also be seen in Fig. 10(d) where a large increase in
the enhancement and bandwidth of region II is observed in
comparison with Fig. 10(b). In addition, the enhancements in
the figures on the right are larger than those predicted by the
quasilinear prediction at small detuning.

Up to this point we have not allowed the second resonator
to saturate (we set Rsp

2 = 0, γ u
2 = 0) in our calculations of

the relative quantities Kθ and ς . Thus, the uncoupled (κ ′ →
0) system we have been using for comparison consists, for
example, of one direction that is lasing and a second coun-
terpropagating direction that is simply a passive cavity (a
necessity for PT symmetry in the coupled system). Such
a system will have much lower phase noise than two un-
coupled counterpropagating lasers (an ideal laser gyroscope
with no lock-in), each of which can saturate. The orange
curves in Fig. 10 thus represent a lower bound on ς (and
an upper bound on Kθ ). This is apparent from Eq. (23) be-
cause for the ideal gyro Rsp

1 = Rsp
2 , γ u

1 = γ u
2 , and γ1,0|κ ′=0 =

γ2,0|κ ′=0 = 0, such that ηθ = [I1]κ ′= 0/2I1, which diverges in
the limit of weak pumping and asymptotes to ηθ = 1 at
the EP in the strong pumping limit. In addition, Kω = 1
(since γavg,0 = 0 at the EP). Therefore, the excess noise
factor, calculated with respect to the ideal gyro, becomes
Kθ, gyro = 1 and ςgyro = S/(Kθ, gyro)1/2 → S in this limit, i.e.,
the enhancement in precision approaches the scale factor
enhancement.

The dash-dotted black curves in Fig. 10 are plots of ςgyro.
For the bottom two graphs Kθ, gyro = 1, so these curves are
identical to plots of S. For κ ′ < κEP, on the other hand, Kω →
0 as ω → 0 (since γavg,0 �= 0), i.e., the excess noise factor can
be even lower than for κ ′ = κEP, resulting in ςgyro > S. Thus,
in Fig. 10(a) the dash-dotted curve is higher than S. Even so,
the value of ςgyro in such cases is never larger than it is at the
EP (where the scale factor is much larger). In the opposite
limit, i.e., for sufficiently high frequencies, Eq. (23) yields
Kω → 1. Thus, in Fig. 10(b) the dash-dotted curve is, again,
identical to S. Note that this result for the high frequency limit
holds regardless of the system used for comparison, i.e., it
applies to the orange and blue curves as well. Thus, these
curves converge to the dash-dotted curve as the frequency
increases (they are closer to the dash-dotted curve for the
two graphs on the right in Fig. 10). We caution that the beat
frequency for the ideal gyro is only in steady state when δ = 0
[cf. Eq. (23a) and [58]]. Thus, the results for ςgyro are only
strictly valid at δ = 0, not over the full range of detunings
shown in the figure. Nevertheless, the dash-dotted curves rep-
resent upper bounds on the enhancement. Finally, we note
from Eq. (23) that, when making the comparison with respect
to the ideal gyroscope, Kω = 1 at the EP even when both
resonators saturate in the coupled system and the saturation
is balanced (as in the blue dashed curve of Fig. 5). Thus,
in contradiction with the quasilinear prediction of Eq. (18),
the enhancement in ςgyro persists even without a saturation
imbalance.

In summary, the excess noise at low frequencies occurs
because the coloring of the noise is described by different
characteristic decay rates for the coupled and uncoupled sys-
tems; cf. Eq. (23) and Fig. 9. At sufficiently high measurement
frequencies, however, the phase noise PSDs of the two sys-
tems approach one another, allowing an enhancement in ς

beyond the Petermann limit that ultimately exceeds the quasi-
linear prediction as well. When we calculated the precision
relative to the ideal gyroscope ςgyro, even larger enhance-
ments were obtained over a broader range of frequencies (with
higher enhancements generally occurring at lower frequen-
cies) because in this case the decay rates are much closer
together (they are equal at the EP). While this involves chang-
ing the unsaturated gain in one of the resonators (in addition
to the coupling), it shows that the enhancement in precision
for an EP system in comparison with a diabolic point sensor
can be even greater than expected from the usual excess noise
factor Kθ .

