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ABSTRACT

Enhancing Sensitivity of an Atomic Interferometer to the Heisenberg Limit Using Increased

Quantum Noise

Renpeng Fang

Quantum metrology has been among the most vigorous branches of quantum technology.

It involves using quantum effects to achieve better estimation of parameters of a physical sys-

tem. Conventionally the system consists of an ensemble of N non-interacting atoms and the

measurements are done on individual atomic states, such as a conventional Raman atomic

interferometer (CRAIN) or a Raman-Ramsey atomic clock (RRAC). The measurement sen-

sitivity of such a system is restricted by the standard quantum limit (SQL), which scales

as ∼
√
N (this is known as the shot-noise scaling). Introducing quantum entanglement in

the system, it is possible to surpass the SQL, and a key goal in this context is to achieve

the Heisenberg limit (HL), which scales as ∼ N (this is know as the Heisenberg scaling),

representing an improvement by a factor of
√
N . In this thesis, we propose a protocol that

can enhance the measurement sensitivity of an atomic interferometer (or an atomic clock)

to the HL, while at the same time make it substantially robust against excess noise present

in the system. Specifically, the protocol employs critically tuned one-axis-twist (OAT) spin

squeezing to generate maximially-entangled states among the atoms, known as Schrödinger
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cat (SC) states, in combination with the conventional detection (CD) scheme (measurements

of individual atomic states). Since the interferometer makes use of Schrödinger cat states,

we name it as Schrödinger cat atomic interferometer (SCAIN).

A SCAIN relies on the collective behavior of the atomic ensemble, so as a first step,

we investigate the behavior of an ensemble of N non-interacting, identical, two-level atoms,

excited by the same laser field. Traditionally, the ensemble would be described using direct

product states as the basis. In his seminal paper, R. H. Dicke proposed an alternative basis

known as collective states, and showed that under ideal conditions, the dynamics of the

system can be confined within the N + 1 sysmmetric collective states (also known as Dicke

collective states), labeled as {|E0〉 , |E1〉 , . . . , |EN〉}, with all the other 2N − (N + 1) asym-

metric collective states decoupled from the system. This simplifies greatly the descriptions of

the ensemble. Furthermore, the collective state descriptions suggest a new detection scheme

for the ensemble, named as collective state detection (CSD), in addition to the conventional

detection scheme. The CSD can be applied to both an atomic interferometer, referred to

as collective state atomic interferometer (COSAIN), and an atomic clock, referred to as

collective state atomic clock (COSAC). We show that the fringe widths of a COSAIN and

a COSAC are narrowed by a factor of
√
N compared to their conventional counterparts,

CRAIN and RRAC, respectively, despite the fact that the measurement sensitivity remains

the same at the SQL for both cases.

With the model of collective state descriptions in place, we move to the key part of

the protocol for realizing a SCAIN and review the concepts of spin squeezing. We first

present the spin representation of the ensemble, where collective spins are defined for the

system. We then introduce the coherent spin states (CSSs), which are direct product states

of individual coherent states and which turn out to be equivalent to the Dicke collective
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states in this picture. Lastly based on CSSs, we define the spin squeezed states (SSSs) using

the definitions proposed by Kitagawa and Ueda, and summarize the two approaches for

generating squeezed spin states: one-axis-twist (OAT) and two-axis-counter-twist (TACT)

spin squeezing.

Before we get to the formal descriptions of the protocol for a SCAIN, we revisit the

Sagnac effect that is essential for using the SCAIN for rotation sensing. We propose two

alternative models for deriving and interpreting the Sagnac effect. The first one is based on

Lorentz transformation of special relativity and can be generalized to an interferometer of

an arbitrary shape, while the second one is a quantum-mechanical model which shows that

the total effect can be split equally during each of the two dark zones of the interferometer.

Finally, we present the detailed protocol for implementing a SCAIN. The core components

of the protocol are the four pulses employed to implement the squeezing, rotation, inverse-

rotation and unsqueezing operations, in addition to the usual π/2-dark-π-dark-π/2 pulse

sequence of its conventional counterpart. The squeezing effect is controlled by the squeezing

parameter µ, which indicates the length of interaction of the squeezing Hamiltonian. A

squeezing pulse with µ = π/2 will split an initial CSS into equal superpositions of two

extremal collective states. A rotation pulse is then applied to rotate the mean spin directions

of those extremal collective states and align them with the z-axis, generating the SC state.

After the second dark zone, an inverse-rotation pulse and an unsqueezing pulse are applied

sequentially to undo the previous rotation and squeezing effects in order to extract the

phase imprinted during the dark zones. One difficulty of this protocol is that the splitting

of the CSS after the squeezing pulse depends on the parity of N , which requires rotation

around different axes to produce the SC state. This leads to two equivalent versions of the

protocol (protocol A and protocol B), depending on the axis around which the rotation pulse
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is applied. At the end of the interferometer, the signal can be measured using either the

collective state detection scheme, or the conventional detection scheme, where the former

is referred to as CSD-SCAIN, while the latter as CD-SCAIN. For each detection scheme,

we examine the signal fringes and the measurement sensitivity for different values of the

squeezing parameter µ. We show that for both detection schemes, when µ = π/2, the signal

fringes are narrowed by a factor of N for one of the two parities, and the measurement

sensitivity reaches the HL for that same parity of N . When averaged over the two parities,

the overall sensitivity is below the HL by a factor of
√

2. Despite the fact that both schemes

can reach the HL, the CD-SCAIN can provide additional robustness against excess noise,

due to the increase in the standard deviation of the signal. We compare and summarize

the robustness against excess noise of different protocols proposed for atomic interferometers

(and clocks) in the last chapter of the thesis. Lastly, we note that the core components of

the protocol for SCAIN consisting of squeezing, rotation, inverse-rotation and unsqueezing

operations can also be applied to atomic clocks and atomic accelerometers, which leads to

similar results as SCAIN.
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the variance along the ẑ axis. Note that (b) and (f) correspond to under-

squeezed states; (c) and (g) correspond to optimally squeezed states; (d)

and (h) correspond to excessively squeezed states. 88

4.3 The spin-squeezing parameter ξKU as a function of the squeezing pa-

rameter µ for J = 20. The minimum ξKU ≈ 0.08644 is achieved at

µ ≈ 0.09972. 90



18

4.4 The CPDs of the squeezed spin states generated from HOAT for J = 20.

(a) is the starting CSS: |π/2, π/2〉; (b)-(d) represent the SSS’s after cor-

rective rotation, corresponding to those in Fig. 4.2 (f)-(h); (e) represent

the SSS after corrective rotation for µ = π/2. 91

4.5 The QPDs of the squeezed spin states generated from HTACT for J = 20.

(a) is the starting CSS: |π/2, π/2〉; (b)-(d) represent the SSS’s generated

with increasing squeezing parameters µ. Note that (b) corresponds to

under-squeezed states; (c) corresponds to optimally squeezed states; (d)

corresponds to excessively squeezed states. As µ increases, the QPDs

distorts and eventually splits into two. 92

5.1 Schematic illustration for a circular interferometer. 95

5.2 Equivalent linear-motion model of a circular interferometer. 99

5.3 Coordinates of the two events for the CCW wave in the S and S′ frames.99

5.4 Schematic illustration for an interferometer of arbitrary shape. 102

5.5 Equivalent linear-motion model for the chosen segment. 102

5.6 Schematic diagram for a two-level atomic system. The energies asso-

ciated with the two levels are denoted as ~ω1 and ~ω2, respectively. δ

is the laser detuning and ΩR is the Rabi frequency. Here we assume

resonant excitations, hence δ = 0. Each level consists of internal states

characterizing the electron motion, as well as external states character-

izing the center of mass (COM) motion of the atom. 108



19

5.7 Schematic illustration of an atomic interferometer for rotation sensing. 1

and 3 are the two π/2-pulses, while 2 is the π-pulse. The duration for the

π/2-pulse, the π-pulse and the dark zone are τ , 2τ and T , respectively,

where we assume τ � T . The system is rotating around the ẑ-axis with
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CHAPTER 1

Introduction

1.1. Brief Review of Quantum Metrology

Metrology plays a central role in science and engineering. In short, it is concerned with

the highest achievable precision in various parameter estimation tasks, and with finding

measurement schemes that reach that precision. Originally, metrology was focusing on mea-

surements using classical or semiclassical systems, such as mechanical systems described by

classical physics or optical systems modeled by classical wave optics. In the last decades,

it has become possible to observe the dynamics of many-body quantum systems. If such

systems are used for metrology, the quantum nature of the problem plays an essential role in

the metrological setup. Examples of the case above are phase measurements with trapped

ions [1], interferometry with photons [2, 3, 4, 5] and magnetometry with cold atomic en-

sembles [6, 7, 8, 9, 10, 11].

One important technique for pushing towards high-precision quantum metrology is spin

squeezing [12, 13, 14, 15, 16], which has attracted considerable attention, both theoretically

and experimentally in the past two decades. The notion of spin squeezing has arisen mainly

from two considerations: the study of particle correlations and entanglement [17, 18, 19], as

well as the improvement of measurement precision in experiments [13, 14, 20, 21, 22, 23,

24]. One application of spin squeezing is to detect quantum entanglement [19, 25, 26], which

plays a key role in both the foundations of quantum physics and also in quantum-information

processing [27, 28]. Another application of spin squeezing, especially in experiments, is to
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improve the precision of measurements, e.g., in Ramsey spectroscopy [13, 14, 21, 29, 30,

31, 32, 33, 34, 35], as well as in making more precise atomic clocks [14, 18, 20, 36, 37,

38, 39, 40, 41] and gravitational-wave interferometers [42, 43, 44].

1.2. Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents a review of the fun-

damental concepts in quantum optics and atomic physics. It develops physical models for

describing the interaction between atoms and external fields (laser fields and static magnetic

fields in particular), and introduces notations that will be used throughout this thesis.

Chapter 3 investigates the collective behavior of an ensemble of non-interacting atoms.

We will derive the mathematical model for describing collective states (Dicke Collective

States, in particular) and discuss briefly their applications to atomic clocks and interferom-

eters.

Chapter 4 reviews the basics of spin squeezing effects. We start with the spin representa-

tion of an atomic ensemble, followed by descriptions of coherent spin states, then transition

to the mathematical model of squeezed spin states, and lastly introduce two approaches for

generating squeezed spin states.

Chapter 5 reviews the Sagnac effect and presents a generalized model for deriving the

Sagnac effect that is applicable to an interferometer of an arbitrary shape.

Chapter 6 reviews the Schrödinger cat states and shows their applications to atomic

interferometers and clocks. In particular, we propose two protocols for making a Schrödinger

Cat Atomic Interferometer (and Clock), which, in combination with collective state detection

or conventional detection schemes, can achieve a metrological sensitivity that is equivalent

to the Heisenberg Limit, within a factor of
√

2. For the conventional detection scheme, the
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interferometer (or clock) will also be significantly more robust against excess noise (by as

much as a factor of
√
N).
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CHAPTER 2

Fundamentals of Atomic Interaction with External Fields

This chapter is a review of the basic concepts and properties of atomic interactions

with external fields, such as laser field and static magnetic field. We will begin with atom-

light interactions where the atoms are first modeled by a two-level system. We will derive

an expression for the interaction Hamiltonian and perform necessary approximations and

transformations to solve for the time evolution of the wave function of the atomic system.

We will then introduce the density matrix method and Bloch vector representation of the

atomic state, which will be employed to study the state evolution in the separated field

Ramsey fringe experiments. We will next generalize the atomic model to a three-level system

and apply the results to the off-resonant Raman-Rabi excitation and again to the Ramsey

fringes experiments, which will form the starting point for the collective state description of

an atomic ensemble. The other half of this chapter will deal with atomic interaction with

external magnetic field, where we will first briefly review the fine and hyperfine structures

of the atoms and then describe the effects of the external magnetic field on the atoms such

as the Zeeman splitting of the atomic levels and coupling of the Zeeman sublevels. Most of

the materials can be found in such sources as [45, 46, 47, 48, 49, 50].
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2.1. Atomic Interaction with Laser Fields

2.1.1. Two-level Atomic System

2.1.1.1. Time Evolution of the State Vector. From the postulates of quantum me-

chanics, the state of an atom is represented by a vector |Ψ(t)〉 in a Hilbert space. The time

evolution of this state vector is governed by the time-dependent Schrödinger equation given

by

(2.1) i~
∂ |Ψ(t)〉
∂t

= H |Ψ(t)〉

where H is the Hamiltonian for the atom and ~ is the reduced Planck constant.

Without presence of any external fields, the total Hamiltonian H is the same as the

so-called unperturbed Hamiltonian, denoted by H0. In this case, we assume all the relevant

information is known such that H0 has eigenvalues En = ~ωn with eigenstates |φn〉 and

therefore H0 |φn〉 = En |φn〉.

With the presence of the laser field, apart from H0, the total Hamiltonian H also has

the interaction part which is described by H ′(t), and thus H(t) = H0 + H ′(t). Note the

interaction Hamiltonian is usually time-dependent, which renders the total Hamiltonian also

time-dependent. In this case, the normal approach for solving the Schrödinger equation

would be expanding |Ψ(t)〉 in terms of |φn〉 since the latter form a complete set, and then

making appropriate approximations on the coefficients based on perturbation theory. How-

ever, this approach is not applicable to narrow-band laser excitation of atoms, where large

excited-state populations are possible. Instead, a different approximation [47] is made by

retaining only two states out of the complete set, the single ground and excited state that are

connected by the laser frequency. We then end up with this two-level model for the atomic
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Figure 2.1. A two-level atom driven by a classical laser field.

system as shown in Fig. 2.1, where the ground and excited states are denoted as |1〉 and |2〉

with corresponding energies of E1 = ~ω1 and E2 = ~ω2, respectively.

With other states left out, |1〉 and |2〉 are now a complete set, indicating we can use them

as a basis and write

(2.2) |1〉 =

1

0

 , |2〉 =

0

1


In this basis, the state vector |Ψ(t)〉 can be written as

(2.3) |Ψ(t)〉 = c1(t) |1〉+ c2(t) |2〉 =

c1(t)

c2(t)


where the two coefficients c1(t) and c2(t) are generally time-dependent complex numbers

with normalization condition 〈Ψ(t)|Ψ(t)〉 = |c1(t)|2 + |c2(t)|2 = 1. The Hamiltonian is given

by

(2.4) H =
2∑

i,j=1

Hij |i〉 〈j| =

H11 H12

H21 H22


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where the matrix element Hij = 〈i|H|j〉. The Schrödinger equation then becomes

(2.5) i~

ċ1(t)

ċ2(t)

 =

H11 H12

H21 H22


c1(t)

c2(t)


To solve for Eq. (2.5), we need to know the matrix elements of the total Hamiltonian,

which consists of two parts: the unperturbed Hamiltonian H0 and the interaction Hamil-

tonian H ′(t). The former is readily known since the two basis states |1〉 and |2〉 are its

eigenstates

(2.6) H0 =
2∑

i,j=1

~ωiδij |i〉 〈j| =

~ω1 0

0 ~ω2


where δij is the Kronecker delta function. Obtaining the expression for the latter is not so

straightforward. A formal approach [48] would begin by writing down the full Hamiltonian

of the atom in a quantized laser field and then transition to a classical description of the

field with some proper gauge transformation until the expression

(2.7) H ′(t) = −eE(r, t) · r

emerges, where e is the electron charge, E(r, t) is the classical electric field and r is the

position operator of the electron. Eq. (2.7) represents the interaction between the atomic

electric dipole moment and the external laser field. For a plane wave traveling in the positive

z direction, the electric field is given by

(2.8) E(r, t) = êE0 cos(kz − ωt) = êE0
ei(kz−ωt) + e−i(kz−ωt)

2
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where ê is the unit polarization vector, E0 is the amplitude of the light field, ω is the laser

frequency and k is the wave number. The matrix form of H ′(t) for this case will be

(2.9) H ′ =

H ′11 H ′12

H ′21 H ′22

 =

 0 ~Ω∗

2
(ei(kz−ωt) + e−i(kz−ωt))

~Ω
2

(ei(kz−ωt) + e−i(kz−ωt)) 0


where the diagonal terms are zero due to the fact that the position operator r is odd, Ω is

the Rabi frequency defined by

(2.10) Ω =
−eE0

~
〈2|ê · r|1〉

and Ω∗ is the complex conjugate of Ω. Combining Eq. (2.6) and Eq. (2.9), we have

(2.11) H =

 ~ω1
~Ω∗

2
(ei(kz−ωt) + e−i(kz−ωt))

~Ω
2

(ei(kz−ωt) + e−i(kz−ωt)) ~ω2


and Eq. (2.5) becomes

(2.12) i~

ċ1(t)

ċ2(t)

 =

 ~ω1
~Ω∗

2
(ei(kz−ωt) + e−i(kz−ωt))

~Ω
2

(ei(kz−ωt) + e−i(kz−ωt)) ~ω2


c1(t)

c2(t)


Solving Eq. (2.12) for the case of two-level atomic system requires the use of two very well-

known approximations. The first of these approximations is the electric dipole approximation

(EDA), which consists of neglecting the spatial variation of E(r, t) over the region of the atom

because the optical wavelength λ is typically several hundred nm whereas the radius of the

atom is typically < 1nm. This allows us to set z = 0. The second approximation is the

rotating wave approximation (RWA), which consists of neglecting the rapid varying terms
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in the Hamiltonian that are assumed to average away very quickly and thus make a small

contribution to the final solution [45, 48, 49].

Applying the electric dipole approximation is straightward. To see how the rotating wave

approximation works, we need to transform to the rotating frame by applying the so-called

rotating wave transformation (RWT). The basis states in this rotating frame, |1̃〉 and |2̃〉,

are related to |1〉 and |2〉 by

(2.13)

[
|1̃〉 |2̃〉

]
=

[
|1〉 |2〉

]
Q−1(t)

where Q(t) is the transformation matrix given by

(2.14) Q(t) =

eiθ1t 0

0 eiθ2t


and Q−1(t) is the inverse of Q(t). Here θ1 and θ2 are two parameters to be determined. The

state vector in this new basis is

(2.15) |Ψ̃(t)〉 =

c̃1(t)

c̃2(t)

 = Q(t) |Ψ(t)〉 =

c1(t)eiθ1t

c2(t)eiθ2t


The Schrödinger equation for |Ψ̃(t)〉 will be

(2.16) i~

 ˙̃c1(t)

˙̃c2(t)

 = H̃

c̃1(t)

c̃2(t)





32

where H̃ is the transformed Hamiltonian given by (with EDA applied)

(2.17)

H̃ = i~Q̇Q−1 +QHQ−1 = ~

 ω1 − θ1
Ω∗

2
(ei(ω+θ1−θ2)t + ei(−ω+θ1−θ2)t)

Ω
2
(ei(−ω−θ1+θ2)t + ei(ω−θ1+θ2)t) ω2 − θ2


The parameters θ1 and θ2 will now be chosen to eliminate as much time-dependence in H̃

and render it as simple as possible, which by convention are θ1 = ω1 and θ2 = ω1 + ω. Then

Eq. (2.17) simplifies to

(2.18) H̃ = ~

 0 Ω∗

2
(1 + e−i2ωt)

Ω
2
(1 + ei2ωt) −δ


where δ ≡ ω − ω0, is the laser detuning from the atomic resonance frequency ω0 = ω2 − ω1.

The rotating wave approximation says now the fast oscillating terms e±i2ωt can be dropped

so Eq. (2.18) is further reduced to

(2.19) H̃ = ~

0 Ω∗

2

Ω
2
−δ


Plugging Eq. (2.19) back to Eq. (2.16) yields the following coupled differential equations

for the two coefficients

i~ ˙̃c1(t) =
~Ω∗

2
c̃2(t)(2.20a)

i~ ˙̃c2(t) =
~Ω

2
c̃1(t)− ~δ c̃2(t)(2.20b)
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which can be solved for arbitrary initial conditions c̃1(0) = A and c̃2(0) = B as

c̃1(t) = e
iδt
2 (Acos(

Ω′t

2
) + i

Aδ −BΩ∗

Ω′
sin(

Ω′t

2
))(2.21a)

c̃2(t) = e
iδt
2 (Bcos(

Ω′t

2
) + i

Bδ − AΩ

Ω′
sin(

Ω′t

2
))(2.21b)

where Ω′ =
√
|Ω|2 + δ2 is the generalized Rabi frequency. Using Eq. (2.15), we obtain for

the same initial conditions

c1(t) = e−iω1te−i
δ
2
t(Acos(

Ω′t

2
) + i

Aδ −BΩ∗

Ω′
sin(

Ω′t

2
))(2.22a)

c2(t) = e−iω2tei
δ
2
t(Bcos(

Ω′t

2
) + i

Bδ − AΩ

Ω′
sin(

Ω′t

2
))(2.22b)

As an example, we consider the case where all the atoms start from the ground state |1〉,

i.e., A = 1 and B = 0. At time t, the probability of finding an atom in the excited state

|2〉 is given by P2(t) = |c2(t)|2 =
∣∣ Ω

Ω′

∣∣2sin2(Ω′t
2

), which oscillates back and forth between 0

and
∣∣ Ω

Ω′

∣∣2. This phenomenon is called Rabi oscillation. Fig. 2.2 shows the oscillations for

various detunings, with larger detunings oscillating at greater frequencies but with smaller

amplitudes.

Before moving onto the next section, we consider another example for completeness. The

Hamiltonian dropped from RWA is given by

(2.23) H̃ ′ = ~

 0 Ω∗

2
e−i2ωt

Ω
2
ei2ωt −δ


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Figure 2.2. Probability |c2(t)|2 for the atom to be in the excited state for Ω = Γ
and δ = 0 (blue), δ = Γ (black), and δ = 2Γ (red), where Γ = 2π ∗ 6.066 MHz.

To solve for the probability transfer resulted from this Hamiltonian, we can apply another

RWT and choose the parameters properly to get rid of the time dependence which yields

(2.24) H̃ ′ = ~

0 Ω∗

2

Ω
2

2ω − δ


If the atoms were initialized to the ground state, from our calculations above, the maximum

probability transfer will be |Ω|2

(2ω−δ)2+|Ω|2 . Compared with the maximum probability obtained

above |Ω|2

δ2+|Ω|2 , we get a ratio of δ2+|Ω|2

(2ω−δ)2+|Ω|2 . With typical values Ω ' δ ' 2π · 106sec−1 and

ω ' 2π · 1014sec−1, this ratio is ' 10−16, which is negligible, justifying the RWA.
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2.1.1.2. Bloch Vector Representation. When we write the state vector as a linear com-

bination of the basis states, |Ψ̃(t)〉 = c̃1(t) |1̃〉 + c̃2(t) |2̃〉, it looks like there are four free

parameters since the two coefficients are complex numbers. Because the overall phase of the

state vector has no physical meaning, there are really only three free parameters which can

be constructed from the real and imaginary parts of c̃1(t) and c̃2(t) as follows [51]

R1 ≡ c̃1c̃
∗
2 + c̃ ∗1 c̃2(2.25a)

R2 ≡ i(c̃1c̃
∗
2 − c̃ ∗1 c̃2)(2.25b)

R3 ≡ c̃1c̃
∗
1 − c̃ ∗2 c̃2(2.25c)

From Eq. (2.16) it can be shown that

Ṙ1 =
H̃22 − H̃11

~
R2 −

H̃12 − H̃21

i~
R3(2.26a)

Ṙ2 =
H̃12 + H̃21

−~
R3 −

H̃22 − H̃11

~
R1(2.26b)

Ṙ3 =
H̃12 − H̃21

i~
R1 −

H̃12 + H̃21

−~
R2(2.26c)

If we group R1, R2 and R3 into a vector called Bloch vector, R = [R1, R2, R3]T , Eqs. (2.26)

indicates that the time evolution of this vector will obey

(2.27) Ṙ = R×D

where D is a another vector given by

(2.28) D =
[H̃12 + H̃21

−~
,
H̃12 − H̃21

i~
,
H̃22 − H̃11

~

]T
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Note that the components of R (and D) are arranged to form a column vector but written

as the transpose of the corresponding row vector to save space. The Hamiltonian after EDA,

RWA and RWT is given by Eq. (2.19), which leads to D = [−Re(Ω), − Im(Ω), −δ]T , with

Ω the Rabi frequency and δ the laser detuning. The Rabi frequency is usually taken to be

real and the components of D become [−Ω, 0, −δ]T . The probabilities of finding the atoms

in the ground and excited states are related to the Bloch vector by P1 = (1 + R3)/2 and

P2 = (1 − R3)/2, respectively, which can be derived from the normalization condition and

Eq. (2.25c).