VIII. RECOVERING THE BEAT NOTE

While the analyses above illustrate the promise of con-
servative coupling, there is an important caveat: the beat
frequency is zero in the regime that we are able to address
with the linearization procedure, i.e., for |κ ′ sin 2θ0| < |γ0/2|
(see Appendix B). As we have pointed out previously [46] this
single-lasing-eigenmode regime, which corresponds with the
occurrence of LWG, is actually quite large, excluding only the
case of exact PT symmetry where δ = 0 and |κ ′| � |γ0/2|. To
understand why the beat frequency disappears, first note that it
is given by θ̇ (just as it is for maximally dissipative coupling).
In Appendix B we show that the phase difference must be
stationary, i.e., θ̇ = 0, whenever the intensity is in steady state.
Another way to understand this is that for any nonzero detun-
ing, only one mode can lase with the other remaining below
threshold. This is similar to the case of maximally dissipative
coupling where one finds that θ̇ = 0 within the deadband. As
a result, the scale factor, and thus precision, are both zero.

There is an important distinction, however, that allows the
beat frequency to be recovered in the case of conservative cou-
pling, but not in the case of maximally dissipative coupling.
Although the relative frequency shift between the modes
ω+ − ω− is not observable (because only one mode lases), for
conservative coupling there is still an absolute frequency shift
for the mode that remains above threshold [there is no cor-
responding shift within the deadband because gain saturation
ensures that γ = 0; see Eq. (7) bottom]. Therefore, we can
recover the beat frequency simply by interfering the output
with a reference frequency. There are essentially two ways
to accomplish this: (1) by beating with an auxiliary mode
such as an additional longitudinal (see Fig. 11), transverse,
or polarization mode [32] in the same laser or in a separate
laser or (2) by increasing the pumping to the extent that lasing
can occur at both ω+ and ω− simultaneously, i.e., the “two
lasing eigenmodes” case [36].

Figure 11(a) elucidates the problem for the single-lasing-
eigenmode case: the beat signal is formed by mixing two
fields, e1L and e2L, that copropagate inside the resonators
with the same frequency, thus θ̇ = 0. The output occurs either
toward the left or right, but not both, and is arbitrarily chosen
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FIG. 11. (a) Mixing the two outputs from two coupled resonators
(left) or from a single resonator (right) results in no beat frequency in
the single-lasing-eigenmode regime. Laser emission does not occur
from output directions that are not labeled. The coupler in the single
resonator is represented by the vertical line. (b) Beat frequency
recovery by interfering the outputs from two separate conservatively
coupled systems. The two outputs are now at different frequencies.

to be to the left in the figure. Similarly, the frequency is either
ω+ or ω−, but not both, and is chosen to be ω+. The same
situation occurs in the single resonator shown on the right
because when the system is unfolded it is apparent that the
rightward-going wave for the single resonator is the same as
e2L for the coupled resonator. Note the single resonator case
is idealized because in practice a polarization difference is
usually necessary to obtain the required loss difference.

To recover the beat note for systems with inhomogeneous
gain, as the pumping increases it is possible that two eigen-
modes lase. Thus, both methods (1) and (2) are possible.
On the other hand, when two lasing eigenmodes are not
obtainable due to gain competition, insufficient pumping, or
because the gain is homogeneous, the only possibility is to use
method (1). Moreover, for homogeneous gain the auxiliary
mode must come from a second laser. Figure 11(b) shows
a particular manifestation of method (1) that could be used
for such a system, with ω+ and ω− coming from two distinct
conservatively coupled systems, each operating in the single-
lasing-eigenmode regime.

It is apparent, however, that homogeneously broadened
single-lasing-eigenmode systems are not as interesting be-
cause they cannot achieve common mode. Yet our theoretical
approach is only valid in the single-lasing-eigenmode regime,
which applies for homogeneous or weakly pumped inhomo-
geneous systems. Indeed, it is important to point out that
the solution of the stochastic nonlinear problem for the case
of two lasing eigenmodes is very difficult near an EP and
has not been solved for the case of conservative coupling.
Nevertheless, we might gain some insight into the problem
by a closer examination of the simpler situation shown in
Fig. 11(b). We assume there is no classical noise that would
cause the phase of one laser to vary with respect to the other
and that the coupling between the two resonators is purely
conservative. In addition, we assume the detunings of the
two lasers are equal in magnitude and opposite in sign as
a result of a rotation. Consequently, the two outputs are at

FIG. 12. (a) Beat frequency recovery by mixing with a second
longitudinal mode in a laser coupled to a passive cavity. The cou-
pling between the cavities never splits the lasing frequency, thus
in the absence of the second longitudinal mode there would be no
beat frequency. (b) One of the passive cavity modes is repetitively
scanned with a PZT across one of the laser modes, causing the beat
frequency νb to oscillate. (c) The oscillation grows as absorption in
the cavity decreases (a is the fraction of the electric field remaining
after passing through the absorber) and the EP is approached.

opposite eigenfrequencies. The phase difference between the
resonators for the leftward-going output, e1L = E1L exp(iφ1L ),
is denoted by 2θL = φ1L − φ2L. Similarly, 2θR = φ1R − φ2R

for the rightward-going output e1R = E1R exp(iφ1R). Each is in
steady state such that there is no beat frequency (θ̇L = θ̇R = 0)
for either laser output by itself. On the other hand, the phase
difference between the two lasers is 2θ1 = φ1L − φ1R, with a
beat frequency given by

θ̇1 = δ/2 + (κ ′/2)[1 + sin 2χ ]cos−12χ cos 2θ + fθ1, (31)

where θ = θL. Equation (31) relates the beat frequency to
the variables describing just one of the two (nearly) identical
lasers. We have verified that this equation reproduces the beat
frequencies shown in the inset of Fig. 5(b). Note, however,
that the noise in θ and χ will now be projected onto θ1,
and that the cross correlations will no longer vanish, i.e.,
〈 fθ (t )∗ fθ1(t ′)〉 �= 0, 〈 fχ (t )∗ fθ1(t ′)〉 �= 0, which can increase
the excess-noise factor above that predicted in Sec. VI [60].

It is then worth considering to what extent the case of two
lasing eigenmodes is represented by this simple superposition,
which assumes no coupling, linear or nonlinear, between the
two directions. In some situations, e.g., large detunings and
no spatial overlap, the two lasing eigenmodes may hardly
interact. Consider the case of a fast light gyroscope, for ex-
ample, which uses two isotopes and a large bias to obtain
bidirectional operation with no mode competition [28]. In
this case, the superposition is valid. The two eigenmodes are
uncoupled and may therefore be considered to come from two
conservatively coupled single-mode lasers. For small detun-
ings, on the other hand, the modes will compete for gain,
which could limit Petermann broadening (if both still lase).
Thus, the simple superposition of the two single mode sys-
tems could represent a worst-case scenario as it does not take
into account the cross-saturation between the two modes. We
should be careful, however, not to read too much into the
above analysis, as the case of two lasing eigenmodes is still
unsolved for conservative coupling.
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Consider another example, illustrated in Fig. 12, where the
beat note is recovered by taking advantage of the presence of
an adjacent longitudinal mode [method (1)]. In this experi-
ment we employed a He-Ne laser tube with one flat window
so that different output couplers could be selected. The length
of the laser cavity was set sufficiently short (500.3 MHz free
spectral range (FSR)) to support only two longitudinal modes
[Fig. 12(b)]. We coupled this to a second passive cavity that
included a piezoelectric transducer (PZT) to change its length
[Fig. 12(a)]. The coupling was sufficiently weak that splitting
of the laser mode never occurred (|κ ′| < |γ0/2| when δ = 0,
i.e., subexceptional regime). A variable absorber was placed
in the second cavity to vary the loss and approach the EP (as
well as to prevent feedback and chaos). We recorded the beat
frequency between the longitudinal modes on a waterfall RF
spectrum analyzer as the passive cavity modes were scanned
across the laser modes [Fig. 12(b)], causing the laser FSR
and beat frequency to oscillate [Fig. 12(c)]. Each cycle of
the oscillation corresponds to one FSR of the passive cavity
(1.5 GHz). The oscillations increased as the absorption in the
passive cavity decreased and its modes deepened (the passive
cavity was undercoupled), demonstrating the increase in S as
the EP was approached. At some point, however, the laser
mode resonant with the passive cavity fell below threshold
(see the dropouts in Fig. 12(c) when a = 0.2). A lower limit
of S = 1.0008 can be established by dividing the roughly
600 kHz deviation obtained at a = 0.2 by half the passive-
cavity FSR. Higher gain would allow us to get closer to the
EP and achieve larger values of S, nevertheless this simple
experiment demonstrates the scale-factor enhancement in the
LWG (single lasing eigenmode) regime via recovery of the
beat note. In this case the auxiliary lasing mode is far detuned
from the coupled lasing mode. Still, mode competition cannot
be entirely ignored because the standing wave geometry leads
to some degree of spatial mode overlap. Therefore, while
added quantum noise certainly enters the problem via the
interference with the auxiliary mode, the situation is more
complex than a simple superposition of the sort described
above. More problematically, in this experiment classical
noise is exacerbated because of the lack of common mode (the
laser and passive cavities do not share a common path). In fact,
common mode is generally difficult to obtain for conservative
coupling but can be approximated under certain conditions for
the two-lasing-eigenmode case [61].