Eq. (2.27) shows that the Bloch vector R precesses with time without changing length

and its motion is confined to the surface of a sphere. The north (south) poles of this sphere

correspond to the ground (excited) states of the atom, and equatorial points correspond to

equal superpositions with various phases. When δ � Ω, the precession axis (determined

by D) passes very nearly through the poles. In this case, an atom initially in the ground

state undergoes rapid precessions on a small circle near the north pole and thus has a

small excitation probability, as shown in Eq. (2.22) and Fig. 2.2. By constrast, for δ = 0,

the precession axis passes through the equator so an atom initially in the ground state is

described by a Bloch vector R undergoing slow, full-circle oscillations through the poles,

which are the Rabi oscillations mentioned above.

2.1.1.3. Density Matrix and the Optical Bloch Equations. Until now we have pre-

sented the equations for the coherent evolution of the amplitudes of a two-level atom in a

radiation field. However, we have left out an important phenomenon, spontaneous emission

of the excited states resulting from their interaction with the vacuum modes of the electro-

magnetic field. The effects of spontaneous emission cannot be described in terms of such
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coherent evolution of the state vector. Instead, they will be most readily handled by the

density matrix, which is detailed below.

The density matrix is the matrix representation of the density operator ρ which is used

to characterize the state of an ensemble of similarly prepared quantum systems (we do not

need to refer to a concrete set of systems that coexist in space as long as they could have

been prepared in principle). We have the following constraints imposed on ρ:

– ρ is self-adjoint: ρ = ρ†.

– ρ is non-negative: 〈u|ρ|u〉 ≥ 0 for ∀u.

– ρ has trace of 1: Tr{ρ} = 1.

The expectation value of any dynamical variable X over the ensemble represented by the

density operator ρ is given by

(2.29) 〈X〉 = Tr{ρX} =
∑
i

〈i|ρX|i〉

where {i} is some complete set of basis states and 〈X〉 is guaranteed to be real due to the

first constraint above. From Eq. (2.29), we can derive an expression of the density operator

in terms of the state vector. If all the systems in the ensemble can be described by the same

state |Ψ〉, the expectation value of X is

(2.30) 〈X〉 = 〈Ψ|X|Ψ〉 =
∑
i

〈Ψ|X|i〉 〈i|Ψ〉 =
∑
i

〈i|(|Ψ〉〈Ψ|)X|i〉

Comparing with Eq. (2.29), we have

(2.31) ρ = |Ψ〉〈Ψ|
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If now the ensemble is actually a statistical mixture of a set of states where the portition of

the ensemble being in the state |Ψk〉 is given by pk, the expectation value 〈X〉 will be

(2.32)
∑
k

pk 〈Ψk|X|Ψk〉 =
∑
i

∑
k

pk 〈Ψk|X|i〉 〈i|Ψk〉 =
∑
i

〈i|(
∑
k

pk |Ψk〉〈Ψk)|)X|i〉

and the density operator is identified as

(2.33) ρ =
∑
k

pk |Ψk〉 〈Ψk|

where 0 < pk < 1 and
∑

k pk = 1. By convention, if the density operator can be writen

in the form of Eq. (2.31), the ensemble is said in a pure state; otherwise it is in a mixed

state. Mixed states arise in situations where the system undergoes an uncertain preparation

history or it is a subsystem entangled with other subsystems. The density operator for pure

and mixed states can be combined into one expression

(2.34) ρ =
∑
k

pk |Ψk〉 〈Ψk|

where now 0 ≤ pk ≤ 1 and
∑

k pk = 1.

Using Eq. (2.1) and Eq. (2.34), it can be shown that the time dependence of the density

operator depends on the total Hamiltonian simply as

(2.35) i~
dρ

dt
= [H, ρ]

where [H, ρ] = Hρ−ρH is the commutator of the Hamiltonian and the density operator. For

a two-level atomic system without spontaneous emission, the density operator is describing

a pure state. In the basis after RWT, its matrix elements are related to the two coefficients

c̃1 and c̃2 by ρij = c̃ic̃
∗
j where i, j = 1, 2. The components of the Bloch vector in Eq. (2.25)
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can be rewritten in terms of the density matrix elements and Eq. (2.27) can be recovered

following Eq. (2.35). In the presence of spontaneous emission, the atomic system is coupled

with the vacuum modes of the electromagnetic field. The density operator describing the

whole system has two parts: the atom and the spontaneously emitted light. If observation

is done only for the atomic system, a partial trace has to be taken over the spontaneously

emitted light field and the atomic system is now left in a mixed state. In this case there is

no simple relation between the density matrix elements and the state vector coefficients, but

the effects of spontaneous emission can be added independently in terms of the decay rate Γ

of the excited state [52]. On the one hand, the excited state population is diminishing due

to the spontaneous emission. This can be accounted for by adding an imaginary term to

the total Hamiltonian. On the other hand, the ground state population will increase since

we have a closed two-level system. This can be accounted for by adding a source term to

Eq. (2.35). Putting everything together, we arrive at

(2.36)
dρ

dt
=

1

i~
(Hρ− ρH†) + L

where in the basis of Eq. (2.2), the density operator is represented by the following density

matrix

(2.37) ρ =

ρ11 ρ12

ρ21 ρ22


the Hamiltonian now will be

(2.38) H =

 ~ω1
~Ω∗

2
(ei(kz−ωt) + e−i(kz−ωt))

~Ω
2

(ei(kz−ωt) + e−i(kz−ωt)) ~ω2 − i~Γ
2


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H† is the Hermitian conjugate of H, and L is the source terms given by

(2.39) L =

Γρ22 0

0 0


Solving for Eq. (2.36) again requires EDA, RWA and then applying RWT to transform to

the rotating basis of Eq. (2.13), after which we have the following counterparts corresponding

to Eqs. (2.36), (2.37), (2.38) and (2.39)

(2.40)
dρ̃

dt
=

1

i~
(H̃ρ̃− ρ̃H̃†) + L̃

(2.41) ρ̃ =

ρ̃11 ρ̃12

ρ̃21 ρ̃22



(2.42) H̃ =

 0 ~Ω∗

2

~Ω
2
−~δ − i~Γ

2



(2.43) L̃ =

Γρ̃22 0

0 0


Substitution of Eqs. (2.41), (2.42) and (2.43) back into Eq. (2.40) and writting explicitly in

component forms leads to the following equations for the two-level atomic system, including
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spontaneous emission:

dρ̃11

dt
= Γρ̃22 +

i

2
(Ω∗ρ̃21 − Ωρ̃12)(2.44a)

dρ̃22

dt
= −Γρ̃22 +

i

2
(Ωρ̃12 − Ω∗ρ̃21)(2.44b)

dρ̃12

dt
= −(

Γ

2
+ iδ)ρ̃12 +

i

2
Ω∗(ρ̃22 − ρ̃11)(2.44c)

dρ̃21

dt
= −(

Γ

2
− iδ)ρ̃21 +

i

2
Ω(ρ̃11 − ρ̃22)(2.44d)

These equations are called the optical Bloch equations (OBE). Note that dρ̃22/dt = − dρ̃11/dt ,

in accordance with the requirement of a closed two-level system where the total population

ρ̃11 + ρ̃22 = 1 is conserved.

The steady state solutions of the OBE can be found by setting dρ̃/dt = 0 and exploiting

certain relationships among the four components of the density matrix for a two-level system,

such as ρ̃11 + ρ̃22 = 1 from conservation of the total population and ρ̃12 = ρ̃ ∗21 from the

hermiticity of ρ. The results are

ρ̃11 =
Γ2 + |Ω|2 + 4δ2

Γ2 + 2|Ω|2 + 4δ2
(2.45a)

ρ̃22 =
|Ω|2

Γ2 + 2|Ω|2 + 4δ2
(2.45b)

ρ̃21 =
Ω(iΓ− 2δ)

Γ2 + 2|Ω|2 + 4δ2
(2.45c)

ρ̃12 =
Ω∗(−iΓ− 2δ)

Γ2 + 2|Ω|2 + 4δ2
(2.45d)

Eqs. (2.45) shows that when the decay rate Γ is large compared to the other terms (Γ� Ω, δ)

or the detuning is large compared to the other terms (δ � Γ,Ω), the steady state solution

is ρ11 ∼ 1, ρ22 ∼ 0, i.e., the atom ends up in the ground state; when the Rabi frequency Ω
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Figure 2.3. Laser pulses for separated oscillating field experiment.

is large compared to the other terms (Ω � Γ, δ), we find ρ11 = ρ22 ∼ 1
2
, i.e., the atom has

equal chance of occupying either state at the end.

2.1.1.4. Separated Oscillating Field Experiment and Ramsey Fringes. With the

theory for two-level atomic system in place, we now consider its application to the separated

oscillating field experiment consisting of three zones where in the first and third zones the

atom interacts with the laser field for time duration of T1 while in the second zone the atom

is left in dark for time duration of T2, as shown in Fig. 2.3. The atom is initialized in the

ground state right before the first zone and we want to know the population distribution

of the atom right after the third zone. For simplicity, we ignore spontaneous emission of

the excited state (this will be justified for the three-level atomic system case). The final

population distribution can be found either by solving the evolution of the state vector

directly using Eqs. (2.20) along with proper initial conditions for each zone, or by examining

the rotation of the Bloch vector described by Eq. (2.27). The computation of the latter is

much simpler and clearer than the former and thus will be employed here.

We assume t = 0 right before the first zone. Since the atom is initialized in the ground

state, we have R(0) = [0, 0, 1]T . During the first zone, the Bloch vector will precess along
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Figure 2.4. Construction of the new coordinate system O′ from the original
coordinate system O. The y axis shared by both systems is pointing into the
page and not shown here. θ is the angle made between D and the negative-x
axis where sin(θ) = δ/Ω′ and cos(θ) = Ω/Ω′ with Ω′ =

√
Ω2 + δ2 being the

generalized Rabi frequency.

the axis aligned with D = [−Ω, 0, −δ]T . Assume the current coordinate system is O with

coordinate axes of x, y and z. Since the precession axis does not coincide with any of the

coordinate axes, it will be awkward if we still work in current coordinate system. Instead, we

will construct a new coordinate system O′ with axes of x′, y and z′, where now the precession

axis D is aligned with negative-x′ axis, as shown in Fig. 2.4. To work in the new coordinate

system O′, we need to rewrite the initial conditions in reference to x′, y and z′. Note that

O′ can be obtained from O by a rotation around the positive-y axis. The matrix describing
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such a rotation with an arbitrary angle α is given by

(2.46) A =


cos(α) 0 sin(α)

0 1 0

−sin(α) 0 cos(α)


where now α = −θ as is easily seen from Fig. 2.4. The initial Bloch vector can be rewritten

in the new coordinate system O′ as R′(0) = A−1R(0), where A−1 is the inverse of A and

equal to AT as A is orthonormal (AAT = ATA = I where I is the 3-by-3 identity matrix).

Note we have matrix multiplications here as the components of the Bloch vector have been

arranged into column form. Since the precession axis is aligned with the negative-x′ axis, the

evolution of the Bloch vector in the new coordinate system O′ can be described by another

rotation matrix

(2.47) B =


1 0 0

0 cos(β) −sin(β)

0 sin(β) cos(β)


where β = −Ω′T1 is the total precession angle of the Bloch vector in the first zone and

Ω′ =
√

Ω2 + δ2 is the generalized Rabi frequency. The Bloch vector at the end of this zone

written in the new coordinate system O′ will be R′(T1) = BR′(0). Transforming back to the

original coordinate system O, we have R(T1) = AR′(T1), which becomes the initial condition

for the second zone.

In the second zone, the atom is left in dark so we have D = [0, 0, −δ]T , which is aligned

with the negative-z axis. This means we can work directly in the original coordinate system

O and similarly have the following rotation matrix to describe the evolution of the Bloch
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vector

(2.48) C =


cos(γ) −sin(γ) 0

sin(γ) cos(γ) 0

0 0 1


where γ = −δT2 is the total precession angle of the Bloch vector in the second zone. The

Bloch vector at the end of this zone written in the coordinate system O will be R(T1 +T2) =

CR(T1), which now serves as the initial condition for the third zone.

During the third zone, the atom will undergo the same interaction with the laser field as

in the first one, therefore we can simply repeat what has been done in the first zone, i.e.,

transforming the initial condition R(T1 + T2) into the new coordinate system O′, applying

effects of the rotation matrix A and then transforming back to the original coordinate system

O, to obtain the Bloch vector at the end of this zone as R(2T1 + T2) = ABA−1R(T1 + T2).

Piecing everything together, we find the final expression of the Bloch vector at the end of

the third zone to be R(2T1 + T2) = ABA−1CABA−1R(0) = ABATCABATR(0). Carrying

out the complicated yet straightforward matrix multiplications yields

(2.49) P2 =
4Ω2

Ω′2
sin2

(
Ω′T1

2

)[
cos

(
Ω′T1

2

)
cos

(
δT2

2

)
− δ

Ω′
sin

(
Ω′T1

2

)
sin

(
δT2

2

)]2

where P2 is the probability of finding the atom in the excited state at the end of the third zone.

Fig. 2.5 plots P2 in terms of the laser detuning δ for two different dark zone durations. The

blue trace is for T2 = 0, i.e., there is no dark zone and the first and last zones are essentially

merged into a single one. It’s easy to show that the results for single zone interaction,

Eq. (2.22b), is recovered for this case. A very interesting point shows up when the dark

zone duration becomes non-zero: the width of the center peak begins to decrease with
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Figure 2.5. Probability P2 for the atom to be in the excited state at the end of
the third zone in terms of the laser detuning δ for Ω = 2π∗30 kHz, ΩT1 = π/2,
T2 = 0 (blue) and T2 = 3T1 (magenta).

increasing dark zone time, as is demonstrated by the magenta trace where T2 = 3T1. The

narrower peaks contained in the central envelope are called the Ramsey fringes, named after

Norman Ramsey who invented this separated oscillating fields method. Since the dark zone

duration can be made very large compared to the two interaction zones, the Ramsey fringes

can become much narrower than its single-zone counterpart, which renders this method

extremely useful in applications for measuring atomic transition frequencies, in particular

for building atomic clocks.
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Figure 2.6. A three-level atom driven by two classical laser fields.

2.1.2. Three-level Atomic System

Despite a two-level atomic system sounds simple enough, in practice it is hard to construct

such a system due to the fact that atoms in general have many levels and normally more

than two of them get coupled to the ligh field at the same time. Even if we do succeed in

isolating two levels to form a pure two-level atomic system, its applications are limited by

effects like spontaneous emission from the upper state which is detrimental to maintaining

coherence between the two states. To deal with these situations, it’s necessary to extend the

system to include multiple levels, the simplest of which would be a three-level atomic system

in the Λ-configuration (two lower states and one upper state), as shown in Fig. 2.6 and will

be investigated here.
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2.1.2.1. Hamiltonian of the Three-level Atomic System. Similar to the two-level

case, the three basis states can be written as

(2.50) |1〉 =


1

0

0

 , |2〉 =


0

1

0

 , |3〉 =


0

0

1


with corresponding energies of E1 = ~ωa1, E2 = ~ωa2 and E2 = ~ωa3, respectively (the

notations of frequencies are different here to distinguish from those of the lasers). In contrast

to the two-level case where there is only one laser involved in driving the atom, we now have

two lasers coupling the two lower states to the upper state while there is no direct coupling

between the two lower ones (this type of interaction is called Raman excitation). The total

Hamiltonian of the system H will again have two parts, H = H0 + H ′(t) where H0 is the

unperturbed Hamiltonian and H ′(t) is the interaction Hamiltonian. Assuming the two laser

fields are co-propogating plane waves traveling in the positive z direction

E1(r, t) = ê1E01 cos(k1z − ω1t) = ê1E01
ei(k1z−ω1t) + e−i(k1z−ω1t)

2
(2.51a)

E2(r, t) = ê2E02 cos(k2z − ω2t) = ê2E02
ei(k2z−ω2t) + e−i(k2z−ω2t)

2
(2.51b)

where ê1 and ê2 are the unit polarization vectors, E01 and E02 are the amplitudes, ω1 and

ω2 are the angular frequencies, k1 and k2 are the wave numbers for the two laser fields,

respectively. The three Hamiltonians, H0, H ′ and H can be written of matrix form in the
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given basis as

(2.52) H0 =


~ωa1 0 0

0 ~ωa2 0

0 0 ~ωa3



(2.53)

H ′ =


0 0

~Ω∗1
2

(ei(k1z−ω1t) + e−i(k1z−ω1t))

0 0
~Ω∗2

2
(ei(k2z−ω2t) + e−i(k2z−ω2t))

~Ω1

2
(ei(k1z−ω1t) + e−i(k1z−ω1t)) ~Ω2

2
(ei(k2z−ω2t) + e−i(k2z−ω2t)) 0



(2.54)

H =


~ωa1 0

~Ω∗1
2

(ei(k1z−ω1t) + e−i(k1z−ω1t))

0 ~ωa2
~Ω∗2

2
(ei(k2z−ω2t) + e−i(k2z−ω2t))

~Ω1

2
(ei(k1z−ω1t) + e−i(k1z−ω1t)) ~Ω2

2
(ei(k2z−ω2t) + e−i(k2z−ω2t)) ~ωa3


where again we have defined the Rabi frequencies for the two transitions

Ω1 =
−eE01

~
〈3|ê1 · r|1〉(2.55a)

Ω2 =
−eE02

~
〈3|ê2 · r|2〉(2.55b)

As usual, we can apply EDA and RWA then RWT to transform to the rotating basis,

after which (with proper choices of the parameters of the transformation matrix) the total
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Hamiltonian can be simplified to

(2.56) H̃ = ~


∆
2

0
Ω∗1
2

0 −∆
2

Ω∗2
2

Ω1

2
Ω2

2
−δ


where the laser detunings δ1 = ω1− (ωa3−ωa1) and δ2 = ω2− (ωa3−ωa2) have been used to

define the difference detuning ∆ ≡ δ1 − δ2 and the average detuning δ ≡ (δ1 + δ2)/2.

2.1.2.2. Off-resonant Raman Excitations and Reduction to an Effective Two-

level System. The above Hamiltonian in Eq. (2.56) can be used to solve for the evolution

of the state vector or the density matrix of the three-level system in the rotating basis, as is

done for the two-level case. However, here we will not deal with the general cases but instead

choose the laser detunings such that they are of the same sign and much greater than the two

Rabi frequencies and the decay rate of the upper state, i.e., |δ1|, |δ2| � |Ω1|, |Ω2|,Γ, which

implies |δ| � |Ω1|, |Ω2|,Γ. Under these conditions it can be shown that the probability of

finding the atom in the upper state is very low if the atom starts in one of the lower states.

Therefore the upper state can be adiabatically eliminated [53, 54] from the basis set and

we end up with the following reduced Hamiltonian corresponding to an effective two-level

atomic system formed by the two lower states

(2.57) H̃red = ~

∆
2

+ ε1
~

Ω∗

2

Ω
2

−∆
2

+ ε2
~


where Ω =

Ω1Ω∗2
2δ

is the Raman-Rabi frequency, ε1 = ~|Ω1|2
4δ

and ε2 = ~|Ω2|2
4δ

are the light

shifts induced by the two lasers to the two lower states |1〉 and |2〉, respectively. A simple

rotating wave transformation specified by Eq. (2.14) with the two parameters chosen as
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θ1 = θ2 = ∆
2

+ ε1
~ will bring the Hamiltonian in Eq. (2.57) to a more familiar form

(2.58) H̃red = ~

0 Ω∗

2

Ω
2
−(∆− ε2−ε1

~ )


where compared with Eq. (2.19), the Raman-Rabi frequency Ω will take the role of the Rabi

frequency (hence the name), while (∆− ε2−ε1
~ ) will be the effective laser detuning (hence ∆

is also called two-photon detuning).

Since the reduced Hamiltonian in Eq. (2.58) corresponds to an effective two-level atomic

system, all the theoretical analyses developed in the previous section are equally applicable

here. We expect Rabi oscillations between the two states, single peaks for single zone interac-

tion and Ramsey fringes for separated oscillating field experiment. In the context of Raman

excitations, these are called Raman-Rabi oscillations, Raman peaks and Raman-Ramsey

fringes, respectively. One advantage of this effective two-level atomic system is that there

is no direct coupling between the two states so we do not have to worry about spontaneous

emission. The acutal decay from the eliminated upper state is largely suppressed by the

large laser detunings and thus transparent to the reduced two-level system.

Lastly for completeness, we will look at some typical experimental values for the parame-

ters involved in the Raman excitations. For our experiments with 85Rb, the two lower levels

are chosen to be the two hyperfine ground states (F = 2 and F = 3 of 5 2S1/2) and the

upper level to be the two middle hyperfine states of the D2 transitions (F = 2 and F = 3 of

5 2P3/2), as shown in Fig. 2.7 [55]. More information about the energy levels can be found in

the next section. The two laser detunings are set to be δ1 ∼ δ2 ∼ 2π ∗1.5 GHz, while the two

Raman-Rabi frequencies are Ω1 ∼ Ω2 ∼ 2π ∗ 9.5 MHz and the decay rate of the excited state
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Figure 2.7. Rubidium 85 D2 transition hyperfine structure, with frequency
splittings between the hyperfine energy levels.

is Γ = 2π ∗ 6.066 MHz. The conditions |δ1|, |δ2| � |Ω1|, |Ω2|,Γ are easily met. The Raman-

Rabi frequency for the reduced system is Ω ∼ 2π ∗ 30 kHz. I shall say all the aforementioned

phenomena, Raman-Rabi oscillations, Raman peaks and Raman-Ramsey fringes have been
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observed. The results are in good agreement with predictions (Eq. (2.22) and Eq. (2.49))

derived in the previous section and will be presented in the following chapters.

2.2. Atomic Interaction with Static Magnetic Fields

2.2.1. Atomic Fine and Hyperfine Structures

From quantum mechanics, the electron state in an atom is described by a set of quantum

numbers, which are the principal quantum number n, the azimuthal quantum number l,

the magnetic quantum number m and the spin quantum number s. The principal quantum

number n represents the relative overall energy of the electron orbital. The sets of orbitals

with the same n value are often referred to as electron shells. The azimuthal quantum

number l determines the angular momentum and describes the shape of the electron orbital.

The sets of orbitals with the same n and l values are referred to as subshells. The magnetic

quantum number m distinguishes the orbitals available within a subshell and is used to

calculate the azimuthal component of the orientation of the orbital in space. Lastly the spin

quantum number s is used to parameterize the intrinsic angular momentum (or spin) of the

electron.

The energy levels described by the above quantum numbers are called the gross structure

of the atom. It turns out that these energy levels are split to form the fine structure as a

result of the coupling between the orbital angular momtemum L of the outer electron and its

spin angular momentum S. The total electron angular momentum will be given by J = L+S

and the corresponding quantum number J must lie in the range |L− S| ≤ J ≤ L+ S. Here

we use the convention that the magnitude of L, S and J are
√
L(L+ 1)~,

√
S(S + 1)~ and√

J(J + 1)~, respectively. For the ground state in 85Rb, L = 0 and S = 1/2, so J = 1/2; for

the first excited state, L = 1, so J = 1/2 or J = 3/2. The energy of any particular level is
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shifted according to the value of J , so the L = 0 −→ L = 1 (D line) transition is split into

two components, the D1 line (5 2S1/2 −→ 5 2P1/2) and the D2 line (5 2S1/2 −→ 5 2P3/2). The

energy levels are labeled according to the following rules: the first number is the principal

quantum number n of the outer electron, the superscript is 2S + 1, the letter refers to L

(i.e., S ↔ L = 0, P ↔ L = 1, etc.), and the subscript gives the value of J . The D2 line

is shown in Fig. 2.7 and the D1 line in Fig. 2.8. If we now take into account the coupling

of the total electron angular momentum J with the total nuclear angular momentum I, the

energy levels will be split further to form the hyperfine structure. The total atomic angular

momentum F is then given by F = J + I and as before, the magnitude of F can take the

values |J − I| ≤ F ≤ J + I. For the 85Rb ground state, J = 1/2 and I = 5/2, so F = 2 or

F = 3. For the excited state of the D2 line (5 2P3/2), F can take any of the values 1, 2, 3, or

4, and for the D1 excited state (5 2P1/2), F is either 2 or 3. Again, the atomic energy levels

are shifted according to the value of F . These hyperfine levels can be seen in Fig. 2.7 and

Fig. 2.8.

2.2.2. Zeeman Effect and Zeeman Sublevels

Each of the hyperfine (F ) energy levels contains 2F + 1 magnetic sublevels that determine

the angular distribution of the electron wave function. In the absence of external magnetic

fields, these sublevels are degenerate. However, when an external magnetic field is applied,

their degeneracy is broken. The Hamiltonian describing the atomic interaction with the

magnetic field is

(2.59) HB =
µB
~

(gSS + gLL + gII) ·B
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Figure 2.8. Rubidium 85 D1 transition hyperfine structure, with frequency
splittings between the hyperfine energy levels.

where µB is the Bohr magneton and the quantities gS, gL, and gI are respectively the electron

spin, electron orbital, and nuclear “g-factors” that account for various modifications to the

corresponding magnetic dipole moments. Eq. (2.59) represents the interaction between the

atomic magnetic dipole moment and the external magnetic field.
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If the energy shift due to the magnetic field is small compared to the fine-structure

splitting, the fine-structure Hamiltonian Hfs describing the coupling of L and S dominates

HB and J will be a good quantum number. In this case, HB can be rewritten as

(2.60) HB =
µB
~

(gJJ + gII) ·B

where gJ = gL
J(J+1)−S(S+1)+L(L+1)

2J(J+1)
+ gS

J(J+1)−L(L+1)+S(S+1)
2J(J+1)

is the “g-factor” for the total

electron angular momentum.

If the energy shift due to the magnetic field is small compared to the hyperfine-structure

splitting, then the hyperfine-structure Hamiltonian Hhfs describing the coupling of J and I

dominates HB and similarly F will be a good quantum number. In this case, HB becomes

(2.61) HB =
µB
~
gFF ·B =

µB
~
gF (FxBx + FyBy + FzBz)

where gF = gJ
F (F+1)−I(I+1)+J(J+1)

2F (F+1)
+ gI

F (F+1)−J(J+1)+I(I+1)
2F (F+1)

is the “g-factor” for the total

atomic angular momentum.

Here we assume the magnetic fields are weak such that the interaction Hamiltonian HB

perturbs the zero-field eigenstates of Hhfs. To lowest order, the levels split linearly according

to [56]

(2.62) ∆E|F,mF 〉 = µBgFmFBz

where mF is the magnetic quantum number corresponding to Fz and we have taken the

magnetic field to be along the z-direction (i.e., along the atomic quantization axis). The

splitting in this regime is called the Zeeman effect and the split levels are referred to as Zee-

man sublevels. For 85Rb, the corresponding splittings between adjacent magnetic sublevels
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of the ground state, the D1 excited state and the D2 excited state are given in Fig. 2.9,

Fig. 2.10 and Fig. 2.11, respectively.

Figure 2.9. Rubidium 85 5 2S1/2 (ground) level hyperfine structure in an ex-
ternal magnetic field.

Figure 2.10. Rubidium 85 5 2P1/2 (D1 excited) level hyperfine structure in an
external magnetic field.

In the more general case when the direction of the magnetic field is not necessarily aligned

with the atomic quantization axis, the interaction Hamiltonian HB is given by Eq. (2.61).
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Figure 2.11. Rubidium 85 5 2P3/2 (D2 excited) level hyperfine structure in an
external magnetic field.

In the basis formed by the Zeeman sublevels |F,mF 〉, the matrix elements of HB will be

(2.63)

〈F,m′F |HB|F,mF 〉 =
µB
~
gF

(
Bx 〈F,m

′

F |Fx|F,mF 〉+By 〈F,m
′

F |Fy|F,mF 〉+Bz 〈F,m
′

F |Fz|F,mF 〉
)

Since Fz |F,mF 〉 = ~mF |F,mF 〉, the last term can be written as

(2.64) 〈F,m′F |Fz|F,mF 〉 = ~mF δm′F ,mF

To evaluate the first two terms, we refer to the raising and lowering operators

F+ |F,mF 〉 = ~
√
F (F + 1)−mF (mF + 1) |F,mF + 1〉(2.65a)

F− |F,mF 〉 = ~
√
F (F + 1)−mF (mF − 1) |F,mF − 1〉(2.65b)
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where F+ ≡ Fx + iFy and F− ≡ Fx − iFy. Rearranging the terms, Fx = (F+ + F−)/2 and

F− = (F+ − F−)/(2i). Using these expressions, we can get

〈F,m′F |Fx|F,mF 〉 =
~
2

√
F (F + 1)−mF (mF + 1)δm′F ,mF+1 +

~
2

√
F (F + 1)−mF (mF − 1)δm′F ,mF−1

(2.66a)

〈F,m′F |Fy|F,mF 〉 = −i~
2

√
F (F + 1)−mF (mF + 1)δm′F ,mF+1 +

i~
2

√
F (F + 1)−mF (mF − 1)δm′F ,mF−1

(2.66b)

Substituting Eqs. (2.64), (2.66a) and (2.66b) into Eq. (2.63) yields

〈F,m′F |HB|F,mF 〉 = µBgF

(
BzmF δm′F ,mF

+

Bx

(1

2

√
F (F + 1)−mF (mF + 1)δm′F ,mF+1 +

1

2

√
F (F + 1)−mF (mF − 1)δm′F ,mF−1

)
+

By

(−i
2

√
F (F + 1)−mF (mF + 1)δm′F ,mF+1 +

i

2

√
F (F + 1)−mF (mF − 1)δm′F ,mF−1

))

(2.67)

2.3. Summary

In this chapter, we have reviewed the fundamentals of interactions between atomic sys-

tems and external fields. In particular, we have introduced two-level and three-level atomic

systems, for which we derived the Hamiltonian and studied their dynamics. These two atomic

models will be used extensively in the following chapters when we discuss collective states

and spin squeezing, as well as their applications to atomic clocks and atomic interferometers.
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CHAPTER 3

Collective State Effects and Its Applications to Atomic Clocks

and Interferometers

3.1. Introduction

One important factor for measuring the performance of atomic metrological devices, such

as atomic clocks, atomic magnetometers or atomic interferometers, is their sensitivity, which

is characterized by the quantum phase fluctuation (QPF). Generally speaking, the QPF will

depend on the line width of the signal, %, and the signal to noise ratio (SNR). The smaller %

and the larger the SNR is, the smaller the QPF will be, and correspondingly the better the

device will be. Though it is possible to improve the sensitivity by reducing the line width %

(such as switching from single-zone Raman interaction to three-zone Ramsey interaction for

an atomic clock), the more traditional way would be using an ensemble of non-interacting

atoms to enhance the SNR due to its simple experimental implementation. However, the

optimal QPF obtainable by this method is constrained by the standard quantum limit (SQL),

under which the QPF scales as 1/
√
N [22], with N being the number of atoms in the

ensemble. To surpass the SQL, one has to introduce entanglement among the atoms, and

a key goal in this context is to achieve the Heisenberg Limit (HL), under which the QPF

scales as 1/N , representing an improvement by a factor of
√
N .

There are two approaches for generating entanglement within a large ensemble of atoms:

one-axis-twist (OAT) spin squeezing [12] and two-axis-counter-twist (TACT) spin squeez-

ing [12]. Both will turn the ensemble into a spin squeezed state (SSS) [12]. Since the SSS
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is a collective effect of all atoms within the ensemble, the system is best described by the

so-called collective states [57]. In this chapter, we present the mathematical descriptions of

the collective states, then discuss its applications to atomic clocks. In particular, we show

that by switching the detection scheme from individual atomic states to collective states,

the line width of the signal can be reduced by a factor of
√
N [58], strongly violating the

conventional transit time limit of spectroscopic resolution, though the sensitivity remains the

same (at SQL). In the next chapter, we will show that OATS in combination with collective

state detection can eventually enhance the sensitivity to the HL.

3.2. Mathematical Descriptions of the Collective States

3.2.1. Hamiltonian of the Atomic Ensemble

The system considered here consists of a collection of non-interacting identical atoms that

interact with a laser field of uniform intensity over the atomic ensemble. Each atom is

modeled as having two energy levels, |1〉 and |2〉, as detailed in Sec. 2.1.1. The Hamiltonian

for the l-th atom under the electric dipole and rotating wave approximations, and the rotating

wave transformation, can be written as

(3.1) Hl = ~

 δ
2

Ω
2

Ω
2

−δ
2

 = H0l +H1l
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where Ω is the Rabi frequency and δ is the laser detuning. Note that the Hamiltonian Hl

can be broken up into two parts such that Hl = H0l +H1l, where we have defined

H0l ≡
~δ
2

1 0

0 −1

 = ~δ
σzl
2

= ~δjzl(3.2a)

H1l ≡
~Ω

2

0 1

1 0

 = ~Ω
σxl
2

= ~Ωjxl(3.2b)

where jl ≡ (jxl, jyl, jzl) = 1
2
(σxl, σyl, σzl), with {σxl, σyl, σzl} being the Pauli matrices for the

l-th atom. The total Hamiltonian of the system consisting of N atoms then is given by

(3.3) H =
N∑
l=1

Hl =
N∑
l=1

(H0l +H1l) = H0 +H1

where we have defined

H0 =
N∑
l=1

H0l =
N∑
l=1

~δjzl = ~δJz(3.4a)

H1 =
N∑
l=1

H1l =
N∑
l=1

~Ωjxl = ~ΩJx(3.4b)

where J ≡ (Jx, Jy, Jz) = (
∑N

l=1 jxl,
∑N

l=1 jyl,
∑N

l=1 jzl) =
∑N

l=1 jl. The Jx, Jy and Jz operators

are known as collective spin operations. If we define the total spin operator J2 = Jx
2 +Jy

2 +

Jz
2 and the ladder operators J± = Jx± iJy, then the following commutation rules hold true

[Jα, Jβ] = iεαβγJγ(3.5a)

[J2, Jα] = 0(3.5b)

[Jz, J±] = ±J±(3.5c)
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where α, β, γ denote the components in any three orthogonal directions, εαβγ is the Levi-

Civita symbol, and the i in the right hand side of Eq. (3.5a) is the imaginary unit.

3.2.2. Direct Product State As Basis

To solve for the time evolutions of the states of the atomic ensemble, the natural choice of

basis would be the eigenstates of the H0 operator, which are referred to as direct product

states. Note that the eigenstates of the H0i operator are given by |1〉 and |2〉 with eigenvalues

~δ/2 and −~δ/2, resepectively, then the direct product states can be arranged as follows

m = 0 : |2〉 ⊗ |2〉 ⊗ . . .⊗ |2〉

m = 1 : |1〉 ⊗ |2〉 ⊗ |2〉 ⊗ . . .⊗ |2〉 ; |2〉 ⊗ |1〉 ⊗ |2〉 ⊗ . . .⊗ |2〉 ; . . .

m = 2 : |1〉 ⊗ |1〉 ⊗ |2〉 ⊗ |2〉 ⊗ . . .⊗ |2〉 ; |1〉 ⊗ |2〉 ⊗ |1〉 ⊗ |2〉 ⊗ . . .⊗ |2〉 ; . . .

. . .

m = N : |1〉 ⊗ |1〉 ⊗ . . .⊗ |1〉

(3.6)

where m is the number of atoms that are in state |1〉. Since each atom can be in either state

|1〉 or state |2〉, and we have N atoms, the total number of direct product states is 2N . It’s

easy to show that those direct product states with the same m value are degenerate, with

energy level given by Em = (m − N/2)~δ and degeneracy given by Dm =
(
N
m

)
= N !

m!(N−m)!
.

These direct product states form a subspace with dimensionality of Dm.

If the system is initially prepared in the state where all atoms are in state |2〉 (i.e., m = 0),

then the interaction Hamiltonian H1 will couple the state with m = 0 to those with m = 1,

and then couple those with m = 1 to those with m = 2, and so on. Eventually the system

can evolve into any state with all possible m values, which renders it intractable to solve for
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the dynamics of the system due to the large number of states involved. Therefore, though

the direct product states are conceptually simple to understand, they are not suitable for

ensembles with large number of atoms.

3.2.3. Collective State As Basis

As mentioned in the previous subsection, direct product states are not suitable for solving

the dynamics of ensembles with large number of atoms. A more useful basis consists of the

so-called collective states [59], which are common eigenstates of the J2 and Jz operators.

Since the Jx, Jy and Jz operators follow the same commutation rules as angular momentum

operators, we can label these eigenstates as |J,M〉, where J = N/2, N/2 − 1, . . . , (J ≥ 0),

M = −J,−J + 1, . . . , J , and the J2 and Jz operators have eignevalues of J(J + 1) and M ,

respectively.

Note that the interaction Hamiltonian H1 = ~ΩJx commutes with J2, therefore, if the

system is initially prepared in one of the subspaces with some particular J value, it will stay

in that subspace. Moreover, H1 can be rewritten as H1 = ~Ω(J+ + J−)/2, so only states

with adjacent M values in this subspace will be coupled by the interaction Hamiltonian.

Since the dimension of the subspace with specific J value can be much smaller than that of

the whole Hilbert space, this can simplify the descriptions of the ensemble substantially and

make it possible to study the time evolutions of the whole system.

The collective states can be expressed as linear combinations of the direct product states.

First, for each subspace with some particular J value, if we can obtain the maximally polar-

ized state, then all other states within that same subspace can be generated by applying the

lowering operator J− repeatedly. Second, the eigenstate |J,M〉 has an energy level of ~δM ,

then it must belong to the subspace of m = N/2 +M in terms of direct product states (see
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Eq. (3.6)), which implies |J,M〉 can be written as linear combinations of the basis for the

m = N/2 + M subspace. Following these two rules, the collective states for the J = N/2

subspace are found as follows

|E0〉 ≡ |2, 2, . . . , 2, 2〉

. . .

|En〉 ≡
(
N

n

)− 1
2

(Nn)∑
k=1

Pk
∣∣∣2⊗

(N−n)
⊗

1
⊗
n
〉

. . .

|EN〉 ≡ |1, 1, . . . , 1, 1〉

(3.7)

corresponding to M = −N/2,−N/2+1,−N/2+2, . . . , N/2−1, N/2, respectively. Here Pk is

the permutation operator [57], and the summation is done over all the different permutations

of (N − n) 2’s and n 1’s, so that |En〉 is a normalized equal superposition all direct product

states within the m = n subspace (n = 0, 1, . . . , N). These collective states are known as

Dicke Collective States (DCS’s). They are also referred to as symmetric collective states

(SCS’s), since they are totally symmetric under permutations of any pair of atoms. All

other collective states are referred to as asymmetric collective states (ACS’s) and there are

2N − (N + 1) of them. These ACS’s can be obtained by applying either the Gram-Schmidt

Orthogonalization process or a series of rotations within each of the direct product state

subspaces of different m values [57, 60].

Usually the system is initially prepared with all atoms in state |1〉, corresponding to col-

lective state |EN〉 within the J = N/2 subspace. Thus under ideal conditions (homogeneous

laser field, negligible center of mass motion, etc.), the interaction Hamiltonian H1 will not
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couple SCS’s to ACS’s, and solving the dynamics of the whole system can be done using

the SCS’s as basis states. For all the following discussions in this thesis, we assume this is

the case unless explicitly specified otherwise. However, it should be noted that it is possible

for SCS’s to evolve into ACS’s and the readers are referred to [57, 60] for more detailed

discussions.

3.3. Applications to Atomic Clocks

In the previous section, we have presented a brief mathematical description of the collec-

tive states (symmetric collective states in particular). In this section, we will show how they

can be applied to atomic clocks to produce fringes that are narrowed by a factor of ∼
√
N

compared to that of a conventional atomic clock, which strongly violates the conventional

transit time limit of spectroscopic resolution. In the next section, we show the same effects

can be observed for an atomic interferometer.

3.3.1. Conventional Raman-Ramsey Atomic Clocks

Here we consider an ensemble consisting of N non-interacting three-level atoms, where the

ground states, |1〉 and |2〉 interact with an excited state |3〉 via two co-propagating laser

beams, as shown in Fig. 2.6. One of the two laser beams is detuned from resonance by δ1

and has a Rabi frequency Ω1; this couples state |1〉 to state |3〉. The other beam is detuned

from resonance by δ2 and has a Rabi frequency Ω2; this couples state |2〉 to state |3〉. For

δ � Ω1,Ω2,Γ, where δ = (δ1 + δ2)/2 and Γ is the excited state decay rate, each atom can

be modeled as an effective two-level system, consisting of states |1〉 and |2〉, excited by a

traveling wave with a Rabi frequency Ω = Ω1Ω2/(2δ), and detuning ∆ = δ1− δ2, so that the

ensemble can be seen as a collection of N non-interacting two-level atoms.
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The ensemble is initially prepared in the state where all atoms are in state |2〉. Then

it undergoes a sequence of π/2-dark-π/2 pulses similar to Fig. 2.3. The final state of the

ensemble can be written as

(3.8) |ψ〉 =
N⊗
i=1

1

2

[
(1− eiφ) |2〉 − i(1 + eiφ) |1〉

]
where φ = ∆TD = 2πfTD is the phase accumulated in the dark zone, f = ∆/2π is the (two-

photon) detuning of the clock in Hertz, and TD is the dark zone duration. For a conventional

Raman-Ramsey atomic clock (RRAC), the population of atoms in state |1〉 is measured. Note

that for each atom, the probabilty of finding it in state |1〉 is given by P1 = cos2(φ/2). Since

all the atoms are independent from each other, the signal for a Raman-Ramsey atomic clock

is then given by

(3.9) SRRAC =
N∑
i=1

(P1) = N cos2(φ/2)

The signal SRRAC as a function of f for the case of N = 1 is shown in Fig. 3.1 by the blue

trace. For other values of N , the shape of the signal will be similar except for the amplitude,

which is proportional to N .

3.3.2. Collective State Atomic Clocks

A collective state atomic clock (COSAC) is exactly the same as a conventional Raman-

Ramsey atomic clock except for the detection scheme. That is, we still have an ensemble of

N non-interacting effective two-level atoms. The atoms are all initialized in state |2〉 and

will undergo the usual π/2-dark-π/2 pulse sequence. The final state of the system is again

given by Eq.(3.8). But now instead of measuring the population of atoms in state |1〉, we
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Figure 3.1. Signal of a collective state atomic clock as a function of f for
different values of N , where Ω = 2π ∗ 30 kHz,ΩTπ/2 = π/2, TD = 3Tπ/2.

will measure the population of the collective state |EN〉, corresponding to the direct product

state where all atoms are in state |1〉. Note that the probability of finding the ensemble in

state |EN〉 can be obtained by simple projection: |〈EN |ψ〉|2, therefore we have

(3.10) SCOSAC = |〈EN |ψ〉|2 = [cos2(φ/2)]N = (P1)N

The signal SCOSAC is plotted as a function of f in Fig. 3.1 for different values of N . We

can clearly see that the linewidth of the fringe as a function of f decreases as N increases.

The value of the linewidth, defined as the full width half maximum (FWHM), is given

by %(N) = 2 arccos
(
2−1/(2N)

)
[58]. The derivative of [%(1)/%(N)]2 with respect to N , for

N � 1, approaches the value of 0.8899 + O(N−3/2), which can be verified with a linear fit
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to [%(1)/%(N)]2. To a good approximation, %(N)/%(1) ≈ 1/
√
N . Note that %(1) ' 1/TD is

understood to be the transit time limited linewidth, then %(N) = %(1)/
√
N implies a strong

violation of the transit time limit when N � 1.

3.3.3. Detection Scheme for Collective States

While measuring the population of atoms in state |1〉 can be as straightforward as first using

a probe laser coupling it to some higher energy state and then collecting fluorescence from

that higher level, detecting the population of the collective state |EN〉 is very different and

more difficult. The signature of the collective state |EN〉 is that all atoms are in state |1〉. The

usual detection scheme using a probe to couple state |1〉 to higher energy state won’t work

anymore since the probe will also see other collective states where only a fraction of atoms

are in state |1〉, such as |EN−1〉 , |EN−2〉 , . . . , |E1〉, etc. Fortunately there is an alternative

way viewing the collective state |EN〉: absence of atoms in state |2〉. Therefore for a given

collective state, if we cannot detect the presence of any atom in state |2〉, then we can say for

sure the given collective state is |EN〉. This leads to the following null detection scheme [58]

for measuring the population of |EN〉, as shown in Fig. 3.2.

For the null detection scheme, the probe is the one of the two Raman beams used to

drive the transition from state |2〉 to state |3〉. If the atomic ensemble is not in the desired

collective state (that is, |EN〉), then the probe will induce Raman transitions within the

ensemble. As a result, there will be photons emitted corresponding to the other leg of the

Raman transition. In the bad cavity limit, the emitted photons will not be reabsorbed by

the atomic system. The beam consisting of the probe and the emitted photons is then sent

to a high speed detector, which produces a dc voltage as well as a beat signal with frequency

matching the energy difference between states |1〉 and |2〉 (divided by the Planck constant).
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Figure 3.2. Raman-Ramsey fringe experiment for an ensemble of Λ-type atoms
for the detection of collective state |EN〉. Atoms are released from the trap,
and the experiment is performed while they are free falling inside the vacuum
chamber. They interact with two π/2 pulses (each pulse consisting of two
co-propagating Raman beams), which are separated in time by TD, and are
probed by one of the two Raman beams. The probe induces a unidirectional
Raman transition in the atoms while producing photons in the direction of
the probe. The combined signal from the probe and emitted photons are
multiplied with the frequency produced by the frequency synthesizer in such
a way that the resulting signal will be proportional to the number of photons
detected. Determining the threshold of the zero emission signal, and counting
how many trials result in zero emission, the histogram can be built to produce
signals in Fig. 3.1.

The phase of this beat signal is unknown. As such, the total signal is sent in two different

paths, one to be multiplied by the frequency synthesizer (FS) signal and another to be

multiplied by the FS signal shifted in phase by 90◦ (note that the two beams used to drive
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the Raman transition are generated from the same laser source using frequency synthesizers).

Each of these signals is squared, then combined and sent through a low pass filter (LPF) to

extract the dc voltage that is proportional to the number of scattered photons. A voltage

reading above a predetermined threshold value will indicate the presence of emitted photons

during the interrogation period. If no photon emission occurs and the voltage reads below

the threshold, this indicates that the atoms are all in state |1〉 and the collective state of

the system is |EN〉. For any other collective state, at least one photon will be emitted. For

a given value of f (or ∆), this process is repeated m times (where the choice of m would

depend on the temporal granularity of interest). The fraction of events corresponding to

detection of no photons would represent the signal for this value of f . The process is now

repeated for a different value of f , thus enabling one to produce the clock signal as a function

of f . Usual techniques of modulating the detuning and demodulating the signal can be used

to produce the error signal for stabilizing the FS, thus realizing the COSAC.

3.4. Applications to Atomic Interferometers

In this section, we will show how collective states can be applied to atomic interferometers

to produce fringes that are narrowed by a factor of ∼
√
N compared to that of a conventional

atomic interferometer.

3.4.1. Conventional Raman Atomic Interferometers

The building block of a conventional Raman atom interferometer (CRAIN) is a three-level

atom, with two metastable states |g, pz = 0〉 ≡ |g, 0〉 and |e, pz = ~(k1 + k2)〉 ≡ |e, ~k〉 and

an excited state |a, pz = ~k1〉 ≡ |a, ~k1〉 coupled by two counterpropagating beams (with

wavevectors k1 and k2, respectively), with a single-photon detuning δ, as shown in Fig. 3.3(a).
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Figure 3.3. Schematic diagram for a conventional atomic interferometer. (a)
A three-level atom. (b) An equivalent reduced two-level atom model. (c) A
CRAIN produced via π/2-dark-π-dark-π/2 sequence of excitation.

One of the beams, with Rabi frequency Ω1, couples |g, 0〉 to |a, ~k1〉, while the other beam,

with Rabi frequency Ω2, couples |a, ~k1〉 to |e, ~k〉. For δ � Ω1,Ω2, the interaction can

be described as an effective two-level system excited by an effective traveling wave with a

momentum ~k = ~(k1 + k2), with a Rabi frequency Ω = Ω1Ω2/(2δ) [61, 62], as shown in
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Fig. 3.3(b). We assume that δ � Γ, where Γ is the decay rate of the excited state |a〉, so that

the effect of Γ can be neglected. Under a sequence of π/2-dark-π-dark-π/2 pulses, the wave

packet first separates into two components, then gets redirected, and finally recombines to

produce an interference which is sensitive to any phase difference φ between the two paths,

as shown in Fig. 3.3(c).

The ensemble is initially prepared in the state where all atoms are in state |g, 0〉. After

it undergoes the π/2-dark-π-dark-π/2 pulse sequence, the final state of the ensemble can be

written as [54, 63]

(3.11) |ψ〉 =
N⊗
i=1

−1

2
e−iφ/2

[
(1 + eiφ) |g, 0〉+ i(1− eiφ) |e, ~k〉

]
For a CRAIN, the population of atoms in state |g, 0〉 is measured. Note that for each atom,

the probabilty of finding it in state |g, 0〉 is given by Pg = cos2(φ/2). Since all the atoms are

independent from each other, the signal for a CRAIN is then given by

(3.12) SCRAIN =
N∑
i=1

(Pg) = N cos2(φ/2)

The signal SCRAIN as a function of φ for the case of N = 1 is shown in Fig. 3.4 by the blue

trace. For other values of N , the shape of the signal will be similar except for the amplitude,

which is proportional to N .

3.4.2. Collective State Atomic Interferometer

Similar to the case of an atomic clock, a collective state atomic interferometer (COSAIN)

is exactly the same as a conventional Raman atomic interferometer except for the detection

scheme. That is, we still have an ensemble of N non-interacting effective two-level atoms.
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Figure 3.4. Signal of a collective state atomic interferometer (amplitude of
|E0〉) as a function of φ for different values of N .