IX. COMPARISON WITH PREVIOUS RESULTS

In this section we review some previous experimental
results that allow the relationship between S and K to be
determined. In [41] the excess-noise factor K was measured
in a quantum-noise-limited laser containing phase and loss
anisotropy as the EP was approached. This EP arises from
maximally dissipative coupling and therefore corresponds to
a lock-in edge. The loss anisotropy α was varied while the
phase anisotropy (retardance) φ was held constant, verifying
that the divergence of K follows Eq. (3) in [41]. If in the
same system φ were instead varied, while α was held con-
stant, one could measure S. Lacking experimental data for
this situation, we nonetheless have the functional form of the
beat frequency [Eq. (1) in [41]] and can simply calculate S

by differentiating with respect to φ and normalizing to the
case where α = 1 . In so doing we find the lock-in-edge EP
at φc = sin−1[(1 − α2)/(1 + α2)], and that |S| = K1/2 for all
|φ| > |φc|, i.e., outside the lock-in region [corresponding to
the green dashed curve in Fig. 3(b)]. More recently, in [54]
both S and K were measured outside the deadband of a Bril-
louin RLG, confirming the |S| = K1/2 relationship in another
system with maximally dissipative coupling. These results
are understandable: as we have pointed out there can be no
enhancement in precision for maximally dissipative coupling
outside the deadband because γ = 0, and inside the deadband
there is no beat note that can be recovered. Indeed, the very
reason the linear theory has been shown to work so well in
the cases analyzed thus far is because those cases involved
dissipative coupling.

For the case of conservative coupling in lasers, the
divergence of S near the EP has been experimentally demon-
strated [26,28,29,36], but simultaneous measurements of the
linewidth have yet to be reported. In [36], for example, an
elegant non-Hermitian He-Ne ring laser gyroscope was con-
structed by creating a nonreciprocal loss difference between
the two counterpropagating directions such that the system
operates with two lasing eigenmodes. As expected, this led
to an increase in S and decreased dead band. Common mode
is largely preserved because a single ring is used, although the
polarizations of the two directions are different. It is not clear,
however, whether a saturation imbalance can be obtained in
such single resonator geometries. In addition, the two-lasing-
eigenmode case is still an unsolved problem. In contrast,
fast-light gyroscopes [26,28,29] possess an intrinsic saturation
imbalance between the laser cavity and dispersive medium.
For the dual isotope gyro [28] the two lasing eigenmodes can
be represented by two conservative single-lasing-eigenmode
systems (that share the same path) since there is no mode
competition, as in Eq. (31). However, the response is not
linear, which should result in some loss of common mode
[61]. Thus, in the absence of linewidth measurements and
lacking the solution to the two-lasing-eigenmode problem, it
is not apriori obvious whether either sort of experiment can
lead to enhanced precision.