The atoms are all initialized in state |g, 0〉 and will undergo the usual π/2-dark-π-dark-π/2

pulse sequence. The final state of the system is again given by Eq.(3.11). But now instead

of measuring the population of atoms in state |g, 0〉, we will measure the population of the

collective state |E0〉, corresponding to the direct product state where all atoms are in state

|g, 0〉. Note that the probability of finding the ensemble in state |E0〉 can be obtained by

simple projection: |〈E0|ψ〉|2, therefore we have

(3.13) SCOSAIN = |〈EN |ψ〉|2 = [cos2(φ/2)]N = (Pg)
N
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The signal SCOSAIN is plotted as a function of φ in Fig. 3.4 for different values of N .

We can clearly see that the fringe linewidth as a function of φ decreases with increasing

N . We define this linewidth as the full width at half maximum (FWHM) of the signal

fringe %(N) = 2 arccos
(
2−1/(2N)

)
[64]. As is the case of atomic clock, we have verified that

%(1)/%(N) ≈
√
N for N � 1. Lastly, we point out that the signal measurements for a

COSAIN can be done in a similar way as a COSAC, where a null detection scheme can be

used to determine the population of atoms in the state |E0〉.

3.5. Summary

In this chapter, we have presented a brief mathematical description of the collective states

(Dicke collective states in particular), and shown their applications to a Raman-Ramsey

atomic clock and a conventional Raman atomic interferometer, which produces signals with

significant reduction in the fringe linewidth (by a factor of
√
N , with N the number of atoms

in the ensemble). The signal is detected by measuring the amplitude of a collective state

with a null detection scheme. Note that this chapter is only meant to introduce the basic

concepts of collective states. For more thorough discussions of collective states, please refer

to Refs. [59, 57, 60]; for more detailed dicussions of collective state atomic clocks, please

refer to Refs. [58, 65]; for more detailed dicussions of collective state atomic interferometers,

please refer to Refs. [64, 60].
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CHAPTER 4

Review of Spin Squeezing

4.1. Introduction

As mentioned in the last chapter, one-axis-twist (OAT) spin squeezing [12] and two-axis-

counter-twist (TACT) spin squeezing [12] can be used to suppress the quantum phase fluc-

tuation beyond the standard quantum limit (SQL). In this chapter, we present an overview

of the concepts of spin squeezing, which starts with a brief review of spin-1/2 systems and

collective spin operators introduced in the previous chapter, then follows with descriptions

of coherent spin states (CSS), and lastly transtions to discussions of spin squeezed states

(SSS) and the two approaches used to generate SSS: OAT and TACT spin squeezings. A

comprehensive review of the theoretical and experimental advancements in spin squeezing is

given in [66].

4.2. Spin Representation of Atomic Ensembles

4.2.1. Spin-1
2

System

As demonstrated in Sec. 3.2.1, any two-level quantum system, regardless of its physical

manifestations, can be modeled as a (pseudo) spin-1/2 particle, with states {|↑〉 , |↓〉}. Any

operator acting on this system can be expanded in the set of angular momentum operators
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j = (jx, jy, jz), as well as the identity matrix I2 associated with the two-level system, where

jx =
(|↓〉〈↑|+ |↑〉〈↓|)

2
=
σx
2

(4.1a)

jy =
i(|↓〉〈↑| − |↑〉〈↓|)

2
=
σy
2

(4.1b)

jz =
(|↑〉〈↑| − |↓〉〈↓|)

2
=
σz
2

(4.1c)

I2 = (|↑〉〈↑|+ |↓〉〈↓|)(4.1d)

with {σx, σy, σz} being Pauli matrices, and the states, |↑〉 and |↓〉, being eigenstates of the

jz operator. We define, for this spin-1/2 system, the atomic population operators for the

spin-up and spin-down states, the ladder operators (raising and lowering operators), and the

total spin operator as follows

n↑ = |↑〉〈↑|(4.2a)

n↓ = |↓〉〈↓|(4.2b)

j± = jx ± ijy(4.2c)

j2 = j2
x + j2

y + j2
z(4.2d)

And the usual commutation rules for angualr momentum operators follow

[jα, jβ] = iεαβγjγ(4.3a)

[j2, jα] = 0(4.3b)

[jz, j±] = ±j±(4.3c)
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where α, β, γ denote the components in any three orthogonal directions, and εαβγ is the

Levi-Civita symbol.

4.2.2. Collective Spins

The discussion above can be generalized to an N -particle system where each particle can be

modeled as a (pseudo) spin-1/2 system. The collective spin of the ensemble is the sum of

individual spins, J =
∑N

l=1 jl = (Jx, Jy, Jz), where

Jx =
N∑
l=1

jxl(4.4a)

Jy =
N∑
l=1

jyl(4.4b)

Jz =
N∑
l=1

jzl(4.4c)

are the collective spin operators. Similarly we define the corresponding operators for the

ensemble as follows

N↑ =
N∑
l=1

(n↑)l =
N∑
l=1

|↑l〉〈↑l|(4.5a)

N↓ =
N∑
l=1

(n↓)l =
N∑
l=1

|↓l〉〈↓l|(4.5b)

J± =
N∑
l=1

(j±)l =
N∑
l=1

(jxl ± ijyl)(4.5c)

J2 =
N∑
l=1

(j2)l =
N∑
l=1

(j2
xl + j2

yl + j2
zl) ≡ J2

x + J2
y + J2

z(4.5d)
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And the usual commutation rules follow

[Jα, Jβ] = iεαβγJγ(4.6a)

[J2, Jα] = 0(4.6b)

[Jz, J±] = ±J±(4.6c)

These commutation rules give rise to the Heisenberg uncertainty relation

(4.7)
〈
∆J2

α

〉 〈
∆J2

β

〉
≥ 1

4
|〈Jγ〉|2

where ∆J2
α = 〈J2

α〉 − 〈Jα〉
2 is the variance of the measurement of the spin projection Jα for

numerous iterations of identical preparations and measurements.

4.2.3. Direct Product States and Collective States As Basis

As discussed in Sec. 3.2, for an atomic ensemble interacting with homogeneous external laser

fields, there are two sets of basis states we can choose for solving the dynamics of the system:

direct product states and collective states. The latter is shown to be more appropriate under

certain conditions when the asymmetric collective states are decoupled from the symmetric

ones. In the following discussions, we will assume this is the case and focus exclusively on

the symmetric collective states (also known as Dicke collective states). For convenience, we
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redefine here the symmetric collective states in terms of direct product states

|E0〉 ≡
N⊗
k=1

|↓k〉 = |↓, ↓, . . . , ↓, ↓〉

. . .

|En〉 ≡
(
N

n

)− 1
2

(Nn)∑
k=1

Pk
∣∣∣↓⊗(N−n)

⊗
↑
⊗
n
〉

. . .

|EN〉 ≡
N⊗
k=1

|↑k〉 = |↑, ↑, . . . , ↑, ↑〉

(4.8)

where Pk is the permutation operator, and the summation is done over all the different

permutations of (N − n) ↓’s and n ↑’s.

Using the symmetric collective states as basis, the dynamics of the atomic ensemble can

be expressed as unitary transformations related to the collective spin operators. For example,

when the system interact with a laser field of uniform intensity over the atomic ensemble, the

interaction Hamiltonian is given by H1 = ~ΩJx, as shown in Eq. (3.4b). The corresponding

unitary transformation will be U(t) = exp(−iH1t/~) = exp(−iΩtJx). For a π/2-pulse, we

have Ωt = π/2, and the effective unitary transformation will be exp(−iπ
2
Jx); for a π-pulse,

we have Ωt = π, and the effective unitary transformation will be exp(−iπJx). However, when

the system is left in dark (no laser interaction), the Hamiltonian will be proportional to the

Jz operator, and the corresponding unitary transformation can be written as exp(−iφJz),

where φ is the phase accumulated by the ensemble in the dark zone. We can even impose

non-linear Hamiltonian on the ensemble, in which case the dynamics of the system can still

be written as unitary transformations of the corresponding collective spin operators.
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Figure 4.1. (a) Bloch sphere representation of a CSS. In this illustration, the
CSS is prepared along the ŷ-axis. The Husimi Quasi Probablity Distributions
(QPDs) for the CSS noise in Jx and Jz (coordinate system defined in (b)) is
shown as a noise blob (purple disc) at the tip of the collective spin J (red
arrow). (b) Coordinate system defining the collective spin polar angle θ and
azimuthal angle φ. The Cartesian components of the collective spin J in the
x, y and z directions are Jx, Jy and Jz.

4.2.4. Coherent Spin States

For an ensemble of N spin-1/2 particles, the coherent spin state (CSS) is defined as a

direct product of individual spin states, where each individual spin state itself is a minimum

uncertainty state

(4.9) |θ, φ〉 =
N⊗
l=1

(
cos

(
θ

2

)
|↓l〉 − e−iφ sin

(
θ

2

)
|↑l〉

)
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where the angles θ and φ describe the direction (θ, φ) along which the mean spin vector is

pointed, as illustrated in Fig. 4.1. Using the following operator identity

(4.10) exp[i(ξj+ + ηj−)] = cos
(√

ξη
)

+ i
sin
(√

ξη
)

√
ξη

(ξj+ + ηj−)

One can write the CSS in the following form

(4.11) |θ, φ〉 =
N⊗
l=1

Rl(θ, φ) |↓l〉 =
N⊗
l=1

exp[ζ(j+)l − ζ∗(j−)l] |↓l〉

where ζ = − θ
2
e−iφ. Using Eq. (4.5c), this state can be further written as

(4.12) |θ, φ〉 = R(θ, φ) |↓l〉 = exp(ζJ+ − ζ∗J−) |J,−J〉

where |J,−J〉 =
⊗N

l=1 |↓l〉 is the eigenstate of the Jz operator with eigenvalue M = −J =

−N/2 (this is also the symmetric collective state |E0〉 defined above), R(θ, φ) is the rotation

operator, which can also be written as

(4.13) R(θ, φ) = exp(ζJ+ − ζ∗J−) = exp(τJ+) exp[ln
(
1 + |τ |2

)
Jz] exp(−τ ∗J−)

where τ = − tan
(
θ
2

)
e−iφ. Combining Eq. (4.12) and Eq. (4.13), we obtain

|θ, φ〉 = exp(τJ+) exp[ln
(
1 + |τ |2

)
Jz] exp(−τ ∗J−) |J,−J〉

=

(
cos

θ

2

)2J 2J∑
l=0

√(
2J

l

)(
eiφ tan

θ

2

)l
|J, J − l〉

(4.14)

For clarity, we consider an example of the CSS: |π/2, π/2〉 =
⊗N

l=1(|↓l〉−i |↑l〉)/
√

2, which

corresponds to the state of the ensemble after the first π/2-pulse in Ramsey spectroscopy,

discussed in Sec. 3.3. Essentially, this state is a result of rotating |J,−J〉 about the x̂-axis.
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Substituting θ = π/2, φ = π/2 into Eq. (4.14), we get∣∣∣π
2
,
π

2

〉
= exp(iJ+) exp[ln(2)Jz] exp(iJ−) |J,−J〉

= 2−J
2J∑
l=0

il

√(
2J

l

)
|J, J − l〉

(4.15)

Each individual spin in the CSS is aligned along the ŷ axis. The mean collective spin

that represents this CSS is, therefore J = N
2
ŷ. Due to quantum mechanics, an uncertainty

is introduced in the spin projections, governed by the Heisenberg uncertainty relationships

given in Eq. (4.7). Therefore, the quantum projection noise in |π/2, π/2〉 is ∆Jz = ∆Jx =

√
N/2. The quantum fluctuations in a CSS is, therefore, isotropic in the plane orthogonal

to the direction of the mean spin.

Using Eq. (4.14), we can also define the Husimi Quasi Probablity Distributions (QPDs)

which is expressed as a function QH(θ, φ) of the angles in spherical coordinates that span

the surface of the Bloch sphere. For a given quantum state |Ψ〉, it is given by QH(θ, φ) ≡

|〈Ψ|Φ(θ, φ)〉|2. In the rest of the thesis, we will use QPDs to illustrate the dynamics of the

atomic ensemble extensively.

4.3. Spin Squeezing for Atomic Ensembles

The definition of spin squeezing is not unique, and it depends on the context where

squeezing is considered. The most popular definitions were proposed by Kitagawa and

Ueda [12], in analogy to photon squeezing, and by Wineland et al. [13, 14], in Ramsey

experiments. In addition to these two widely studied definitions, there are some other

definitions of spin squeezing, which were introduced for certain considerations. Here I will

focus on the definitions proposed by Kitagawa and Ueda.
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4.3.1. Spin-squeezing Parameter Given by Kitagawa and Ueda

Unlike bosonic systems, where the variance is equal in any direction for a bosonic coherent

state [67, 68, 69, 70, 71], for a CSS the variance of spin operators depends on n, and there

exists a prior direction: the mean-spin direction (MSD)

(4.16) n0 =
〈J〉
|〈J〉|

=
(〈Jx〉 , 〈Jy〉 , 〈Jz〉)

|〈J〉|

Below we use n⊥ to denote any direction perpendicular to the MSD. For a CSS, we have

(∆Jn⊥)2 = J/2, where J = N/2. The spin-squeezing parameter is then defined in reference

to (∆Jn⊥)2 of a CSS

(4.17) ξKU =
min (∆J2

n⊥
)

J/2
=

4 min(∆J2
n⊥

)

N

where the minimization is done over all directions n⊥. It is desirable that the spin-squeezing

parameter ξKU is equal to 1 for the CSS.

To calculate the parameter ξKU , the first step is to compute the MSD determined by

the expectation values 〈Jα〉, with α ∈ {x, y, z}. The MSD n0 can be written in spherical

coordinates as

(4.18) n0 = (sin θ cosφ, sin θ sinφ, cos θ)
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where θ and φ are polar and azimuthal angles, respectively. The angles θ and φ are given

by [72]

θ = arccos

(
〈Jz〉
|J|

)
(4.19a)

φ =


arccos

(
〈Jx〉
|J| sin(θ)

)
if 〈Jy〉 > 0,

2π − arccos
(
〈Jx〉
|J| sin(θ)

)
if 〈Jy〉 ≤ 0,

(4.19b)

where |J| =
√
〈Jx〉2 + 〈Jy〉2 + 〈Jz〉2 is the magnitude of the mean spin. With respect to n0,

the other two orthogonal bases are given by

n1 = (− sinφ, cosφ, 0)(4.20a)

n2 = (cos θ cosφ, cos θ sinφ, − sin θ)(4.20b)

The above expressions are valid for θ 6= 0, π. For θ = 0, π, the mean spin is along the ±ẑ

direction, and the possible choices of φ can be either 0 or π.

The second step now is to find the minimal variance of Jn⊥ = J · n⊥. The direction n⊥

can be represented as

(4.21) n⊥ = n1O
T = n1 cos ν + n2 sin ν

where O is a 2 × 2 orthogonal matrix that performs rotations in the normal plane. The

variance ∆J2
n⊥

can be written as

(4.22) ∆J2
n⊥

=
〈
J2
n⊥

〉
= n⊥ΓnT⊥
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where the symmetric matrix

(4.23) Γ =

 〈
J2
n1

〉
Cov(Jn1 , Jn2)

Cov(Jn1 , Jn2)
〈
J2
n2

〉


with

(4.24) Cov(Jn1 , Jn2) =
1

2
〈[Jn1 , Jn2 ]+〉 − 〈Jn1〉 〈Jn2〉 =

1

2
〈[Jn1 , Jn2 ]+〉

is the covariance between Jn1 and Jn2 , and [X, Y ]+ = XY +Y X is the anti-commutator. In

the above equation, 〈Jn1〉 = 〈Jn2〉 = 0, since n1 and n2 are perpendicular to the MSD. The

variance can be written as

(4.25) ∆J2
n⊥

= n1O
TΓOnT1

and the matrix O can be chosen such that

(4.26) OTΓO = diag{λ−, λ+}

where the eigenvalues

(4.27) λ± =
1

2

[ 〈
J2
n1

+ J2
n2

〉
±
√(〈

J2
n1
− J2

n2

〉 )2
+ 4 Cov(Jn1 , Jn2)2

]

and min(∆J2
n⊥

) = λ−. Thus the squeezing parameter becomes

(4.28) ξKU =
4

N
λ− =

2

N

[ 〈
J2
n1

+ J2
n2

〉
−
√(〈

J2
n1
− J2

n2

〉 )2
+ 4 Cov(Jn1 , Jn2)2

]
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The optimal squeezing angle in Eq. (4.21) is given by

(4.29) ν =


1
2

arccos
(

−A√
A2+B2

)
if B ≤ 0,

π − 1
2

arccos
(

−A√
A2+B2

)
if B > 0,

where we define

A ≡
〈
J2
n1
− J2

n2

〉
(4.30a)

B ≡ 2 Cov(Jn1 , Jn2)(4.30b)

4.3.2. Squeezed Spin States

It is known that ξKU = 1 for the uncorrelated pure CSS |θ, φ〉 in Eq. (4.9). However, if there

are certain quantum correlations among the elementary spins, we may have ξKU < 1. Here,

we regard spin as squeezed only if ξKU < 1, that is, the variance of one spin component

normal to the MSD is smaller than the standard quantum limit of J/2. The corresponding

states are then named as squeezed spin states (SSS’s), which are demonstrated in Fig. 4.2.

From the above definition, spin squeezing can be achieved by introducing correlations

among the elementary spins, which requires a nonlinear interaction because a linear Hamil-

tonian merely rotates the individual spins and does not establish quantum correlations among

them. In the following subsections, we will focus primarily on the two approaches of gen-

erating squeezed spin states: One-Axis-Twist (OAT) and Two-Axis-Counter-Twist (TACT)

spin squeezing.
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Figure 4.2. The QPDs of the squeezed spin states generated fromHOAT for J =
20. (a) is the starting CSS: |π/2, π/2〉; (b)-(d) represent the SSS’s generated
with increasing squeezing parameters µ; (e)-(h) are the corresponding states
after the corrective rotation with different angles ν to minimize the variance
along the ẑ axis. Note that (b) and (f) correspond to under-squeezed states;
(c) and (g) correspond to optimally squeezed states; (d) and (h) correspond
to excessively squeezed states.

4.3.3. One-Axis-Twist Spin Squeezing

One-Axis-Twist (OAT) spin squeezing is realized by applying the following nonlinear Hamil-

tonian

(4.31) HOAT = ~χJ2
z

on a coherent spin state, say |CSS〉 = |π/2, π/2〉, for which the MSD is along the direction

given by +ŷ. The dynamics of the ensemble can be expressed as a unitary transformation

given by exp(−iHOAT t/~) and the resulting squeezed spin state can be written as

(4.32) |SSS〉 = exp
(−iHOAT t

~

)
|CSS〉 = exp

(
− iµJ2

z

)
|CSS〉
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where µ = χt is the squeezing parameter, and t is the time duration of the squeezing

interaction. The deformation of variances in the normal plane (x-z plane) by twisting with

increasing µ is shown in Fig. 4.2 (a)-(d). Here we are plotting the QPDs for the state right

after the squeezing interaction.

It is clear that variances are redistributed between certain orthogonal components in the

x-z plane. A corrective rotation of angle ν along the MSD can be applied to bring the two

orthogonal components to be aligned with x and z axes, such that the variance along the

z-axis is minimized, as shown in Fig. 4.2 (e)-(h). The maximum and minimum variances can

be found as

(4.33) λ± =
J

2

[
1 +

1

2

(
J − 1

2

)(
A±
√
A2 +B2

)]

the optimal squeezing angle as

(4.34) ν = −1

2
arctan

(
B

A

)

and the spin-squeezing parameter as

(4.35) ξKU =
λ−
J/2

= 1 +
1

2

(
J − 1

2

)(
A−
√
A2 +B2

)

where we have

A = 1− cos2J−2(2µ)(4.36a)

B = 4 sin(µ) cos2J−2(µ)(4.36b)
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Figure 4.3. The spin-squeezing parameter ξKU as a function of the squeezing
parameter µ for J = 20. The minimum ξKU ≈ 0.08644 is achieved at µ ≈
0.09972.

The spin-squeezing parameter ξKU depends on the squeezing parameter µ, which is shown

in Fig. 4.3. For every J value, there is an optimal value of the squeezing parameter µ for

which ξKU is minimized. For J � 1, these values can be approximated by

µopt ' 24
1
6J−

2
3(4.37a)

(ξKU)min ' 3−
1
6J−

2
3(4.37b)

In addition to QPDs, spin squeezing can also be visualized using Collective-state Popu-

lation Distributions (CPDs). Using Eq. (4.15), the SSS after applying HOAT can be written



91

Figure 4.4. The CPDs of the squeezed spin states generated from HOAT for
J = 20. (a) is the starting CSS: |π/2, π/2〉; (b)-(d) represent the SSS’s after
corrective rotation, corresponding to those in Fig. 4.2 (f)-(h); (e) represent the
SSS after corrective rotation for µ = π/2.

in terms of the Dicke collective states as follows

|SSS〉 = exp
(
− iµ

2
J2
z

) ∣∣∣π
2
,
π

2

〉
= 2−J

2J∑
l=0

(−i)l
√(

2J

l

)
exp

(
− iµ

2
(−J + l)2

)
|J,−J + l〉

(4.38)

The population in the collective state |EM+J〉 = |J,M〉 can be obtained by projection:

|〈J,M |SSS〉|2. The CPD for the SSS’s of various µ values are shown in Fig. 4.4. For a

CSS, the CPD is characterized by a binomial distribution, while for an SSS, the CPD is not

binomial and the width of the distribution becomes smaller as µ increases. For a critical

value of µ = π/2, the SSS after the corrective rotation becomes an equal superposition of the

two extremal collective states: (|E0〉+ |EN〉)/
√

2, which is referred to as a Schrödinger Cat

(SC) state [73]. The SC state can be employed to enhance the measurement sensitivities of

an atomic interferometer (clock) to the Heisenberg limit [60, 74, 75], which will be detailed

in the following chapters.



92

Figure 4.5. The QPDs of the squeezed spin states generated from HTACT for
J = 20. (a) is the starting CSS: |π/2, π/2〉; (b)-(d) represent the SSS’s gen-
erated with increasing squeezing parameters µ. Note that (b) corresponds to
under-squeezed states; (c) corresponds to optimally squeezed states; (d) corre-
sponds to excessively squeezed states. As µ increases, the QPDs distorts and
eventually splits into two.

4.3.4. Two-Axis-Counter-Twist Spin Squeezing

Two-Axis-Counter-Twist (TACT) spin squeezing is realized by applying the following non-

linear Hamiltonian

(4.39) HTACT =
~χ
2i

(
(Jx + iJz)

2 − (Jx − iJz)2
)

on a coherent spin state, say |CSS〉 = |π/2, π/2〉. The resulting squeezed spin state can be

written as

(4.40) |SSS〉 = exp
(−iHTACT t

~

)
|CSS〉 = exp

(
− µ

2

(
(Jx + iJz)

2 − (Jx − iJz)2
))
|CSS〉

where again µ = χt is the squeezing parameter, and t is the time duration of the squeezing

interaction. The deformation of variances in the normal plane (x-z plane) by counter-twisting

with increasing µ is shown in Fig. 4.5 (a)-(d). Again here we are plotting the QPDs for the

state right after the squeezing interaction.
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Similar to OAT, the spin-squeezing parameter ξKU depends on the squeezing parameter

µ, and for every J value, there is an optimal value of µ for which ξKU is minimized. However,

the action of HTACT on the CSS |π/2, π/2〉 does not have analytical solutions. For J � 1,

the minimum attainable variance for TACT squeezing asymptotically approaches 1/2, which

implies (ξKU)min scales as ∝ J−1. Therefore, for large J (or N), TACT squeezing can achieve

better noise reduction compared to OAT squeezing.

4.4. Summary

In this chapter, we have reviewed the collective model of an atomic ensemble using col-

lective spins, presented mathematical descriptions of coherent spin states and squeezed spin

states, and lastly introduced two approaches (OAT and TACT) for generating squeezed

spin states. The OAT spin squeezing with critically-tuned squeezing parameter can be used

to produce Schrödinger Cat state, which in turn can be employed to make a Schrödinger

Cat atomic interferometer (SCAIN). Later we will show that a SCAIN in combination with

collective state detection (CSD) or conventional detection (CD) can achieve a metrological

sensitivity equivalent to the Heisenberg Limit (HL), within a factor of
√

2 [74, 75]. Fur-

thermore, CD-SCAIN (Schrödinger Cat atomic interferometer with conventional detection)

are more robust against excess noise by as much as ∼
√
N [75], with N being the number

of atoms in the ensemble. We also show that the same technique can be applied to an

atomic clock, which increases the effective base frequency by a factor of N , and again yields

a metrological sensitivity equivalent to the HL, within a factor of
√

2 [74, 75].



94

CHAPTER 5

Review of Sagnac Effect

5.1. Introduction

For a gyrosocope based on a planar Mach-Zehnder interferometer, a rotation normal to

its plane causes a phase shift ∆φ that is proportional to the rotation rate Ω. This is known

as the Sagnac effect [76, 77]. In this chapter, we present two models for deriving the effect.

The first model is based on special relativity and can be generalized to an interferometer of

an arbitrary shape, while the second is a quantum-mechanical model which shows that the

total effect can be split equally during each of the two dark zones.

5.2. Relativistic Model for the Sagnac Effect

In this section, we derive the Sagnac effect using the relativistic model. This is done first

for a circular loop using relativistic laws of addition of velocities. Then it is done for the

same loop but using Lorentz transformations. Lastly we generalize the model using Lorentz

transformations to an interferometer of an arbitrary shape.

5.2.1. Deriving the Sagnac Effects for a Circular Loop Using Relativistic Laws

of Addition of Velocities

We first review the conventional ways for deriving the Sagnac effects of a circular interfer-

ometer, which is shown in Fig. 5.1. The interferometer is rotating with angular frequency Ω

and trangential velocity v = ΩR. The phase velocity of the counter-clockwise (CCW) and
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Figure 5.1. Schematic illustration for a circular interferometer.

clockwise (CW) waves without rotation is given by vp. We use v±R to denote the relativistic

phase velocities of the CW(+) and CCW(-) waves as seen from the rest frame, L± to denote

the distances travelled by the CW(+) and CCW(-) waves from BS1 to BS′2 (BS short for

beam splitter; BS′2 is defined as the position of the second beam splitter, i.e., BS2, during

detection of interference), T± to denote the time elapsed, as seen in the rest frame, for the

CW(+) and the CCW(-) waves to reach BS′2. We assume both waves (CW and CCW) have

the same phase when they are split at BS1. Our goal is to determine the difference in the

phase of these two waves when the arrive at the detector at BS′2.
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We define β ≡ v/c0, βp ≡ vp/c0, where c0 is the speed of light in vacuum, and assume

β � 1. According to the relativistic laws of addition of velocities, we have:

v+
R =

vp − v
1− vpv/c2

0

=
vp − v

1− ββp
' (vp − v)(1 + ββp)(5.1a)

v−R =
vp + v

1 + vpv/c2
0

=
vp + v

1 + ββp
' (vp + v)(1− ββp)(5.1b)

Note that the distances L± are related to the travel times T± as follows

L+ = πR− vT+(5.2a)

L− = πR + vT−(5.2b)

T+ = L+/V +
R(5.2c)

T− = L−/V −R(5.2d)

we then obtain

T+ =
πR

v+
R + v

' πR

(vp − v)(1 + ββp) + v
=

πR

vp + vpββp − vββp
(5.3a)

T− =
πR

v−R − v
' πR

(vp + v)(1− ββp)− v
=

πR

vp − vpββp − vββp
(5.3b)

Since v � vp for any waves under consideration, including optical waves and matter waves,

we can write

T+ ' πR

vp + vpββp
' πR

vp
(1− ββp)(5.4a)

T− ' πR

vp − vpββp
' πR

vp
(1 + ββp)(5.4b)
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Thus, the time difference between the two waves is

∆t = T− − T+ =
πR

vp
2ββp

=
2πRv

c2
0

=
2πΩR2

c2
0

=
2ΩA

c2
0

(5.5)

where A = πR2 is the area enclosed by the interferometer. Therefore, the phase shift is given

by

(5.6) ∆φ = ω∆t =
2ΩA

c2
0

· ω

where ω is the radial frequency of the wave. Note that the time delay found above is a purely

geometric effect, and the parameter c0 appears in it because of the use of the relativistic laws

of addition of velocities. Next we apply Eq. (5.6) to two special types of waves: optical wave

and matter wave.

For optical wave, we have ω = 2πf , where f is the temporal frequency of the wave. Then

Eq. (5.6) can be rewritten as

(5.7) ∆φ =
4πΩAf

c2
0

Note that the index of refraction of the medium through which the optical wave propagate

does not show up in this result. If the index of refraction is n, then vp = c0/n. However, the

expression for ∆t does not depend on vp. Hence, there is no dependence on n. This is verified

experimentally. As such, the Sagnac effect phase shift is considered a key experimental

evidence of special relativity.
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For matter wave (such as by splitting atomic states quantum mechanically and recom-

bining them), the relavant frequency of the wave is given by

(5.8) ω =
mc2

0

~

where m is the mass of the atom, and we have used the result that the energy of the atom

is E = mc2
0. Using this, we get

(5.9) ∆φ =
2ΩA

c2
0

· mc
2
0

~
=

2ΩAm

~

This result has also been verified experimentally.

Though the application of addition of velocities gives the right result for the time delay,

the interpretation of ∆t is not straightforward, nor can it be generalized to an interferometer

with arbitrary shape. In the following two sections, we will develop a generic way for deriving

the time delay using Lorentz transformations.

5.2.2. Deriving the Sagnac Effects for a Circular Loop Using Lorentz Transfor-

mations

The interpretation of ∆t can be seen more transparently by carrying out an alternative

derivation that uses Lorentz transformations directly, rather than addition of velocities, as

follows.

Since the velocity of the interferometer is v = ΩR at every point locally (i.e., tangential

velocity), the time delay in going from BS1 to BS′2 can be equivalently calculated assuming

linear motion, as illustrated in Fig. 5.2.
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Figure 5.2. Equivalent linear-motion model of a circular interferometer.

We define two events: E1 represents the event when the wavefront leaves BS1; E2 rep-

resents the event when the wavefront arrives at BS′2. The S′ frame is defined as the one in

which the slab is stationary, while the S frame is the stationary reference frame. As seen

from S, S′ is moving in the x̂ direction at velocity v, with v = ΩR. In the S′ frame, the wave

is moving with velocity vp. We assume, as above, that v � vp and v � c0.

Figure 5.3. Coordinates of the two events for the CCW wave in the S and S′ frames.

For the CCW wave, the coordinates of the event E1 in the two frames are denoted as

(x−1 , t
−
1 ) and (x−

′

1 , t
−′
1 ), respectively; the coordinates of the event E2 in the two frames are

denoted as (x−2 , t
−
2 ) and (x−

′

2 , t
−′
2 ), respectively. As shown in Fig. 5.3, in the S′ frame, we
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have

x−
′

2 − x−
′

1 = L0(5.10a)

t−
′

2 − t−
′

1 =
L0

vp
(5.10b)

Then in the S frame, by applying Lorentz transformations, we obtain

t−2 − t−1 = γ(t−
′

2 − t−
′

1 ) + γ
v

c2
0

(x−
′

2 − x−
′

1 )

= γ
L0

vp
+ γ

vL0

c2
0

(5.11)

where γ = 1/
√

1− β2 is the Lorentz factor.

For the CW wave, the coordinates of the event E1 in the two frames are denoted as

(x+
1 , t

+
1 ) and (x+′

1 , t
+′

1 ), respectively; the coordinates of the event E2 in the two frames are

denoted as (x+
2 , t

+
2 ) and (x+′

2 , t
+′

2 ), respectively. Carrying out the same calculations yields

x+′

2 − x+′

1 = −L0(5.12a)

t+
′

2 − t+
′

1 =
L0

vp
(5.12b)

and

t+2 − t+1 = γ(t+
′

2 − t+
′

1 ) + γ
v

c2
0

(x+′

2 − x+′

1 )

= γ
L0

vp
+ γ
−vL0

c2
0

(5.13)

Note the negative sign at the right-hand side of Eq. (5.12a), since in the S′ frame, the CW

wave is travelling equivalently in the −x̂′ direction.
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The time delay of the two paths in the S frame is then given by

∆t = (t−2 − t−1 )− (t+2 − t+1 )

= γ
2vL0

c2
0

= γ
2ΩRπR

c2
0

= γ
2ΩA

c2
0

' 2ΩA

c2
0

(5.14)

where we have made use of the approximation γ ' 1, giving that β = v/c0 � 1.

Now the meaning of the time delay is clear: it is a manifestation of relativity of simultane-

ity. In the S′ frame, the two wavefronts travel at the same speed, and since the second beam

splitter is located the same distance from the first beam splitter, the two wavefronts will

reach the second beam splitter simultaneouly. However, because the second beam splitter

is spatially separated for the two wavefronts in the linear-motion model, the two wavefronts

will not reach the second beam splitter at the same time when observed in the S frame.

This manifests itself as the time delay, and eventually leads to the phase shift of the two

wavefronts.

5.2.3. Deriving the Sagnac Effects for an Interferometer of Arbitrary Shape Us-

ing Lorentz Transformations

Assume we have an interferometer of arbitrary shape as shown in Fig. 5.4. The interferometer

lies in a plane that is normal to the rotation axis. In the rotating frame SR in which the

interferometer is stationary, the origin O′ of the coordinates is chosen to be the intersection

point (which we define as the pivot point) of the rotation axis and the interferometer plane.

The wavefronts are split at point A, then follow the two paths (denoted as C and D) until

they meet at point B. Note that now we cannot apply the linear-motion model to the whole
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Figure 5.4. Schematic illustration for an interferometer of arbitrary shape.

path (C or D) directly, since the tangential velocity at each point along the path may be

different. Instead, we will break down the path into infinitesimal segments and apply the

linear-motion model to each of them sequentially.

Figure 5.5. Equivalent linear-motion model for the chosen segment.

Take the segment dr′ located at position r′ = (x′, y′, 0) along path C as an example. The

tangential speed of this segment is given by

(5.15) v = (Ω× r′) · dr
′

|dr′|
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where Ω = (0, 0,Ω) is the angular velocity vector of the interferometer. The equivalent

linear-motion model for this segment is shown in Fig. 5.5. In the S′ frame, the time it takes

for the wavefront to travel from the start to the end of the segment, denoted as dt′C , is given

by dt′C = |dr′|/vp. The corresponding time, dtC , as seen in the S frame, then can be found

using Lorentz transformations

dtC = γdt′C + γ
v|dr′|
c2

0

= γ
|dr′|
vp

+ γ
(Ω× r′) · dr′

c2
0

(5.16)

where γ =
√

1− (v/c0)2 is the Lorentz factor for the chosen segment (note now γ is a

function of r′). The total time it takes for the wavefront to travel from point A to point B

along path C, denoted as ∆tC , as seen in the S frame, will be

∆tC =

∫
C

dtC

=

∫
C

{
γ
|dr′|
vp

+ γ
(Ω× r′) · dr′

c2
0

}
= I1 + I2

(5.17)

where we have defined

I1 ≡
∫
C

γ
|dr′|
vp

(5.18a)

I2 ≡
∫
C

γ
(Ω× r′) · dr′

c2
0

(5.18b)
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Similarly we can obtain the corresponding results for path D

dtD = γdt′D + γ
v|dr′|
c2

0

= γ
|dr′|
vp

+ γ
(Ω× r′) · dr′

c2
0

(5.19)

and

∆tD =

∫
D

dtD

=

∫
D

{
γ
|dr′|
vp

+ γ
(Ω× r′) · dr′

c2
0

}
= I3 + I4

(5.20)

where we have defined

I3 ≡
∫
D

γ
|dr′|
vp

(5.21a)

I4 ≡
∫
D

γ
(Ω× r′) · dr′

c2
0

(5.21b)

Then the time delay of the wavefronts along the two paths, denoted as ∆t, is given by

(5.22) ∆t = ∆tC −∆tD = (I1 + I2)− (I3 + I4)

To evaluate these integrals, we assume v � c0 for all segments along the two paths so

that γ ' 1. Then we get

I1 '
∫
C

|dr′|
vp

=
LC
vp

(5.23a)

I3 '
∫
D

|dr′|
vp

=
LD
vp

(5.23b)
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where LC and LD are respectively the length of path C and D, as well as

I2 − I4 '
∫
C

(Ω× r′) · dr′

c2
0

−
∫
D

(Ω× r′) · dr′

c2
0

=

∮
A→A

(Ω× r′) · dr′

c2
0

(5.24)

where now the integral is to be done on the closed-loop: A→ B→ A, by first following path

C then following path D but in reverse direction.

Using Stokes′ theorem, the line integral on the right-hand side of Eq. (5.24) can be

converted into a surface integral

I2 − I4 '
∮
A→A

(Ω× r′) · dr′

c2
0

=

∫∫
S

∇× (Ω× r′) · dS
c2

0

(5.25)

where ∇ = (∂/∂x′, ∂/∂y′, ∂/∂z′) is the differential operator, dS = (0, 0, dS) is the differ-

ential surface vector, and the surface integral is to be done over the area enclosed by the

interferometer. Using the following vector identity

∇× (A×B) =A(∇ ·B)−B(∇ ·A)+

(B · ∇)A− (A · ∇)B

(5.26)
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and the following equations

Ω(∇ · r′) = 2Ω(5.27a)

r′(∇ ·Ω) = 0(5.27b)

(r′ · ∇)Ω = 0(5.27c)

(Ω · ∇)r′ = 0(5.27d)

we arrive at

I2 − I4 '
∫∫

S

∇× (Ω× r′) · dS
c2

0

=
2Ω

c2
0

∫∫
S

dS =
2ΩA

c2
0

(5.28)

where again A is the area enclosed by the interferometer. The time delay ∆t now can be

written as

(5.29) ∆t ' LC − LD
vp

+
2ΩA

c2
0

For symmetric interferometers, the first term on the right-hand side goes to zero, and we

obtain

(5.30) ∆t ' 2ΩA

c2
0

It should be noted that the integrals in Eqs. (5.18a), (5.18b), (5.21a), (5.21b) can be

generalized to arbitrary direction of Ω and arbitrary pivot point for the rotation, therefore

Eq. (5.22) also holds for those general cases. Since the time delay in Eq. (5.30) does not

depend on the pivot point of rotation, the signals of the interferometer are not expected to
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depend on the pivot point, either (this is true even for asymmetric interferometers). However,

the time delay for each half loop does depend on the location of the pivot point, as shown

in Eqs. (5.17), (5.20). Furthermore, for asymmetric interferometers, the signals will also

depend on the length difference between the two paths, as can be seen from Eq. (5.30).

5.3. Quantum-mechanical Model for the Sagnac Effect

In this section, we derive the Sagnac effect using the quantum-mechanical model. We

show that though the Sagnac effect is uniformly spread throughout the interferometric se-

quence, we can introduce it in two equal parts during each of the two dark zones.

5.3.1. Derivation of the Sagnac Effects Using Rotation Hamiltonian

The atomic interferometer (AI) considered here makes use of N non-interacting identical two-

level atoms, all interacting with the same laser field, as shown in Fig. 5.6. The lower state is

defined as |1〉 ≡ |g, px = mvx, py = 0〉 and the upper state as |2〉 ≡ |e, px = mvx, py = mvy〉,

where px and py are respectively the x- and y-components of the linear momentum of the

center of mass (COM) motion of the atom, and m is the mass of the atom.

The ensemble is initially prepared in a state where all atoms are in state |1〉, then un-

dergoes a pulse sequence of π/2−dark−π−dark−π/2, during which each atom’s wavepacket

first separates into two components, then gets redirected and finally recombined to produce

an interference that is sensitive to any phase-difference, φ, between the two paths. The

schematic diagram for the AI is shown in Fig. 5.7. The trajectory of the AI forms a closed

loop with an area A in the x-y plane, and the system is rotating around the ẑ-axis with

angular frequency Ω = Ωẑ.
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Figure 5.6. Schematic diagram for a two-level atomic system. The energies
associated with the two levels are denoted as ~ω1 and ~ω2, respectively. δ is
the laser detuning and ΩR is the Rabi frequency. Here we assume resonant
excitations, hence δ = 0. Each level consists of internal states characterizing
the electron motion, as well as external states characterizing the center of mass
(COM) motion of the atom.

For each atom, the Hamiltonian due to rotation is given by

(5.31) HΩ = −Ω · (r× p) = −Ω(x py − y px)

where r = (x, y, 0) and p = (px, py, 0) are respectively the position and momentum opera-

tors of the COM motion of the atom. Next we will derive the phase factors imparted to the

two channels in the two dark zones using the rotation Hamiltonian HΩ given in Eq.(5.31).

During the first dark zone, the lower arm (channel 1) is in state |1〉 while the upper

arm (channel 2) is in state |2〉. Note that in the two-level atomic model, each atom can be

represented by a pseudospin-1/2 operator, j = (jx, jy, jz). The spin-up and spin-down states

are defined as |↑〉 ≡ |2〉, |↓〉 ≡ |1〉, respectively. In this representation, the matrix elements
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Figure 5.7. Schematic illustration of an atomic interferometer for rotation
sensing. 1 and 3 are the two π/2-pulses, while 2 is the π-pulse. The duration
for the π/2-pulse, the π-pulse and the dark zone are τ , 2τ and T , respectively,
where we assume τ � T . The system is rotating around the ẑ-axis with an-
gular frequency Ω, which will induce phase difference between the two arms
of the interferometer.

of HΩ are given by

(HΩ)↓↓ = 〈↓|HΩ|↓〉 = −Ω( 〈1|x py|1〉 − 〈1|y px|1〉)(5.32a)

(HΩ)↑↑ = 〈↑|HΩ|↑〉 = −Ω( 〈2|x py|2〉 − 〈2|y px|2〉)(5.32b)

(HΩ)↓↑ = 〈↓|HΩ|↑〉 = 0(5.32c)

(HΩ)↑↓ = 〈↑|HΩ|↓〉 = 0(5.32d)
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Note that the last two equations, Eqs. (5.32c) and (5.32d), are results of the fact that the

rotation Hamiltonian HΩ operates only on the external states of the atomic system and that

the internal states of the two basis states are orthogonal to each other. Also note that |1〉 and

|2〉 are eigenstates of the px and py operators, where for px, the corresponding eigenvalue is

mvx for both states, while for py, the corresponding eigenvalues are 0 and mvy, respectively.

Then using the following equations

〈1|x|1〉 = −x0 + vx(t− tB)(5.33a)

〈2|x|2〉 = −y0 + vx(t− tB)(5.33b)

〈1|y|1〉 = −y0(5.33c)

〈2|y|2〉 = −y0 + vy(t− tB)(5.33d)

with tB being the time when the atomic system enters the first dark zone (time point B),

and (−x0,−y0) being the coordinate of the COM of the atomic system at tB, we can write

HΩ in matrix form as

HΩ =

(HΩ)↑↑ (HΩ)↑↓

(HΩ)↓↑ (HΩ)↓↓



=

−Ω(mvxy0 −mvyx0) 0

0 −Ωmvxy0



=

Ωmvxy0 0

0 −Ωmvxy0



(5.34)
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where we have made use of the following identities according to the geometry of the AI

x0 = vxT(5.35a)

2y0 = vyT(5.35b)

vyx0 = 2vxy0(5.35c)

A = 2x0y0(5.35d)

Also note that in the same representation, the jz operator is given by

(5.36) jz =
1

2

1 0

0 −1


Then the rotation Hamiltonian HΩ can be written in terms of the jz operator as HΩ =

2Ωmvxy0jz. Thus, the propagator for the first dark zone can be expressed as

U(t) = e
− i

~
∫ t
tB

HΩ(t′)dt′

= e−
i
~2Ωmvxy0(t−tB)jz

(5.37)

Then at t = tC , the end of the first dark zone (time point C), we have

U(tC) = e−
i
~2Ωmvxy0(tC−tB)jz

= e−
i
~2Ωmvxy0Tjz

= e−
i
~ΩmAjz

= e−
iφ
2
jz

(5.38)
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where we have defined φ = 2mAΩ
~ . Eq. (5.38) implies, during the first dark zone, the upper

and lower arms will pick up a phase factor of e−iφ/4 and eiφ/4, respectively, resulting in a

phase difference of φ/2 between the two channels.

During the second dark zone, the states of the two arms are reversed due to the effects of

the π-pulse. Now the upper arm is in state |1〉, while the lower arm is in state |2〉. Following

the same convention as in the first dark zone, the spin-up and spin-down states are defined

as |↑〉 ≡ |2〉, |↓〉 ≡ |1〉, respectively. The matrix elements of HΩ are then given by

(HΩ)↓↓ = 〈↓|HΩ|↓〉 = −Ω( 〈1|x py|1〉 − 〈1|y px|1〉)(5.39a)

(HΩ)↑↑ = 〈↑|HΩ|↑〉 = −Ω( 〈2|x py|2〉 − 〈2|y px|2〉)(5.39b)

(HΩ)↓↑ = 〈↓|HΩ|↑〉 = 0(5.39c)

(HΩ)↑↓ = 〈↑|HΩ|↓〉 = 0(5.39d)

Similarly using the following equations for the second dark zone

〈1|x|1〉 = vx(t− tD)(5.40a)

〈2|x|2〉 = vx(t− tD)(5.40b)

〈1|y|1〉 = y0(5.40c)

〈2|y|2〉 = −y0 + vy(t− tD)(5.40d)
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and the identities in Eq.(5.35), we obtain

HΩ =

(HΩ)↑↑ (HΩ)↑↓

(HΩ)↓↑ (HΩ)↓↓



=

−Ωmvxy0 0

0 Ωmvxy0


(5.41)

which can be written in terms of the jz operator as HΩ = −2Ωmvxy0jz. Thus the propagator

for the second dark zone can be expressed as

U(t) = e
− i

~
∫ t
tD

HΩ(t′)dt′

= e
i
~2Ωmvxy0(t−tD)jz

(5.42)

Then at t = tE, the end of the second dark zone (time point E), we have

U(tC) = e
i
~2Ωmvxy0(tE−tD)jz

= e
i
~2Ωmvxy0Tjz

= e
i
~ΩmAjz

= e
iφ
2
jz

(5.43)

which implies, during the second dark zone, the upper and lower arms will again pick up a

phase factor of e−iφ/4 and eiφ/4, respectively, resulting in a phase difference of φ/2 between

the two channels.

Therefore, though the effect of the overall phase shift φ = 2mAΩ
~ due to rotation is

uniformly spread throughout the interferometric sequence, we can introduce it in two equal
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parts during each of the two dark zones, where the propagators for the first and second dark

zones are given by e−iφjz/2 and eiφjz/2, respectively.

Note that the above results are for each individual atomic system. For the atomic en-

semble, the total Hamiltonian due to rotation in the two dark zones can be obtained by

summing up the rotation Hamiltonian for each individual atom, which are

H1st
Ω = 2Ωmvxy0

N∑
i=1

(jz)i = 2Ωmvxy0Jz(5.44a)

H2nd
Ω = −2Ωmvxy0

N∑
i=1

(jz)i = −2Ωmvxy0Jz(5.44b)

where we have defined the collective spin operators: J = (Jx, Jy, Jz) =
∑N

i=1(j)i. The

propagators for the two dark zones are then given by e−iφJz/2 and eiφJz/2, respectively, with

φ = 2mAΩ
~ . Hence, for the ensemble, the effect of the overall phase shift φ = 2mAΩ

~ due to

rotation can still be introduced in two equal parts during each of the two dark zones.

5.4. Summary

In this chapter, we presented two models for deriving the Sagnac effect. For the relativistic

model, we showed that the Sagnac effect can be viewed as a geometric time delay due to

non-simultaneity of events under Lorentz transformation. This approach yields a differential

form of the time delay, which in turn can be be used to derive easily the Sagnac phase shift for

an interferometer of an arbitrary shape. For the quantum-mechanical mode, we showed that

despite the fact that the Sagnac effect is uniformly spread throughout the interferometric

sequence, we can introduce it in two equal parts during each of the two dark zones.
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CHAPTER 6

Schrödinger Cat Atomic Interferometers and Clocks

6.1. Introduction

In the previous chapters, we briefly mentioned that critical tuning of the one-axis-twist

(OAT) spin squeezing can be used to generate Schrödinger Cat (SC) states [73]. In this chap-

ter, we will investigate their applications to atomic interferometers and clocks. In particular,

we propose an experimentally-realizable protocol for implementing an atomic interferometer

(or clock) using SC states, which, in combination with particular detection schemes (col-

lective state detection or conventional detection), can enhance the measurement sensitivity

of the interferometer (or clock) from Standard Quantum Limit (SQL) up to the Heisenberg

Limit (HL), where the sensitivity scales ∝ 1/N , with N being the number of atoms in the

ensemble. We also show that for the conventional detection scheme, the proposed protocol

can make the interferometer (or clock) more robust against excess noise, by as much as
√
N ,

compared to other protocols proposed for atomic interferometers [22, 78].