In passive systems, on the other hand, there are several
studies [27,31] that report simultaneous measurement of the
scale factor and linewidth in conservatively coupled systems.
However, the extent to which our findings should apply to
subthreshold systems is not entirely clear. It has been noted,
for example, that excess noise relies on mode selection, i.e.,
amplification of spontaneously emitted photons, and does not
apply to spontaneous processes far below threshold [62]. On
the other hand, significant linewidth enhancements have been
observed in passive-cavity systems [27,32]. In these systems
the uncertainty σ depends on the cavity linewidth (propor-
tionally as opposed to the square-root dependence on the
Schawlow-Townes linewidth in lasers), the signal-to-noise at
the detector, and on the shape of the resonance [25]. Each of
these factors counteracts the increase in S as the singularity
is approached, limiting the enhancement in precision, similar
to the role of K in lasers. If the enhancement in uncertainty is
defined as ε = σ/σe where σe is the uncertainty of the empty
(or uncoupled) cavity, then the enhancement in precision is
|S|/ε. It is not clear, however, whether in the quantum limit
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ε and K1/2 diverge equivalently or whether |S|/ε can exceed
unity. It has been shown that passive systems can be described
as quasi-PT-symmetric through a simple decomposition of the
Hamiltonian into PT-symmetric and lossy parts [12,63]. On
the other hand, it has been pointed out that the frequencies
of the spectral extrema in subthreshold cavities do not gen-
erally coincide with the eigenvalue frequencies ω± because
the presence of the input can strongly influence the resulting
spectrum, such that the singularity (which is due to spectral
splitting) does not occur at the EP [46]. As a result, not even
S diverges at the same rate as it does in lasing systems.

In [31] the frequency shift and linewidth difference were
measured in a passive microcavity perturbed by nanoscale
scatterers to approach the EP. Although the uncertainty
was not explicitly determined, Langbein [64] has carefully
analyzed this result and shown that the precision in fact de-
creased as the EP is approached, such that |S|/ε was always
less than unity. In [27] S and ε were explicitly measured in
a passive cavity due to the presence of a fast-light medium
as the critical anomalous dispersion was approached. This ex-
periment also found |S|/ε < 1. Neither of these experiments
was performed near the quantum limit, however. Nor did they
involve amplification. Therefore, they do not resolve whether
an EP-related enhancement in precision is possible in either
passive or near-threshold CR systems.

Note that our semiclassical Langevin approach can be ex-
tended to the treatment of subthreshold systems simply by
adding an input field and modifying the detection scheme.
Several recent studies, in fact, have taken quantum Langevin
approaches to this problem, finding lower bounds for the error
in the estimation of the perturbation (detuning in our case) by
treating these subthreshold CR systems as linear Markovian
open quantum systems [65–67]. However, these studies were
limited to linear matrices. In [67] the Cramér-Rao bound was
found to be significantly lower at the EP when operating
close to the laser threshold; however, it has been pointed
out that the assumption of linearity could be problematic in
this regime [66]. In [65,66] no advantage was found from
operating near an EP. These studies did not examine the
near-threshold regime but appear to rule out purely passive
systems and systems with lower levels of amplification. Some
other recent studies employ quantum operator approaches that
do treat gain saturation in non-Hermitian systems, including
ab initio master equations that account for gain saturation
explicitly via quantum jumps, rather than phenomenologically
[47,68,69]. For example, in [68] the effects of gain saturation
within Scully-Lamb laser theory (in the semiclassical limit)
were shown to explain the nonreciprocity of light observed in
[70]. And in [71] the effects of gain saturation on the non-
classical properties of light in gain-loss systems were studied
(though based on the phenomenological approach).

X. SUMMARY AND CONCLUSIONS

Our results explain why increased measurement precision
by the use of EPs is not straightforward to demonstrate. In the
linear regime, EPs are rotationally invariant and do not boost
precision, regardless of the type of EP. Indeed, the enhance-
ment in precision is never greater than unity for any set of
parameters. Instead, in the vicinity of an EP a hole of reduced

precision opens up where the precision drops precipitously
to zero within regions of exact anti-PT symmetry (deadband)
or exact PT symmetry. This behavior is universal, with the
hole appearing regardless of the type of EP. Outside of these
zero-sensitivity regions the precision approaches its maximum
value of |S|/K1/2 = 1 at the EP (the Petermann limit). EPs,
therefore, represent discontinuous transitions between these
two regions.

To describe systems pumped above threshold we took first
a quasilinear approach. We found that the Petermann limit still
applies for maximally dissipative EP systems, which explains
why experiments in conventional laser gyroscopes have found
no increase in precision at the deadband edge EP [35]. On the
other hand, for conservatively coupled systems the presence
of a saturation imbalance can break the rotational symmetry
of EPs, leading to an additional increase in S and enhancement
in precision beyond the Petermann limit. We then took a more
intrinsically nonlinear approach by linearizing the coupled
equations around their stable stationary solutions, and found
that the excess noise factors in phase and especially intensity
can be even lower in these conservative CRs than predicted
by the quasilinear theory, owing to the coupling between the
noise fluctuations and the fact that the threshold conditions
are different for the coupled and uncoupled systems (which
causes the steady-state gain coefficients and conventional
linewidths to be different). We verified these results through
numerical solutions of the coupled equations with Langevin
noise present. Thus, the coloring of the noise (which in gen-
eral is described by different characteristic decay rates for the
coupled and uncoupled systems) allows the enhancement in
precision to exceed the quasilinear prediction (which itself ex-
ceeds the Petermann limit), particularly at high measurement
frequencies. In addition, we compared the coupled system to
an ideal laser gyroscope. In this case the two decay rates are
equal at the EP, which leads to a large broadband enhancement
that can occur even without a saturation imbalance in the
coupled system.

On the other hand, we showed that for our system of equa-
tions only one mode lases. The beat note can be recovered
by interference with an auxiliary mode, or by pumping into
the regime of two lasing eigenmodes. In both cases there
are consequences for the quantum and classical noise that
depend on the details of the recovery method. More specif-
ically, our prediction of an enhancement in quantum-limited
precision coincides with an ideal situation (interference with
a separate laser with a much narrower linewidth [60]) that is
not common mode. Deviating from this ideal situation leads
either to increased quantum noise [see Eq. (31)] or into the
two-lasing-eigenmode regime, which is an unsolved problem.
Thus, while our results clarify the key ingredients for enhanc-
ing the fundamental precision in EP systems (conservative
coupling, gain saturation, operation sufficiently close to the
EP, and recovery of the beat note with minimum added noise),
it is not clear whether practical experiments can be devised
that meet all of these concurrent requirements. Moreover, it is
not a priori obvious whether all these requirements will apply
in the two-lasing-eigenmode case.

In addition, we have not explicitly evaluated the effect of
deviations from these ideal conditions such as the effect of
small amounts of dissipation or nonreciprocity [65] in the
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coupling, other accompanying nonlinearities, or nonvanishing
cross-correlations between noise sources (which depends on
the particular beat-note recovery method). Furthermore, the
linearization procedure becomes problematic directly at the
EP. Note in Eq. (21a) that when γavg,0 = 0, the characteristic
time to return to steady state diverges and the nonlinear terms
in the analysis can no longer be ignored, which has impli-
cations for the stability of the steady state as well as for the
calculation of the noise spectrum. This is also the case for the
previous results obtained for the maximally dissipative EP at
the conventional gyro deadband edge [59].

More work also needs to be done to understand the role
excess noise plays in the bad cavity limit, where the laser
linewidth is determined more by the gain bandwidth than by
the cavity linewidth and can be substantially reduced as a
result [72]. Certainly, the Petermann broadening can never
be larger than the gain bandwidth in any laser. The authors
have observed a similar clamping of the broadening in passive
non-Hermitian cavities [25,32], and while this effect clearly
increases the scale factor to linewidth ratio, it is unclear
whether it leads to increased precision. Finally, solution of the
case of two lasing eigenmodes will ultimately be necessary for
evaluating the Petermann broadening in inhomogeneous sys-
tems, in particular where cross saturation plays a role. Note,
for example, that the predicted enhancement in precision in
Fig. 10 occurs at small δ, precisely where mode competition
will be most egregious. Indeed, mode competition will rule
out bidirectional operation in many systems.

An additional benefit of this work may accrue from the
equivalency between the critical anomalous dispersion in fast-
light systems and EPs in coupled resonators [32,73]. While
the increased linewidth in lasers with nonorthogonal eigen-
modes was demonstrated long ago, it is only recently that
measurements of increased scale factor have begun to appear.
These studies often tacitly ignore the change in linewidth.
For lasers containing fast-light media this has, at least in
part, been due to the lack of theoretical predictions regarding
their fundamental linewidth. Characterizing fast-light systems
by an excess noise factor may provide an alternative way to
estimate their linewidth [74].
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APPENDIX A: PROOF THAT S/K1/2 � 1
FOR ANY SET OF PARAMETERS

For conservative coupling we know from Eq. (14) that
|S|/K = |δ/�′|, where �′ = Re{

√
(δ−iγ /2)2 + (κ ′)2}. We

can then recast Eq. (14) by rotating the plane defined by the
variables δ and γ /2 through the angle θ = atan(κ ′′/κ ′) shown

in Fig. 2,

|S|
K

=
∣∣∣∣ δR

�′
R

∣∣∣∣, (A1)

where �′
R = Re{

√
(δR−iγR/2)2 + κ2} [75] and

(
δR

γR/2

)
=

[
cos θ − sin θ

sin θ cos θ

](
δ

γ /2

)
. (A2)

Now, from Eq. (6) it is straightforward to show that for conser-
vative coupling |�′| � |δ| for all values of δ. Furthermore,
because the general case is simply a rotation of the solution
for conservative coupling, it then follows that |S|/K � 1 for
any choice of parameters.