6.2. Schrödinger Cat Atomic Interferometer

In order to illustrate clearly the mechanism for realizing the Schrödinger Cat Atomic

Interferometer (SCAIN), and the characteristics thereof, as well as to establish the nota-

tions employed in the rest of this chapter, it is useful to recall briefly the relevant features

of a Conventional Raman Atomic Interferometer (CRAIN) and a Collective State Atomic

Interferometer (COSAIN). In particular, we will describe them using the spin representation
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model of atomic ensembles developed in the previous chapter, instead of using direct product

states, as was done in Sec. 3.4. Furthermore, we will also evaluate the performance of the

interferometers as metrological devices by examining the phase fluctuations (PF) as well as

the measurement sensitivities Λ (where Λ = PF−1).

6.2.1. CRAIN and COSAIN in Spin Representation

A CRAIN makes use of N non-interacting identical three-level atoms with metastable hy-

perfine states |↓, pz = 0〉 and |↑, pz = ~k〉, (where k = k1 +k2, with k1 and k2 being the wave

numbers for the two counter-propagating beams, and pz being the z-component of the linear

momentum), and an excited state |e〉, in the Λ-configuration, reduced to an equivalent two-

level model [61, 62], as shown in Fig. 3.3. Using the spin representation model developed in

Sec. 4.2, we can describe these atoms by a collective spin J =
∑N

l=1 jl = (Jx, Jy, Jz), where

jl = (jxl, jyl, jzl) represents the pseudospin-1/2 operator for each atom.

The ensemble is initially prepared in a CSS

(6.1) |−ẑ〉 ≡ |E0〉 =
N⊗
l=1

|↓l〉

where we have employed the notation that |ŵ〉 represents a CSS where the pseudo-spin of

each atom is aligned in the direction of the unit vector ŵ. Note that here the state |E0〉

corresponds to all pseudospins in the −ẑ direction. As such, we will refer to the collective

state basis containing |E0〉 as the Z-directed Dicke Collective States (ZDCSs). As needed,

we will also refer to XDCSs (YDCSs) for which |E0〉 corresponds to all pseudospins in the −x̂

(−ŷ) direction. Under a pulse sequence of π/2−dark−π−dark−π/2, each atom’s wavepacket

first separates into two components, then gets redirected and finally recombined to produce
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an interference which is sensitive to any phase difference, φ, between the two paths, as

demonstrated in Fig. 3.3.

As an example, we consider the case where an atomic interferometer is rotating at a rate

ΩG about an axis normal to the area Θ enclosed by the two paths. From our analyses in

Chapter 5, the interferometer will accrue a phase difference of

(6.2) φ = 2ωcΘΩG/c
2

between its trajectories due to the Sagnac effect [76, 77], where ωc = mc2/~ is the Compton

frequency of the atom, m is the rest mass of the atom, c is the speed of light in vacuum and ~

is the reduced Planck constant. It should be noted that the effects of the overall phase shift

φ due to rotation is uniformly spread throughout the interferometric sequence. However, for

theoretical convenience, we introduce it in two equal parts during each of the dark zones (a

rigorous justification of this approach can be found in Ref. [75]). The final state of the atoms

can be written as a series of unitary transformations related to the corresponding collective

spins

|ψ〉 = e−i
π
2
Jxei

φ
2
Jze−iπJxe−i

φ
2
Jze−i

π
2
Jx |−ẑ〉

=
N⊗
l=1

−1

2
e−iφ/2{(1 + eiφ) |↓l〉+ i(1− eiφ) |↑l〉}(6.3)

In a CRAIN, the phase difference φ is measured by mapping it onto the operator rep-

resenting the difference in spin-up and spin-down populations: Jz = (N↑ − N↓)/2, where

N↑ = ΣN
l=1 |↑l〉 〈↑l| and N↓ = ΣN

l=1 |↓l〉 〈↓l|. The signal, which is a measure of the population
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of the |↓〉 state is, therefore, SCRAIN = J+〈−Jz〉 = N cos2(φ/2), where J = N/2. The corre-

sponding fringe linewidth is given by % = c2/(2ωcΘ). The measurement process causes wave-

function collapse of the individual spins from the superposition state to |↓〉, resulting in quan-

tum projection noise in the measure of the signal [79], ∆SCRAIN = ∆(Jz) =
√
N/4 sin(φ),

where ∆Jz is the standard deviation of Jz. Assuming ideal quantum efficiency, the Quantum

Fluctuation in Rotation (QFR) is given by ∆ΩG

∣∣
CRAIN

= |∆(Jz)/∂ΩG 〈Jz〉| = c2/2ωCΘ
√
N ,

where ∂ΩG ≡ ∂/∂ΩG.

The COSAIN differs from a CRAIN in that the measurement of the signal is done

on a Dicke collective state of the ensemble, instead of a single atomic state [64]. The

Dicke collective states are eigenstates of Jz and can be represented as |En, pz = n~k〉 =

Σ
(Nn)
l=1 Pk

∣∣↓N−n ⊗ ↑n〉 /√(N
n

)
, where Pk is the permutation operator [57]. As a result of the

first π/2-pulse, the initial state |E0, pz = 0〉 is coupled to |E1, pz = ~k〉, which in turn is

coupled to |E2, pz = 2~k〉, and so on, all the way up to |EN , pz = N~k〉. This causes the

ensemble to split into N + 1 trajectories. The dark zone that immediately follows im-

parts a phase einφ/2 to |En〉. At this point, the π-pulse generates a flip in the individual

spins, causing |En〉 to become |EN−n〉, and vice versa. The second dark-zone lends a phase

ei(0.5N−n)φ to |En〉. The mathematical derivation of this mechanism is discussed in detail

in Ref. [64]. The last π/2-pulse causes each of the collective states to interfere with the

rest of the states. The COSAIN can, thus, be viewed as an aggregation of interference

patterns due to
(
N+1

2

)
interferometers working simultaneously. The narrowest constituent

signal fringes are derived from interferences between states with the largest difference in

phase, i.e. |E0〉 and |EN〉. The width of this fringe is %/N . The widths of the rest of the

signal components range from % to %/(N − 1). The signal, which is the measure of popu-

lation of |E0〉, is the result of the weighted sum of all the pairwise interferences with this
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state. This is detected by projecting the final state of the ensemble, |ψ〉 on |E0〉. Thus,

SCOSAIN = 〈G〉 = cos2N(φ/2), where G ≡ |E0〉〈E0|. The quantum projection noise is the

standard deviation of G, given by ∆SCOSAIN = cosN(φ/2)
√

1− cos2N(φ/2). The QFR of

the COSAIN is thus, ∆ΩG

∣∣
COSAIN

= |∆G/∂ΩG 〈G〉| . Under quantum noise limited oper-

ation, this equals (∆ΩG

∣∣
CRAIN

/
√
N)|
√

sec4J(φ/2)− 1/ tan(φ/2)|. Therefore, for ΩG → 0,

the rotation sensitivity of the COSAIN is same as that of a CRAIN, which is the standard

quantum limit (SQL), assuming all the other factors remain the same.

6.2.2. Protocols for Realizing the SCAIN

Figure 6.1. (a) Schematic illustration of the pulse sequence employed for
a CRAIN. (b) Schematic illustration of the pulse sequence employed for a
SCAIN. In addition to the usual π/2-π-π/2 pulses (colored in red for both (a)
and (b)), a SCAIN employs four more pulses compared to a CRAIN, labeled
as 2, 3, 5, 6 in (b), corresponding to the squeezing, rotation, inverse rotation
and unsqueezing operations in the protocols for realizing the SCAIN.

The analyses for the COSAIN above implies that one way of surpassing the SQL is to

suppress the contribution of the constituent fringes broader than %/N . This is precisely what
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happens in a SCAIN, which employs critically-tuned one-axis-twist (OAT) spin squeezing

and a rotation to generate a Schrödinger Cat state corresponding to an equal superposition

of |E0〉 and |EN〉 [80], such that interferences happen only between these two extremal

collective states leading to the largest phase difference and the narrowest signal fringes.

The complete pulse sequence employed for a SCAIN is illustrated in Fig. 6.1, along with

that for a CRAIN. Explicitly, we apply OAT spin squeezing around the ẑ axis (defined as the

spin-up direction) immediately following the first π/2-pulse in a CRAIN, which aligns the

mean spin vector along the ŷ axis. Prior to the application of the squeezing interaction, the

population of the collective states follow a binomial distribution, corresponding to a Coherent

Spin State (CSS). As the strength of squeezing is increased, the distribution begins to flatten

out, eventually generating a Schrödinger cat state corresponding to an equal superposition

of |E0〉 and |EN〉 when the OAT is followed by an auxiliary rotation of π/2 around the x̂ or

ŷ axis, depending on the parity of N . The usual dark-π-dark sequence follows, at the end of

which we apply a corrective rotation of π/2 around the same axis as the previous auxiliary

rotation, and then apply a corrective reverse-OAT interaction about the ẑ axis. Finally, the

last π/2 pulse effectuates interference between the collective states, and the signal is detected

by measuring the population of either one of the collective states or one of the individual

atomic states. Since the process makes use of a superposition of two mesoscopic quantum

states, we name this a Schrödinger Cat Atomic Interferometer (SCAIN).

Due to the exotic behaviors of the states after the OAT squeezing, the SCAIN can be

operated under two different protocols, which differ by the choice of the axis around which

we apply the auxiliary rotation (and the following corrective rotation) that maximizes the

degree of observed squeezing. In one case (Protocol A), the rotation is around the x̂ axis

while in the other (Protocol B), the rotation is around the ŷ axis. Protocol A will be optimal
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when N is even while Protocl B will be optimal when N is odd. For both protocols, the

exact state evolutions of the atomic ensemble depend on the choices of a set of parameters,

including the value (and parity) of N , the squeezing parameter µ for the OAT squeezing,

the auxiliary rotation axis (ARA, x̂ axis for Protocol A, ŷ axis for Protocol B) around

which to implement the rotation, the corrective rotation sign ξ which can take values of ±1

corresponding to redoing or undoing the first auxiliary rotation, and lastly the dark zone

phase shift φ. Next we will demonstrate the state evolutions of the atomic ensemble at each

stage of the two protocols using Husimi Quasi Probability Distributions (QPDs).

Figure 6.2. The QPDs at different stages of Protocol A, for even N = 40,
µ = π/2, ARA = x̂, ξ = −1 and φ = 0.5π/N .

6.2.2.1. Protocol A. We distinguish the two cases when N is even and when N is odd. For

either case, in illustrating the nature of the QPDs at various stages, we have used different

orientations of the Bloch sphere as suited, and added ± symbols in front of two axes to

indicate that the picture looks the same when it is rotated by 180◦ around the third axis.

The even case is shown in Fig. 6.2, where we have N = 40, µ = π/2, ARA = x̂, ξ = −1

and φ = π/80. At the start (point A), the system is in state |−ẑ〉. After the first π/2

pulse (point B), the state rotates around the x̂ axis to reach state |ŷ〉. We then apply a
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squeezing Hamiltonian of the form HOAT = χJ2
z for a duration of τ such that µ = χτ .

After the squeezing pulse (point C), the state is split equally between two CSSs, and can

be expressed as (|ŷ〉 − η |−ŷ〉)/
√

2 [1, 81], where η = i(−1)N/2, representing a phase fac-

tor with unity amplitude. This is a SC state, but as a superposition of the two extremal

states of the YDCS manifold, which cannot be used to achieve phase magnification, since

the phase difference between the two arms corresponds to rotation around the ẑ axis. This

problem is solved by applying an auxiliary rotation of π/2 around the x̂ axis, which trans-

forms this state to (|−ẑ〉 + η |ẑ〉)/
√

2. This (point D) represents the desired SC state, as

a superposition of the two extremal states of the ZDCS manifold: (|E0〉 + η |EN〉)/
√

2.

After the first dark zone (point E), the state is e−iφJz/2(|E0〉L + η |EN〉U)/
√

2, where the

subscript L (U) is for the lower (upper) arm of the interferometer (the total phase shift

φ is split equally in the two dark zones [75]). Since both |E0〉 and |EN〉 are eigenstates

of Jz, with eigenvalues of −N/2 and N/2 respectively (~ = 1), this state can be simpli-

fied to
(
eiφN/4 |E0〉L + e−iφN/4η |EN〉U

)
/
√

2. The resulting QPD remains unchanged but the

quantum state incorporates these phase accumulations. After the π-pulse (point F), |E0〉L

becomes −i |EN〉L while |EN〉U becomes −i |E0〉U . After the second dark zone (point G), the

state is
(
eiφN/2η |EN〉L + e−iφN/2 |E0〉U

)
/
√

2, so that the net phase difference between the two

paths isNφ, thus magnifying the rotation induced phase by a factor ofN . To reveal the phase

magnification, we apply another auxiliary rotation (i.e., the corrective rotation) by an angle of

−π/2 around the x̂ axis (point H), followed by the unsqueezing Hamiltonian−HOAT (point I).

After the second π/2 pulse (point J) the state is |Ψ〉f = cos(Nφ/2) |E0〉− η sin(Nφ/2) |EN〉.

The odd case is shown in Fig. 6.3, where we have N = 41, µ = π/2, ARA = x̂, ξ = −1

and φ = π/4. The state evolutions from A to B will be the same as the even case. However,

the state after the OAT squeezing is drastically different. Since N is odd, HOAT transforms
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Figure 6.3. The QPDs at different stages of Protocol A, for odd N = 41,
µ = π/2, ARA = x̂, ξ = −1 and φ = π/4.

|ŷ〉 to (|x̂〉 + η |−x̂〉)/
√

2, where η = i(−1)(N+1)/2, representing a phase factor with unity

amplitude. This state, illustrated in the QPDs at time point C, also represents an SC state,

as a superposition of two extremal collective states, but in terms of the XDCSs. Now the

application of the auxiliary rotation by π/2 around the x̂ axis from C to D leaves the QPD

unchanged. The rotation in the first dark zone by an angle of φ/2 around the ẑ axis (D to

E) moves the QPD in the x-y plane on both sides, as shown at time point E. This rotation

is inverted by the π pulse from E to F. The rotation in the second dark zone by an angle

of −φ/2 around the ẑ axis (F to G) moves the QPD in the x-y plane further on both sides,

as shown at time point G. This is followed by a rotation of −π/2 around the x̂ axis from

G to H. The unsqueezing pulse turns the QPD distribution into four lobes in the y-z plane,

as shown at time point I. The final π/2 pulse rotates this pattern by 90◦, but still with a

four-lobed pattern in the y-z plane, as shown at time point J.
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For both cases, the whole protocol can be represented as a series of unitary transforma-

tions

(6.4) |Ψ〉f,A = e−i
π
2
JxeiµJ

2
z e−iξ

π
2
Jxei

φ
2
Jze−iπJxe−i

φ
2
Jze−i

π
2
Jxe−iµJ

2
z e−i

π
2
Jx |−ẑ〉

which can be used to numerically compute the state evolutions for an arbitrary value of φ.

Figure 6.4. The QPDs at different stages of Protocol B, for odd N = 41,
µ = π/2, ARA = ŷ, ξ = −1 and φ = 0.5π/N .

6.2.2.2. Protocol B. Here again we distinguish the two cases when N is even and when

N is odd. The odd case is shown in Fig. 6.4, where we have N = 41, µ = π/2, ARA = ŷ,

ξ = −1 and φ = π/82. The state evolutions from A to C resemble that of the odd case for

Protocol A. From C to D, with ARA = ŷ, the auxiliary rotation now will take the SC state

from the XDCS manifold to the ZDCS manifold, yielding the desired SC state at time point

D. The evolutions from D to G will be the similar to that of the even case for Protocol A.

From G to H, the corrective rotation transforms the SC state from ZDCS manifold to the

XDCS manifold, and then the unsqueezing interaction transforms it to the YDCS manifold.

After that, the evolution again will be similar to that of the even case for Protocol A.
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Figure 6.5. The QPDs at different stages of Protocol B, for even N = 40,
µ = π/2, ARA = ŷ, ξ = −1 and φ = π/4.

The even case is shown in Fig. 6.5, where we have N = 40, µ = π/2, ARA = ŷ, ξ = −1

and φ = π/4. The state evolutions from A to C resemble that of the even case for Protocol A.

From C to D, with ARA = ŷ, the auxiliary rotation now will leave the SC state unchanged.

The rest part of the evolutions will be the similar to that of the odd case for Protocol A,

where the QPD will develop into into four lobes at the end of the protocol.

Again for both cases, the whole protocol can be represented as a series of unitary trans-

formations

(6.5) |Ψ〉f,B = e−i
π
2
JxeiµJ

2
z e−iξ

π
2
Jyei

φ
2
Jze−iπJxe−i

φ
2
Jze−i

π
2
Jye−iµJ

2
z e−i

π
2
Jx |−ẑ〉

which can be used to numerically compute the state evolutions for an arbitrary value of φ.

6.2.3. Detection Scheme for the SCAIN

As mentioned ealier, there are two detection schemes for the SCAIN. We can measure either

the population of the collective state |E0〉, corresponding to detection of 〈G〉 = 〈|E0〉〈E0|〉,
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or the population of individual atomic states, corresponding to detection of 〈Jz/~〉. The

former is referred as collective state detection (CSD) scheme while the latter is referred to as

conventional detection (CD) scheme. The SCAIN in combination with CSD scheme is then

referred to as CSD-SCAIN, and the SCAIN in combination with CD scheme is referred to as

CD-SCAIN. Next we will show the signal finges for these two detection schemes for various

scenarios.

6.2.3.1. Signal Fringes for CSD-SCAIN with µ = π/2. We first look at the signals

for the CSD-SCAIN and focus on the special case where the squeezing parameter µ =

π/2 (this is the condition for generating SC states after the OAT squeezing operation).

The signals for this case can be obtained by directly taking the expectation value of the

operator G = |E0〉〈E0| with respect to |Ψ〉f,A for Protocol A, or |Ψ〉f,B for Protocol B.

The final expression depends on the parity of N . For Protocol A, the result is found to be

〈Ψf,A|G|Ψf,A〉 = sin2(Nφ/2) when N is even, and vanishes when N is odd (the exact reasons

for that are not manifestly obvious due to the complexity of the states, but can be verified

via simulations). The results of this case for both parities are illustrated in the left subplots

of Fig. 6.6. For Protocol B, the result is found to be 〈Ψf,B|G|Ψf,B〉 = sin2(Nφ/2) when N

is odd, and will be similar to that of a COSAIN when N is even. The results of this case for

both parities are shown in the right subplots of Fig. 6.6. For both protocols, it can be seen

clearly that the fringes will be narrowed by a factor of N for one of the parities compared

to that of a CRAIN (
√
N narrower than that of a COSAIN).

6.2.3.2. Fringe shapes for CSD-SCAIN with various µ values. We next look at the

signals for the CSD-SCAIN for various values of the squeezing parameter µ ranging from 0

up to π/2. Again the signals for this case can be obtained by directly taking the expectation

value of the operator G = |E0〉〈E0| with respect to |Ψ〉f,A for Protocol A, or |Ψ〉f,B for



127

Figure 6.6. Signals for CSD-SCAIN corresponding to detection of 〈G〉 =
〈|E0〉〈E0|〉, as a function of φ, for µ = π/2 and ξ = +1. Left subplots are
for protocol A with ARA = x̂ and right subplots are for protocol B with
ARA = ŷ. In each subplots, N = 40 is red while N = 41 is dashed-blue. (a)
Fringes for COSAIN for comparison; (b) Fringes for CSD-SCAIN; (c) Zoomed-
in fringes for CSD-SCAIN. The horizontal span in (c) is 10 times smaller than
those in (a) and (b).

Protocol B. Unlike the special case discussed above, we don’t have an analytical expression

for the final results, but they can be simulated numerically. The results for Protocal A and

for both parities are illustrated in the left subplots of Fig. 6.7, while those for Protocol B are

shown in the right subplots of Fig. 6.7. It can be seen that for both protocols, the central

fringes shrink as the squeezing parameter increases.

6.2.3.3. Signal Fringes for CD-SCAIN with µ = π/2. We now turn to the signals

for the CD-SCAIN and again first focus on the special case where the squeezing parameter

µ = π/2. The signals for this case can be obtained by directly taking the expectation value

of the operator Jz/~ with respect to |Ψ〉f,A for Protocol A, or |Ψ〉f,B for Protocol B. The

final expression again depends on the parity of N . For Protocol A, the result is found to be

〈Ψf,A|Jz/~|Ψf,A〉 = −N/2 cos(Nφ) when N is even, and will be similar to that of a COSAIN

when N is odd. The results of this case for both parities are illustrated in the left subplots
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Figure 6.7. Fringe shapes for CSD-SCAIN for different values of the squeezing
parameter µ with ξ = +1. Left subplots are for protocol A with ARA = x̂ and
right subplots are for protocol B with ARA = ŷ. In each subplots, N = 40 is
red while N = 41 is dashed-blue. (a) µ = 0; (b) µ = 0.021π; (c) µ = π/8; (d)
µ = π/4; (e) µ = 3π/8; (f) µ = π/2.

of Fig. 6.8. For Protocol B, the result is found to be 〈Ψf,B|Jz/~|Ψf,B〉 = −N/2 cos(Nφ)

when N is odd, and will be similar to that of a COSAIN when N is even. The results of

this case for both parities are shown in the right subplots of Fig. 6.8. For both protocols, it

can be seen clearly that the fringes will be narrowed by a factor of N for one of the parities

compared to that of a CRAIN (
√
N narrower than that of a COSAIN).

6.2.3.4. Fringe shapes for CD-SCAIN with various µ values. Lastly we look at the

signals for the CD-SCAIN for various values of the squeezing parameter µ ranging from 0

up to π/2. Again the signals for this case can be obtained by directly taking the expectation

value of the operator 〈Jz/~〉, with respect to |Ψ〉f,A for Protocol A, or |Ψ〉f,B for Protocol

B. Unlike the special case discussed above, we don’t have an analytical expression for the

final results, but they can be simulated numerically. The results for Protocal A and for both

parities are illustrated in the left subplots of Fig. 6.9, while those for Protocol B are shown

in the right subplots of Fig. 6.9. It can be seen that for both protocols, the central fringes

shrink as the squeezing parameter increases.
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Figure 6.8. Signals for CD-SCAIN corresponding to detection of 〈Jz/~〉, as
a function of φ, for µ = π/2 and ξ = +1. Left subplots are for protocol A
with ARA = x̂ and right subplots are for protocol B with ARA = ŷ. In
each subplots, N = 40 is red while N = 41 is dashed-blue. (a) Fringes for
CRAIN for comparison; (b) Fringes for CD-SCAIN; (c) Zoomed-in fringes for
CD-SCAIN. The horizontal span in (c) is 10 times smaller than those in (a)
and (b).

Figure 6.9. Fringe shapes for CSD-SCAIN for different values of the squeezing
parameter µ with ξ = +1. Left subplots are for protocol A with ARA = x̂ and
right subplots are for protocol B with ARA = ŷ. In each subplots, N = 40 is
red while N = 41 is dashed-blue. (a) µ = 0; (b) µ = 0.021π; (c) µ = π/8; (d)
µ = π/4; (e) µ = 3π/8; (f) µ = π/2.
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6.2.4. Measurement Sensitivities for the SCAIN

After examining the signals of the SCAIN for various cases, we now switch to the measure-

ment sensitivities of the two protocols. In Fig. 6.10, we show the QFR−1 ≡ |∂ΩG 〈Jz〉 /∆(Jz)|

of the SCAIN as a function of the squeezing parameter µ, normalized to the HL. The top

two subplots are for Protocol A, while the bottom two subplots are for Protocol B. And

again we distinguish between the two cases when N is even and odd. The left two subplots

are for even N while the right two subplots are for odd N . Within each subplot, we compare

results for both the CSD and CD detection schemes.

For Protocol A, when N is even, the measurement sensitivities of both detection schemes

tend to increase with increasing squeezing parameter µ, and both eventually reach the HL

when µ = π/2. When N is odd, however, the measurement sensitivity of CSD scheme

vanishes (due to null signal for this case), and that of CD scheme first increases and then

plummets to SQL when µ = π/2. Therefore, Protocol A is optimal for the case when N

is even. In scenarios where N fluctuates randomly between even and odd (such as atoms

released from a MOT), the averaged measurement sensitivities (over the even and odd cases)

for both detection schemes at µ = π/2 will be lower than the HL by a factor of
√

2.

For Protocol B, we have almost the opposite effects. when N is odd, the measurement

sensitivities of both detection schemes tend to increase with increasing squeezing parameter

µ, and both eventually reach the HL when µ = π/2. When N is even, however, the mea-

surement sensitivity of both schemes first increase and then plummet to SQL when µ = π/2.

Therefore, Protocol B is optimal for the case when N is odd, and in scenarios where N

fluctuates randomly between even and odd, the averaged measurement sensitivities for both

detection schemes at µ = π/2 again will be lower than the HL by a factor of
√

2.