In fact, a tighter bound can be established because |�′|
is also always greater than or equal to |S δ| for conservative
coupling. To prove that this is the case is equivalent to demon-
strating that K � |�′/δ|2, which by substitution of Eq. (13)
corresponds to the quadratic equation

|�̃|4 + |�̃|2[(κ ′)2 − (γ /2)2] − δ2[δ2 + (κ ′)2 + (γ /2)2] � 0.

(A3)

This equation cannot have more than one real root and is
therefore satisfied for any choice of δ, γ , and κ ′. Again,
transforming to the rotated coordinates as described above, we
find that |S|/K1/2 � 1 for any choice of parameters, with the
maximum value of unity obtained near to and far away from
the EP as shown in Fig. 4.

APPENDIX B: CORRELATIONS AND STEADY-
STATE SOLUTIONS

The Langevin forces are characterized by the correlation
relations 〈 fi(t )∗ f j (t ′)〉 = Diδi jδ(t−t ′), where

DI = (
I1Rsp

1 + I2Rsp
2

)
/2I2, (B1a)

Dχ = (
I2Rsp

1 + I1Rsp
2

)
/2I2, (B1b)

Dθ = Dφ = Rsp
1 /I1 + Rsp

2 /I2

8sin22θ
. (B1c)

Note that these autocorrelations differ from those for the
conventional gyroscope [59] because the resonators can be
physically distinct with different intensities and spontaneous
emission rates.

From Eqs. (20c) and (20d) one can derive the noise-
averaged expression

γavg = −κ ′ tan 2χ sin 2θ − (İ/I − 2χ̇ tan 2χ ). (B2)

If, for now, we set only the time derivatives for the in-
tensities equal to zero in Eq. (20) and in Eq. (B2), i.e.,
χ̇ = İ = İ1 = İ2 = 0, we obtain the steady-state solutions
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{I1,0, I2,0, χ0}
γ1,0I1,0 = −γ2,0I2,0, (B3a)

γ0/2 = κ ′ sin 2θ/ cos 2χ0, (B3b)

γavg,0 = −κ ′ tan 2χ0 sin 2θ. (B3c)

From the latter two equations we obtain (κ ′ sin 2θ )2 =
(γ0/2)2 − (γavg,0)2 = −γ1,0 γ2,0, which is equivalent to the
condition for threshold at an arbitrary detuning δ. In
other words, the system saturates to the threshold loss
values {γ1,0, γ2,0, γ0, γavg,0} in the steady state. These
steady-state relations apply when |κ ′ sin 2θ | < |γ0/2|. By
equating the threshold condition above with Eq. (19) we
find that sin2(2θ ) = [1 + (δ/γavg,0)2]

−1
. It then follows that

κ ′ tan 2χ0 cos 2θ = δ such that θ̇ = 0. Therefore, in this
regime whenever the intensity is in steady state the phase

difference must also be in steady state. It is not required that
the overall phase φ be in steady state to obtain this result. In
fact, φ̇ = 0 only under the additional conditions

cos 2θ0 = 0,

δ = 0. (B4)

Thus, while χ , I, and θ can be in steady state at
nonzero detunings, φ is only stationary when δ = 0 (sim-
ilarly, for dissipative coupling the phase is stationary only
when γ = 0). These fully steady-state conditions apply when
|κ ′| < |γ0/2|, i.e., for subexceptional couplings. Under these
conditions (γavg,0)2 = (κ ′ tan 2χ0)2 = (γ0/2)2 − (κ ′)2

, which
corresponds to the threshold condition at δ = 0. Therefore,
unlike the other variables, we are not able to find an ana-
lytic form for the excess noise for the overall phase except
at δ = 0.
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