131

Figure 6.10. Illustration of QFR−1 for different cases, as a function of the
squeezing parameter µ, normalized to the HL (solid black line), for ξ = +1.
(a) and (b) are for Protocol A with N = 40 and N = 41, respectively, in
which red is for CD-SCAIN and dashed-blue for CSD-SCAIN; (c) and (d) are
for Protocol B with N = 40 and N = 41, respectively, in which red is for
CD-SCAIN and dashed-blue for CSD-SCAIN. The dotted black line shows the
SQL.

So far, we have presented the value of QFR−1 separately for odd and even values of N . In

certain cases, such as for a magnetometer using NVD, where it is possible to operate with a

fixed parity of N , the values of QFR−1 for a given parity is relevant. For other situation, such

as a clock using atoms cooled in a magneto-optical trap (MOT) and released for interrogation,

it is necessary to consider the effect of averaging over the two parities. In this case the average

value is given by QFR−1
AV E =

[
(QFR−1

EV EN)2/2 + (QFR−1
ODD)2/2

]1/2
. Using this result, we can

reach the following conclusions, assuming N � 1. If QFR−1
EV EN = QFR−1

HL and QFR−1
ODD =

0, then QFR−1
AV G = QFR−1

QHL, where we define QFR−1
QHL ≡ QFR−1

HL/
√

2 . Similarly, if

QFR−1
EV EN = QFR−1

HL and QFR−1
ODD = QFR−1

SQL, then QFR−1
AV G

∼= QFR−1
QHL. Finally, if

QFR−1
EV EN = QFR−1

QHL and QFR−1
ODD = QFR−1

QHL, then QFR−1
AV G = QFR−1

QHL.
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6.3. Schrödinger Cat Atomic Clock

As mentioned in the beginning of this chapter, the protocol consisting of one-axis-twist

(OAT) spin squeezing, rotation, unrotation, unsqueezing operations can also be used to

realize a Schrödinger Cat Atomic Clock (SCAC) with HL sensitivity. Again the protocol can

be combined with collective state detection or conventional detection schemes, where the

former is referred to as CSD-SCAC while the latter is referred to as CD-SCAC. In this section,

we will first review the features of a conventional Raman Ramsey Atomic Clock (RRAC)

and a Collective State Atomic Clock (COSAC) [58], then present the results obtained for

SCAC for both detection schemes.

6.3.1. Raman Ramsey Atomic Clock and Collective State Atomic Clock

Here we consider a system where the ground states, |1〉 and |2〉 of a three-level atom interact

with an excited state |3〉 via two copropagating laser beams (see Fig. 2.6). One of the beams

is detuned from resonance by δ1 and has a Rabi frequency Ω1; this couples |1〉 to |3〉. The

second beam is detuned from resonance by δ2 and has a Rabi frequency Ω2; this couples |2〉

to |3〉. For δ � Ω1, Ω2, Γ, where δ ≡ (δ1 + δ2)/2 and Γ is the excited state decay rate,

the system can be modeled as an effective two level system, consisting of states |1〉 and |2〉,

excited by a traveling wave with a Rabi frequency Ω = Ω1Ω2/(2δ), and detuning ∆ ≡ δ1−δ2.

For simplicity, we assume Ω1 = Ω2, and ∆ � δ, so that δ1 ' δ2. Under this condition, the

light-shifts experienced by states |1〉 and |2〉 are essentially the same, and do not affect the

equation of motion [82]. For more general cases, it is possible to incorporate any differences

in the light shifts into the definition of ∆.
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As in the case of the SCAIN discussed in the previous section, we denote states |1〉 and |2〉

as being the pseudo-spin states |↓〉 and |↑〉, respectively. In a conventional Raman Ramsey

atomic clock, an ensemble of N effective two-level atoms is first prepared in a coherent spin

state (CSS) where all spins are in the spin-down state, as shown in Eq. (6.1). The first π/2

pulse produces a rotation about the x̂ axis. During the dark zone with a duration of TD,

each atom acquires a phase φ = 2πfTD, where f = ∆/2π is the (two-photon) detuning of

the clock (in Hertz). Application of the second π/2 pulse around the x̂ axis produces the

final state, which, for each atom, can be expressed, ignoring an overall phase-factor, as:

|Ψ〉 = e−i
π
2
Jxe−iφJze−i

π
2
Jx |−ẑ〉

=
N⊗
l=1

1

2
{(1− eiφ) |↓l〉 − i(1 + eiφ) |↑l〉}

(6.6)

In a RRAC, typically the signal is a measure of the population of |↑〉, given by SRRAC =

J + 〈Jz〉 = N cos2(φ/2). The associated quantum projection noise is ∆SRRAC = ∆Jz =√
N/4|sinφ|. The stability of the clock is attributed to the quantum fluctuation in frequency

(QFF), analogous to the QFR described in the previous section. This can be expressed as

QFF = ∆f |RRAC = |∆(Jz)/∂f 〈Jz〉| = (2πTD
√
N)−1, where ∂f ≡ ∂/∂f . This can also be

expressed as ∆f |RRAC = γ/
√
N , where γ = 1/(2πTD) is the effective linewidth. This is, of

course, the SQL value of the QFF.

In a COSAC, however, the signal is a measure of the population of one of the extremal

collective states and is given by SCOSAC = 〈Q̂〉 = cos2N(φ/2), where Q̂ ≡ |EN〉〈EN |. This

signal shows a
√
N -fold reduction in fringes compared to that of a RRAC, which can be

explained as follows. The first π/2 pulse couples the initial state |E0〉 to |E1〉, which in turn

is coupled to |E2〉 and so on, effectively causing the ensemble to split into N+1 states. During
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the dark zone, the n-th collective state |En〉 picks up a phase e−inφ. When the ensemble

interacts with the last π/2 pulse, each of the collective states interferes with the rest of the

collective states. The COSAC can thus be viewed as the aggregation of interference patterns

due
(
N+1

2

)
RRAC’s working simultaneously [58]. The narrowest constituent signal fringes

are derived from interferences between states with the largest difference in phase, i.e. |E0〉

and |EN〉; the width of this fringe is γ/N . The width of the rest of the signal components

range from γ to γ/(N − 1). The signal, which is the measure of population of |EN〉, is the

result of the weighted sum of all the pairwise interferences, with a width of γ/
√
N . However,

the system acts as a single particle, which reduces the effective SNR by the factor of
√
N .

As a result, we have shown that the QFF for the COSAC is essentially the same as that for

the RRAC [58].

From the analyses above, if the evolution of the system could be restricted to just the two

extremal Dicke states (namely, |E0〉 and |EN〉) during the dark zone evolution, the fringes

would be narrowed by a factor of N compared to those of the RRAC. In that case, the QFF

would be enhanced by a factor of
√
N , thus reaching the HL sensitivity. As noted at the

beginning of this chapter, the process of OAT squeezing indeed can be used to create just

such a Schrödinger Cat (SC) state if the degree of squeezing is chosen to be µ = π/2, and

an auxiliary rotation of π/2 is applied along a particular axis after the squeezing pulse. The

resulting clock is then referred to as the SCAC.

6.3.2. The Complete Protocol for Realizing the SCAC

The complete pulse sequence employed for a SCAC is illustrated in Fig. 6.11. Everything

else is the same as that used for a RRAC, except for the four additional pulses necessary for

implementing the OAT spin squeezing effects. The process starts by applying a π/2 pulse
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around the x̂ axis. This is followed by the application of OAT, corresponding to a rotation

around the ẑ axis by an angle of µJz, with µ = π/2. The next step is an auxiliary rotation of

π/2 around the x̂ axis. The ensuing evolution in the dark zone corresponds to a rotation by

φ around the ẑ axis, where φ = 2πfTD. This is now followed by another auxiliary rotation

around the x̂ axis, by an angle of ξπ/2. This is followed by an unsqueezing pulse, which

corresponds to a rotation around the ẑ axis by an angle of −µJz, with µ = π/2. Finally, the

process ends with the application of the final π/2 pulse around the x̂ axis. Mathematically,

the whole process can thus be expressed as:

(6.7) |Ψ〉f = e−i
π
2
JxeiµJ

2
z e−iξ

π
2
Jxe−iφJze−i

π
2
Jxe−iµJ

2
z e−i

π
2
Jx |−ẑ〉

Figure 6.11. Schematic illustration of the pulse sequence employed for a SCAC.
In addition to the usual two π/2 pulses (labeled as 1, 6) used in a RRAC, a
SCAC employs four more pulses, labeled as 2, 3, 4, 5, corresponding to the
squeezing, rotation, inverse rotation and unsqueezing operations.

As in the case of the SCAIN, there are two equivalent protocols for SCAC, where for

Protocol A, the auxiliary rotation is done around x̂ axis while for Protocol B, the auxiliary

rotation is done around ŷ axis. Again the exact effects of the protocol depend on a set of

parameters such as the value (and parity) of N , the squeezing parameter µ for the OAT spin

squeezing, the auxiliary rotation axis (ARA, can be x̂ or ŷ axes), the corrective rotation sign

ξ which can take values of ±1 corresponding to redoing or undoing the first auxiliary rotation,
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and lastly the dark zone phase shift φ. Since the two protocols are essentially equivalent,

here we are only showing the results for Protocol A. The evolution of the quantum states on

a Bloch sphere, using the QPDs, is illustrated in Fig. 6.12. The upper subplot is for even

N = 40, while the lower subplot is for odd N = 41.

Figure 6.12. The QPDs at different stages of Protocol A. The upper subplots
are for N = 40, µ = π/2, ARA = x̂, ξ = −1 and φ = 0.5π/N , while the lower
subplots are for N = 41, µ = π/2, ARA = x̂, ξ = −1 and φ = π/4.
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We first detail the evolution for the even case (upper subplot). At the onset of the

process (time point A), the system is assumed to be in the state |E0〉 = |−ẑ〉, which is a

CSS. After the first π/2 rotation around the x̂ axis (time point B), it is in state |ŷ〉. After the

squeezing pulse, the state (time point C) is split between two CSSs, and can be expressed as

(|ŷ〉 − η |−ŷ〉)/
√

2, , where η = i(−1)N/2, representing a phase factor with unity amplitude.

This factor depends on the super even parity (SEP). However, the shapes of the fringes, as

well as the values of QFF−1, for both CSD and CD protocols, are not expected to depend

on the value of the SEP, as we have verified explicitly. Application of the auxiliary rotation

of π/2 around the x̂ axis transforms this state to (|−ẑ〉 + η |ẑ〉)/
√

2. This (time point D)

represents the desired SC state, as a superposition of the two extremal states of the ZDCS

manifold: (|E0〉+η |EN〉)/
√

2. During the dark zone, the phase shift causes a rotation by an

angle of φ around the ẑ axis, for each atom. The state after the dark zone can be expressed

as e−iφJz(|E0〉+ η |EN〉)/
√

2. Since both |E0〉 and |EN〉 are eigenstates of the Jz operator,

with eigenvalues (assuming ~ = 1) of −N/2 and N/2 respectively, this state can be expressed

as
(
eiφN/2 |E0〉+ e−iφN/2η |EN〉

)
/
√

2. The resulting QPD, shown at time point E of Fig. 6.12,

remains unchanged, but the quantum state incorporates these phase accumulations. In order

to reveal the interference magnified by the factor of N , it is necessary to apply first another

auxiliary rotation, by an angle of ξπ/2 around the x̂ axis. The QPD resulting from the case

for ξ = −1 is shown at time point F. It is then necessary to apply the unsqueezing pulse,

by an angle of −µJz, with µ = π/2. The QPD of the resulting state is shown at time point

G. Finally, it is necessary to apply one more rotation around the x̂ axis, by an angle of π/2.

The QPD for the final state is shown at time point H.

For this case, the final state can be expressed as |Ψ〉f = η cos(Nφ/2) |EN〉+sin(Nφ/2) |E0〉.

For the particular value of φ (which is 0.5π/N) used in generating the QPDs, the final state is
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(η |EN〉+ |E0〉)/
√

2. If the population of |EN〉 were detected, the signal would be expressed

as cos2(Nφ/2), with fringes that are a factor of N narrower than that for the RRAC. This

is referred to as CSD-SCAC, which is discussed in Ref. [74]. If we choose to measure the

expected value of the operator Jz/~, the same results hold, and the corresponding type of

SCAC is referred to as CD-SCAC.

We then look at the evolution for the odd case (lower subplot). The state after the OAT

squeezing is found to be very different, which is SC state as a superposition of two extremal

collective states, but in terms of the XDCSs. Now the application of the auxiliary rotation

by π/2 around the x̂ axis from C to D leaves the QPD unchanged. The rest evolutions then

will be drastically different, as can be seen from time point D to H.

6.3.3. Signal Fringes for the SCAC

In Fig. 6.13, the signal fringes for the SCAC using Protocol A are plotted as a function

of φ. Left subplots are for Collective State Detection scheme, while right subplots are for

Conventional Detection scheme. For both detection schemes, we can clearly see the N -fold

reduction in fringe width.

6.3.4. QFF−1 for the SCAC

In Fig. 6.14, we illustrate the behavior of QFF−1 ≡ |∂f 〈Jz/∆(Jz)〉| , as a function of µ,

for Protocol A with ξ = +1, along with comparison with the Echo Scueezing Protocol

(ESP) [22, 24]. In each case, the QFF−1 is normalized to the QFF−1
HL for N = 40, indicated

as the solid black line. The dashed black line shows the QFF−1
SQL for N = 40.

Fig. 6.14 (a) corresponds to N = 40. Here, the red line corresponds to the CD-SCAC,

and the dashed-blue line is for the CSD-SCAC. For µ = π/2, we see that the sensitivity for



139

Figure 6.13. Signals corresponding to detection of 〈Jz/~〉, as a function of φ
for Protocol A with µ = π/2 and ξ = +1. Left subplots are for Collective
State Detection scheme, while right subplots are for Conventional Detection
scheme. In each subplots, N = 40 is red while N = 41 is dashed-blue. For left
subplots: (a) Fringes for COSAC for comparison; (b) Fringes for CSD-SCAIN;
(c) Zoomed-in fringes for CSD-SCAIN. For right subplots: (a) Fringes for
RRAC for comparison; (b) Fringes for CD-SCAIN; (c) Zoomed-in fringes for
CD-SCAIN. For both detection schemes, the horizontal span in (c) is 10 times
smaller than those in (a) and (b).

Figure 6.14. Illustration of QFF−1 for Protocol A, as a function of the squeez-
ing parameter µ, normalized to the HL (solid black line). (a) The case for even
N = 40; (b) The case for odd N = 41. The dotted black line shows the SQL.
Red is for CD-SCAC, dashed-blue for CSD-SCAC and green for the ESP case.
For all cases shown, ξ = +1.
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both CD and CSD protocols yield the HL sensitivity. This sensitivity is reached due to an

amplification of phase by a factor of N , and a concomitant increase in the SD by a factor of

√
N . Fig. 6.14 (b) is the same as Fig. 6.14 (a), except that N = 41. In this case, µ = π/2, for

the CD-SCAC, there is a phase amplification, manifested as a Fabry-Perot like fringe around

φ = 0 which is narrowed by a factor of
√
N , along with an increase in the square-root of

the variance by a factor of
√
N . The difference between the even and odd cases disappears

when the value of µ is reduced below a threshold value of ∼ 0.45π. There is a range of

values of the squeezing parameter (0.2π ≤ µ ≤ 0.45π) over which the normalized value of

QFF−1 is ∼ 0.71 for the CD-SCAC. We have verified that this plateau ratio between QFF−1

and QFF−1
HL remains unchanged when N is increased or decreased. We also see that, for this

choice of the ARA, the behavior of the CSD-SCAC is drastically different. Specifically, for

odd values of N , the QFF−1 is strictly zero for all values of the squeezing parameter, and

for even value of N , the QFF−1 drops to zero quickly for µ < π/2.

So far, we have presented the value of QFF−1 separately for odd and even values of N . For

certain situations, such as a clock using atoms cooled in a magneto-optical trap (MOT) and

released for interrogation, it is necessary to consider the effect of averaging over the two pari-

ties. In this case the average value is given by QFF−1
AV E =

[
(QFF−1

EV EN)2/2 + (QFF−1
ODD)2/2

]1/2
.

Using this result, we can reach the following conclusions, assuming N � 1. If QFF−1
EV EN =

QFF−1
HL and QFF−1

ODD = 0, then QFF−1
AV G = QFF−1

QHL, where we define QFF−1
QHL ≡ QFF−1

HL/
√

2

. Similarly, if QFF−1
EV EN = QFF−1

HL and QFF−1
ODD = QFF−1

SQL, then QFF−1
AV G

∼= QFF−1
QHL.

Finally, if QFF−1
EV EN = QFF−1

QHL and QFF−1
ODD = QFF−1

QHL, then QFF−1
AV G = QFF−1

QHL.
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6.4. Comparison of Measurement Sensitivities for Various Protocols

In this section, we briefly review and compare the various protocols proposed for improv-

ing the measurement sensitivities of an atomic interferometer (AI). For an AI, the signal

S can be expressed as a function of the phase difference φ between the two arms. The

measurement sensitivity, Λ, can be expressed as the inverse of the phase fluctuation (PF):

Λ = PF−1 = |∂φS/∆S|, where ∂φ ≡ ∂/∂φ. Here, ∂φS is the phase gradient of the signal

(PGS), and ∆S is the standard deviation of the signal (SDS). When excess noise (EN) is

suppressed sufficiently, Λ is limited by the quantum projection noise (QPN) [79], and is

given by the inverse of the quantum phase fluctuation (QPF−1). Therefore, to enhance Λ,

one can either increase the PGS or decrease the SDS.

For a conventional AI, the sensitivity is at the Standard Quantum Limit (SQL): Λ =

QPF−1 =
√
N , which will serve as the baseline for other protocols. As we have shown, using

spin-squeezing, it is possible to surpass the SQL, and a key goal in this context is to achieve

the Heisenberg Limit (HL), under which Λ = N , representing an improvement by a factor

of
√
N .

In a conventional approach for spin squeezing, one minimizes the SDS. For example,

using optimal one-axis-twist (OAT) spin squeezing and two-axis-counter-twist (TACT) spin

squeezing [12], the SDS can be reduced respectively by a factor of N1/3 and
√
N/2, while

the PGS remains essentially unchanged, compared to those of a conventional AI. As such,

Λ = N5/6 for the former and Λ = N/
√

2 for the latter. Though the TACT squeezing can

yield a better sensitivity, it is experimentally more complicated than the OAT squeezing [15,

16, 24, 83, 84, 85, 86, 87].
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Recently [22, 24], it was shown that it is also possible to reach sensitivity at or near

the HL using variants of the OAT. Ref. [22] proposed and Ref. [24] demonstrated the echo

squeezing protocol (ESP), which can increase the PGS by a factor of ∼
√
N/2, while leaving

the SDS unchanged, thus producing Λ ≈ N/
√

2.

In the previous sections, we introduced the CSD-SCAIN [74] that makes use of critically

tuned OAT, rotation, inverse rotation and unsqueezing operations, in combination with

collective state detection scheme. The CSD-SCAIN reduces the SDS by a factor of
√
N ,

while leaving the PGS unchanged, yielding Λ = N .

We also described the CD-SCAIN protocol, which employs the conventional detection

scheme by measuring directly the populations of the spin-up or spin-down states of individual

atoms. Under this protocol, the PGS is increased by a factor of N , while the SDS is also

increased by a factor of
√
N . The net enhancement in Λ is by a factor of

√
N , reaching the

HL. However, because of the increase in noise (i.e., SDS), this is now significantly more robust

against excess noise than all the protocols described above. Specifically, for this protocol, it

should be possible to achieve Λ = N/
√

2 even when the excess noise is greater than the QPN

for a conventional AI by a factor of
√
N .

The degree of suppression of excess noise for different protocols is illustrated in Fig. 6.15.

Here, we consider a situation where excess noise contributes an additional variance, ∆S2
EN, to

the signal. The sensitivity is then given by Λ =
∣∣∣PGS/

√
∆S2

QPN + ∆S2
EN

∣∣∣ = ΛQPN/
√

1 + ρ2,

where ρ ≡ ∆SEN/∆SQPN. One way to characterize the degree of robustness against excess

noise is by determining the value of ∆SEN for which ρ = 1. As can be seen, for TACT,

this value is 1, making it particularly vulnerable to excess noise. In contrast, for ESP (as

well as for the conventional AI), this value is
√
N , making it a factor of

√
N more robust

than TACT. For CD-SCAIN, this value is N , making it a factor of
√
N (N) more robust



143

Figure 6.15. The sensitivity, Λ, as a function of excess noise (EN), ∆SEN, for
various protocols. For both CSD-SCAIN and CD-SCAIN, we have used two
labels: I and II; I indicates the case when the parity of N is known, while II
indicates the case where the signal is averaged over both parities.

than ESP (TACT). We also see that CSD-SCAIN is as sensitive to excess noise as TACT.

Thus, in switching from collective state detection to conventional detection, the robustness

of the SCAIN protocol to excess noise is improved by a factor of N . One can also define

the range of usefulness of a protocol as the value of ∆SEN for which the sensitivity drops to

Λ =
√
N/2. By this measure, the usefulness of CD-SCAIN extends to N3/2, while that for

ESP extends only to N . Ref. [78] presents a protocol that also makes use of OAT critically

tuned to the same degree as that employed by SCAIN. However, the usefulness of this also

extends only to N .
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6.5. Experimental Considerations for Realizing the SCAIN

In this section, we describe the experimental steps envisioned for realizing the SCAIN,

and discuss potential limitations. It should be noted that the discussions in this section

are also appliable to SCAC. The basic protocol is akin to that employed for the CRAIN,

with the addition of auxiliary rotations, one axis twist (OAT) squeezing and collective state

detection (CSD). In what follows, we first summarize briefly the experimental approach for

OAT squeezing and CSD that are well-suited for the SCAIN. This is followed by a discussion

of the complete protocol for the SCAIN. We discuss both Protocols A and B, but limit the

description to the case of µ = π/2. The case for µ < π/2 can be easily inferred from this

discussion.

There are several experimental schemes for realizing one-axis-twist squeezing [15, 16, 22,

23, 24, 40, 88, 89, 90, 91]. For concreteness, we consider here the approach based on cavity

feedback dynamics [15, 16, 22, 23, 24, 40]. In this approach, a probe is passed through a

cavity, at a frequency that is tuned halfway between the two legs of a Λ transition in which

the spin-up and spin-down states are coupled to an intermediate state. The cavity is tuned

to be below resonance for the probe. The energy levels of the spin-up and spin-down states

are light shifted due to the probe, in opposite directions. The resulting dispersion shifts

the cavity resonance frequency by an amount that is proportional to Jz, the z-component

of the total spin for all atoms. The intra-cavity probe intensity changes linearly with this

cavity shift, since it is on the side of the resonance, thus affecting the light-shifts. The net

result is an energy shift for all the atoms that is proportional to the square of Jz, so that

the interaction Hamiltonian can be expressed as HOAT = ~χJ2
z , where χ is a parameter that
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determines the strength of the squeezing process. Changing the sign of the cavity detuning

reverses the sign of the Hamiltonian, thus producing unsqueezing.

The collective state detection technique is detailed in section IV of Ref. [64], where

a null-detection scheme is employed to measure population of one of the extremal Dicke

collective states. The probe is one of the two counter-propagating Raman beams, which

induces Raman transitions within the atomic ensemble unless it is in the desired extremal

collective state. As a result, there will be photons emitted corresponding to the other leg

of the Raman transition. The probe and the emitted photons are combined and sent to a

high speed detector, which produces a dc signal along with a beat signal. This beat signal

is at the same frequency as that of the signal produced by the frequency synthesizer (FS)

that drives the Acousto-Optic Modulator (AOM), for example, used to generate the beam

that excites one leg of the Raman excitation from the beam that excites the other leg of

the Raman excitation, but with a potential difference in phase. To extract the amplitude,

the beat signal is bifurcated and one part is multiplied by the FS signal, while the other is

multiplied by the FS signal phase shifted by 90 degrees. The signals are then squared before

being recombined and sent through a low-pass filter (LPF) to derive a dc voltage. This dc

voltage is proportional to the number of scattered photons. A lower limit (ideally zero) is

set for the voltage reading, and any value recorded above it indicate the presence of emitted

photons. If no photon is emitted, the voltage will be at or below the limit, indicating that

the ensemble is in the desired extremal collective state; otherwise at least one photon will be

emitted and the ensemble will be in a combination of other collective states. This process is

then repeated many times for a given value of φ. The fraction of events where no photons

are detected will correspond to the signal for this value of φ. This process is then repeated

for several values of φ, producing the signal fringe.



146

For the complete SCAIN experiment, we assume that the source atoms, are caught in

a magneto-optic trap (MOT), followed by polarization gradient cooling and evaporative

cooling, to a temperature of about 0.5 µK, with a phase-space density less than what is

required for Bose-Einstein Condensation (BEC). The atoms are then pushed out, forming

a sequential beam of N atoms in each sequence. An initial (counter-propagating) Raman

pulse, corresponding to a rotation of π/2 around the x-axis, splits each atom, originally

in the spin-down state, into an equal super-position of spin-up and spin-down states. The

atoms then pass through a transverse ring cavity set up for OAT squeezing. The squeezing

process is carried out for a duration corresponding to µ = π/2, followed by an auxiliary

rotation (produced by another pair of Raman beams) by an angle of π/2 around the x-axis.

This creates the SC state, as a superposition of two extremal Dicke collective states: one

in which all atoms are in the spin-down state, and another in which all atoms are in the

spin-up state. The two components in the SC state get spatially separated during the first

dark zone evolution. This is followed by another Raman pulse which produces a rotation of

π around the x-axis. This pulse redirects the velocities of the two components. After the

second dark zone, another Raman pulse is applied for a duration that produces a rotation of

π/2 around the x-axis. This is followed by an unsqueezing pulse, of duration corresponding

to µ = −π/2, which is produced by sending the atoms through a second transverse ring

cavity, with a cavity detuning that is equal and opposite to the one applied in the first

cavity. After the unsqueezing, the final π/2 rotation around the x-axis, produced by another

Raman pulse, causes the two paths to interfere. The collective state detection process is

then used to determine the population of the atoms in the collective state in which all the

atoms in the spin-down state, representing the signal for the SCAIN, under Protocol A and

the limiting case of µ = π/2.
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For implementing Protocol B, for µ = π/2, the basic sequence is the same as what is de-

scribed above, with the following modifications. Note that, in the sequence described above,

there are five different pairs of Raman beams; three of these are used for the conventional

pulse sequences necessary for a CRAIN, while the other two are used for auxiliary rotations.

In the case of Protocol B, the auxiliary rotations are around the y-axis. The phase of the

beat signal between the two frequencies employed for Raman excitation determines the axis

of rotation. Thus, this phase for the two pairs of Raman beams used for the auxiliary ro-

tations has to be shifted by 90 degrees compared to the same for the three pairs of Raman

beams used for the CRAIN pulse sequence. To see how this phase shift can be produced, we

note that (as also mentioned in the discussion for the CSD above) for each pair of Raman

beams, we start with a laser beam at a frequency that excites one leg of the Λ transition.

The second laser frequency, which excites the other leg of the Λ transition, is produced by

shifting the frequency of a piece of the first laser beam by passing it through an AOM, for

example. The frequency that drives the AOM is generated from an FS. Thus, to generate

the phase shift needed for Protocol B, we lock the difference between the phase of the FS

used for the auxiliary Raman beams and that of the FS used for the CRAIN Raman beams

to a value of 90 degrees. As a result, the auxilary Raman beams will produce rotations of

π/2 around the y-axis, as needed for Protocol B.

To elucidate potential practical limitations in implementing the SCAIN protocol exper-

imentally, as envisioned above, consider first the situation where the OAT squeezing and

unsqueezing processes are ideal. In that case, the relevant issues pertain to the potential im-

perfections in generating the ideal collective states. In references [57] and [64], we discussed

the issues that are relevant in this context, and how these issues may limit the performance

of the COSAIN. Essentially the same issues are expected to constrain the performance of
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the SCAIN. In what follows, we summarize the findings of the analysis presented in these

two references [57, 64], in the context of the SCAIN, using 87Rb atoms for specificity. First,

we noted that for a Raman excitation based atomic interferometer (such as the COSAIN

and the SCAIN), the collective states must be defined in a manner so that the spin-down

state represents the atom being in the ground state of the internal energy, and in a mo-

mentum eigenstate of the center-of-mass (COM) motion, and the spin-up state represents

the atom being in a higher-energy but metastable internal state, and in another momentum

eigenstate of the COM motion. Since the atom is in a wavepacket with respect to the COM

motion, the spin-down state, for example, is in a superposition of momentum eigenstates.

Similarly, the spin-up state is also in a superposition of momentum eigenstates, even if we

assume that the two-photon recoil imparted by the Raman beams is exactly the same for

each atom. In Section 4 of reference [57], we addressed this issue explicitly, and showed

that if the effective Rabi frequency of the off-resonant Raman transition (i.e., the Raman

Rabi frequency) is much larger than the Doppler shift due to the COM momentum of each

of the constituent plane waves in the ground state wavepacket, then the description of the

semi-classical collective states (which ignores the COM motion), as employed here and in

virtually all descriptions of collective states in the literature, remains valid. For the temper-

ature of 0.5 µK mentioned above for the SCAIN, it should easily be possible to realize an

effective Rabi frequency large enough to satisfy this condition.

Second, we considered the effect of the variations in the intensity profiles of the laser

beams, which in turn cause variations in the Raman Rabi frequency. The effect of this

inhomogeneity can be mitigated by increasing the ratio, ρ, of the diameter of the Raman

beams to the diameter of the atomic cloud. For ρ = 10, the upper bound of the useful value of

N was found to be ∼ 1.2× 105. Third, we considered the effect of the velocity distribution,
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which causes variations in the two-photon detuning. We found that at a temperature of

0.5 µK, this inhomogeneity limits the useful value of N to ∼ 2 × 104. The useful value of

N can, in principle, be increased further by using colder atoms, as long as the phase space

density is kept below the value at which BEC occurs.

Fourth, we considered the effect of spontaneous emission, since there is a small fraction

of atoms in the intermediate state during the application of the Raman pulses. A proper

analysis of the effect of spontaneous emission would require the use of a density matrix

based model in the basis of the collective states. Coherent excitation of the atoms only

populates the (N + 1) symmetric collective states [57, 59, 92]. However, the total number

of collective states, which include the asymmetric ones, is 2N , the size of the Hilbert space for

N two-level atoms [57]. All of these states must be taken into account when considering the

effect of spontaenous emission, which can couple to both symmetric and asymmetric states.

Thus, even for a modest number of N that would be relevant for a SCAIN, such an analysis

is intractable (as also noted in the supplement of reference [22]). For large N , one must

rely on experiments to determine the degree to which the generation and detection of the

SC state would be affected by the spontaneous emission process during Raman excitations.

However, it should be noted that the effect of spontaneous emission can be suppressed to a

large degree by simply increasing the optical detuning while also increasing the laser power.

This is the approach used, for example, in reducing the effect of radiation loss of atoms in a

far-off resonant trap (FORT).

Finally, we considered the effect of the fluctuations in the value of N . In our discussion

for the SCAIN above, we have already assumed an averaging over odd and even parities of

atoms, for the case where atoms are released from a trap. In addition, one must consider the

fact that the mean value of N itself is expected to fluctuate in this case. As we have shown
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in reference [64], such a fluctuation would simply cause of the width of the fringes due to

interference between the extremal collective state to deviate from the ideal value, which is a

factor of N narrower than the fringes in a CRAIN. Thus, for example, a fluctuation in the

value of N by 1% would cause an ∼ 1% fluctuation in the value of the QFR−1.

Consider next the challenge in implementing the idealized OAT process as envisioned

above. In the experiments done to date, employing OAT squeezing, such as those in refer-

ences [15] and [23], the typical maximum value of the squeezing parameter, µ, is ∼ 0.01. To

the best of our knowledge, the highest value of µ, ∼ 0.0125, was observed in references [15].

For the protocol proposed here, the ideal value of µ that produces the Schroedinger Cat

states is π/2. Under ideal conditions, this value can be achieved by increasing the duration

of the squeezing pulse, or increasing its intensity, for example. However, because of the

various non-idealities, as discussed in detail in several papers, including the supplement of

reference [22], it is clear that, for the current experimental implementations, the quantum

state after such a strong degree of squeezing interaction would be severely degraded. The

non-idealities that degrade the quantum state of the ensemble include the effect of back-

action due to the cavity decay, as well as due to spontaneous emission that causes spin-flips.

As noted in reference [22], the effect of both of these non-idealities can be suppressed by

increasing the cooperativity parameters for the cavity (e.g., by making the cavity mode small

enough so that the vacuum Rabi frequency would be much stronger than both the cavity

decay rate and the rate of spontaneous emission).

However, it should be noted that, for the OAT Squeezing based protocols that have been

considered so far, the maximum useful squeezing is produced for very small values of µ, of

the order of ∼ 0.01 for ∼ half a million atoms. Because of other non-idealities, such as poor

quantum efficiency of detection, the currently achieved values of squeezing are not limited by
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the values of µ. Furthermore, under conventional protocols employing OAT Squeezing, the

Hussimi quasi probability distribution begins to get distorted when µ is increased beyond

∼ 0.01, and the magnitude of the normalized Bloch vector starts getting smaller than unity.

In fact, the factor of improvement in sensitivity due to squeezing drops to unity and even

less than unity for µ far below the value of π/2. As such, experimental efforts to date have

been focused on eliminating these non-idealities, instead of constructing apparatuses that

would increase the cooperativity parameter significantly, or exploring new schemes for OAT

squeezing that would be more robust again dephasing processes.

An important point of reference [74] is to show that there is a regime of OAT squeezing

(namely when µ = π/2) that produces ideal quantum states, such as a superposition of two

extremal Dicke collective states, without distortion and any reduction in the amplitude of

the Bloch vector. Previously, such a state has only been demonstrated for very few ions

(such as in reference [93]). For a very large value of N , the number of particles, generating

such a state requires knowing the parity of N . Therefore, no previous study has been carried

out to show how to construct a protocol under which the Heisenberg Limit (within a factor

of
√

2) can be reached even when averaging over both parities of N . This is the main point

of this paper. We believe that the results shown in reference [74] would identify the need

for, and generate an interest in, developing improvements in experimental implementation

of OAT squeezing in a manner that makes it possible to reach a value of µ = π/2, without

significant degradation of coherence.
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6.6. Summary

In this chapter, we proposed a protocol that makes use of squeezing, rotation, inverse

rotation and unsqueezing operations for implementing Schrödinger Cat Atomic Interferome-

ters and Schrödinger Cat Atomic Clocks. The protocol can be combined with two detection

schemes – collective state detection and conventional detection schemes. We presented the

complete pulse sequence employed for the protocol, showed the full state evolutions using

QPDs, plotted the signal fringes and measurement sensitivities for various parameters, and

compared the results with their conventional counterparts. In particular, we showed that for

both detection schemes, the signal fringe widths will be reduced by a factor of N and the

measurement sensitivities will reach the Heisenberg Limit under optimial conditions. Fur-

thermore, the protocol using conventional detection will also be more robust against excess

noise, due to the increased noise of the signal. For more thorough discussions of CSD-SCAIN

and CSD-SCAC, please refer to Ref. [74]; for more detailed dicussions of CD-SCAIN and

CD-SCAC, please refer to Ref. [75].
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Hume, Luca Pezzè, Augusto Smerzi, and Markus K. Oberthaler. Fisher information
and entanglement of non-gaussian spin states. Science, 345(6195):424–427, 2014.

[12] M. Kitagawa and M. Ueda. Squeezed spin states. Phys. Rev. A, 47:5138, 1993.

[13] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen. Spin
squeezing and reduced quantum noise in spectroscopy. Phys.Rev.A, 46:6797, 1992.

[14] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen. Squeezed atomic
states and projection noise in spectroscopy. Phys. Rev. A, 50:67, 1994.

[15] M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić. Squeezing the collective spin of a
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[19] O. Guehne and G. Tóth. Entanglement detection. Phys. Rep., 474:1, 2009.

[20] Eugene S. Polzik. The squeeze goes on. Nature, 453:45 EP –, 04 2008.

[21] Alexander D. Cronin, Jörg Schmiedmayer, and David E. Pritchard. Optics and inter-
ferometry with atoms and molecules. Rev. Mod. Phys., 81:1051–1129, Jul 2009.

[22] E. Davis, G. Bentsen, and M. Schleier-Smith. Approaching the heisenberg limit without
single-particle detection. Phys. Rev. Letts., 116:053601, 2016.

[23] O. Hosten, R. Krishnakumar, N. J. Engelsen, and M. A. Kasevich. Quantum phase
magnification. Science, 352:1552, 2016.

[24] Onur Hosten, Nils J. Engelsen, Rajiv Krishnakumar, and Mark A. Kasevich. Measure-
ment noise 100 times lower than the quantum-projection limit using entangled atoms.
Nature, 529:505–507, 2016.



155

[25] Luigi Amico, Rosario Fazio, Andreas Osterloh, and Vlatko Vedral. Entanglement in
many-body systems. Rev. Mod. Phys., 80:517–576, May 2008.

[26] Ryszard Horodecki, Pawe l Horodecki, Micha l Horodecki, and Karol Horodecki. Quan-
tum entanglement. Rev. Mod. Phys., 81:865–942, Jun 2009.

[27] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, England, 2000.

[28] J. Stolze and D. Suter. Quantum Computing: A Short Course from Theory to Experi-
ment. Wiley-VCH Verlag, Weinheim, 2008.

[29] J. J . Bollinger, Wayne M. Itano, D. J. Wineland, and D. J. Heinzen. Optimal frequency
measurements with maximally correlated states. Phys. Rev. A, 54:R4649–R4652, Dec
1996.

[30] Girish S. Agarwal and Marlan O. Scully. Ramsey spectroscopy with nonclassical light
sources. Phys. Rev. A, 53:467–470, Jan 1996.

[31] P.R. Berman. Atom Interferometry. Academic Press, 1997.

[32] G. Xu and D. Heinzen. State-selective rabi and ramsey magnetic resonance line shapes.
Phys. Rev. A, 59:R922, 1999.

[33] V. Meyer, M. A. Rowe, D. Kielpinski, C. A. Sackett, W. M. Itano, C. Monroe, and
D. J. Wineland. Experimental demonstration of entanglement-enhanced rotation angle
estimation using trapped ions. Phys. Rev. Lett., 86:5870–5873, Jun 2001.

[34] Greg A. Smith, Souma Chaudhury, Andrew Silberfarb, Ivan H. Deutsch, and Poul S.
Jessen. Continuous weak measurement and nonlinear dynamics in a cold spin ensemble.
Phys. Rev. Lett., 93:163602, Oct 2004.
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APPENDIX A

Matlab Codes for Raman-Rabi Interactions

This appendix contains matlab codes for simulating the various Raman-Rabi interactions

within a two-level (or three-level) atomic system, including Raman-Rabi oscillation, Raman

frequency scanning and Ramsey frequency scanning. The last two also have variants for

collective state detections.

A.1. Matlab Codes for Raman-Rabi oscillation

clc

clear

close all

Delta = (-200 : 0.01 : 200); % Laser detuning (kHz)

Omega = 30; % Rabi frequency (kHz)

Omega_g = sqrt(Delta.^2 + Omega.^2); % Generalized Rabi frequency (kHz)

T1 = pi/2/Omega; % pi/2 pulse time

T2 = 0*T1; % Dark zone time one (zero)

T3 = 2*T1; % Dark zone time two (five times of pi/2 pulse)

P2 = 4 * (Omega.^2./Omega_g.^2).*sin(Omega_g.*T1/2).^2.*(cos(Omega_g.*T1/2).*...

cos(Delta.*T2/2)-(Delta./Omega_g).*sin(Omega_g.*T1/2).*sin(Delta.*T2/2)).^2;



163

P3 = 4 * (Omega.^2./Omega_g.^2).*sin(Omega_g.*T1/2).^2.*(cos(Omega_g.*T1/2).*...

cos(Delta.*T3/2)-(Delta./Omega_g).*sin(Omega_g.*T1/2).*sin(Delta.*T3/2)).^2;

plot(Delta, P2, ’-b’)

hold on

plot(Delta, P3, ’-m’)

axis([-200,200,0,1])

xlabel(’Laser detuning \delta (kHz)’, ’FontSize’, 20)

ylabel(’Probability transfer (a.u.)’, ’FontSize’, 20)

title(’Ramsey fringes for separated oscillating field experiment’)

A.2. Matlab Codes for Raman Frequency Scanning

clc

clear

close all

delta = -100 : 0.1 : 100; % two-photon detuning (kHz)

I = 30; % laser intensity (mW/cm^2)

omega = 0.6264 * I; % Rman-Rabi frequency (kHz)

tao = 500 / omega; % pi-pulse time (us)

P = omega.^2 ./ (omega.^2 + delta.^2) .* (sin(2 * pi * sqrt(omega.^2 + delta.^2)

* tao/1000/2)).^2; % population transfer

plot(delta, P, ’-b’, ’linewidth’, 1);
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xlabel(’Two-photon detuning (kHz)’, ’FontSize’, 20)

ylabel(’Probability transfer (a.u.)’, ’FontSize’, 20)

title(’Raman frequency scanning’, ’FontSize’, 20)

A.3. Matlab Codes for Raman Frequency Scanning with Collective State

Detection

clc

clear

close all

N = [1, 10, 100, 1000]; % Number of atoms

omega = 30; % Raman-Rabi frequency (kHz)

tao = 500 / omega; % Pi-pulse time (us)

delta = -55 : 0.01 : 55; % Laser detuning (kHz)

P = omega.^2 ./ (omega.^2 + delta.^2) .*(sin(2 * pi * sqrt(omega.^2 + delta.^2)

* tao/1000/2)).^2; % population transfer

PN = zeros(length(N), length(delta));

for i = 1 : length(N)

PN(i, :) = P.^N(i);

end

figure
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plot(delta, PN(1, :), ’b-’, ’linewidth’, 2)

hold on

plot(delta, PN(2, :), ’r--’, ’linewidth’, 1)

hold on

plot(delta, PN(3, :), ’k-’, ’linewidth’, 1)

hold on

plot(delta, PN(4, :), ’m-.’, ’linewidth’, 1)

hold on

xlabel(’Detuning (kHz)’, ’FontSize’, 20)

ylabel(’Probability transfer (a.u.)’, ’FontSize’, 20)

legend([’N = ’ num2str(N(1))], [’N = ’ num2str(N(2))], [’N = ’ num2str(N(3))],

[’N = ’ num2str(N(4))])

title(’Raman frequency scanning’, ’FontSize’, 20)

A.4. Matlab Codes for Ramsey Frequency Scanning

clc

clear

close all

Delta = (-200 : 0.01 : 200); % Laser detuning (kHz)

Omega = 30; % Rabi frequency (kHz)

Omega_g = sqrt(Delta.^2 + Omega.^2); % Generalized Rabi frequency (kHz)

T1 = pi/2/Omega; % pi/2 pulse time

T2 = 0*T1; % Dark zone time one (zero)
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T3 = 2*T1; % Dark zone time two (five times of pi/2 pulse)

P2 = 4 *

(Omega.^2./Omega_g.^2).*sin(Omega_g.*T1/2).^2.*(cos(Omega_g.*T1/2).*cos(Delta.*T2/2)-...

(Delta./Omega_g).*sin(Omega_g.*T1/2).*sin(Delta.*T2/2)).^2;

P3 = 4 *

(Omega.^2./Omega_g.^2).*sin(Omega_g.*T1/2).^2.*(cos(Omega_g.*T1/2).*cos(Delta.*T3/2)-...

(Delta./Omega_g).*sin(Omega_g.*T1/2).*sin(Delta.*T3/2)).^2;

plot(Delta, P2, ’-b’)

hold on

plot(Delta, P3, ’-m’)

axis([-200,200,0,1])

xlabel(’Laser detuning \delta (kHz)’, ’FontSize’, 20)

ylabel(’Probability transfer (a.u.)’, ’FontSize’, 20)

title(’Ramsey fringes for separated oscillating field experiment’)

A.5. Matlab Codes for Ramsey Frequency Scanning with Collective State

Detection

clc

clear

close all
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N = [1, 10, 100, 1000]; % Number of atoms

delta = (-14.5 : 0.01 : 14.5); % Laser detuning (kHz)

Omega = 30; % Rabi frequency (kHz)

Omega_g = sqrt(delta.^2 + Omega.^2); % Generalized Rabi frequency (kHz)

T1 = pi/2/Omega; % Pi/2 pulse time (ms)

T2 = 3 * T1; % Dark zone time (ms)

P = 4*(Omega.^2./Omega_g.^2).*sin(Omega_g.*T1/2).^2.*(cos(Omega_g.*T1/2).*...

cos(delta.*T2/2)-(delta./Omega_g).*sin(Omega_g.*T1/2).*sin(delta.*T2/2)).^2;

PN = zeros(length(N), length(delta));

for i = 1 : length(N)

PN(i, :) = P.^N(i);

end

figure

plot(delta, PN(1, :), ’-b’, ’linewidth’, 2)

hold on

plot(delta, PN(2, :), ’--r’, ’linewidth’, 1)

hold on

plot(delta, PN(3, :), ’-k’, ’linewidth’, 1)

hold on

plot(delta, PN(4, :), ’-.m’, ’linewidth’, 1)

hold on
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xlabel(’f (kHz)’, ’fontsize’, 20)

ylabel(’Probability transfer (a.u.)’, ’fontsize’, 20)

legend({[’N = ’ num2str(N(1))], [’N = ’ num2str(N(2))], [’N = ’ num2str(N(3))],

[’N = ’ num2str(N(4))]}, ’fontsize’, 20)

set(gca, ’fontsize’, 15)

title(’Ramsey fringes for separated oscillating field experiment’, ’fontsize’,

20)
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APPENDIX B

Matlab Codes for Common Functions

This appendix contains the common functions used by both spin squeezing and SCAIN

and SCAC.

B.1. css

%%%%%%%%%%% Purpose of this script %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% This script is used to compute the components of the coherent spin state

% (css) pointed at direction (theta, phi) in the basis of the Dicke states

% (aka symmetric collective states) using the following theoretical

% expression:

%

% <J, J - k | css(theta, phi)> = [cos(theta/2)]^N * sqrt[nchoosek(N, k)] *

% [exp(i*phi) * tan(theta/2)]^k

%

% To avoid overflow, we will convert factorial to logarithm of gamma functions:

%

% [cos(theta/2)]^N * sqrt[nchoosek(N, k)] * [exp(i*phi) * tan(theta/2)]^k

% = exp{1/2 * [gammaln(N+1) - gammaln(k+1) - gammaln(N-k+1)] +

% (N-k) * log(cos(theta/2)) + k * log(sin(theta/2)) + 1i * k * phi}

%
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%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function css_wf = css(J, theta, phi)

N = 2 * J;

css_wf = zeros(N + 1, 1);

if theta == 0

css_wf(1) = 1;

elseif theta == pi

css_wf(N + 1) = 1;

else

for i = 1 : numel(css_wf)

k = i - 1;

css_wf(i) = exp(1/2 * (gammaln(N + 1) - gammaln(k + 1) - gammaln(N - k +

1)) + (N - k) * log(cos(theta/2)) + k * log(sin(theta/2)) + 1i * k *

phi);

end

end

end

B.2. J−
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%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the matrix elements of the lowering spin

% operator J_minus in the basis of the Dicke states

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function Jminus = J_minus(J)

Jminus = zeros(2 * J + 1);

for i = 1 : 2 * J

M = (J + 1) - i;

Jminus(i + 1, i) = sqrt((J + M) * (J - M + 1));

end

end

B.3. J+

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the matrix elements of the lowering spin

% operator J_minus in the basis of the Dicke states

%
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%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the matrix elements of the raising spin

% operator J_plus in the basis of the Dicke states

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function Jplus = J_plus(J)

Jplus = zeros(2 * J + 1);

for i = 2 : 2 * J + 1

M = (J + 1) - i;

Jplus(i - 1, i) = sqrt((J - M) * (J + M + 1));

end

end

B.4. Jx

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the matrix elements of the x-component of
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% the spin operator J_x in the basis of the Dicke states

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function Jx = J_x(J)

Jx = (J_plus(J) + J_minus(J)) / 2;

end

B.5. Jy

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the matrix elements of the y-component of

% the spin operator J_y in the basis of the Dicke states

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function Jy = J_y(J)

Jy = (J_plus(J) - J_minus(J)) / (2 * 1i);

end
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B.6. Jz

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the matrix elements of the z-component of

% the spin operator J_z in the basis of the Dicke states

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function Jz = J_z(J)

Jz = zeros(2 * J + 1);

for i = 1 : 2 * J + 1

M = (J + 1) - i;

Jz(i, i) = M;

end

end

B.7. nu oat x

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the corrective rotation angle nu

% for x protocol.
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%

% Here nu = pi/2 for all possible values of the squeezing parameters mu.

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function nu = nu_oat_x(~, mu)

nu = repmat(pi/2, size(mu));

end

B.8. nu oat y

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the corrective rotation angle nu for

% y-protocol using the formula given in the Kitagawa and Ueda paper.

%

% Here nu take different values for different squeezing parameters mu.

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function nu = nu_oat_y(J, mu)

A = 1 - (cos(2*mu)).^(2*J-2);
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B = 4 * sin(mu) .* (cos(mu)).^(2*J-2);

nu = zeros(size(mu));

for i = 1 : numel(nu)

if mu(i) == 0

nu(i) = -pi/2;

elseif mu(i) == pi/2

nu(i) = 0;

else

nu(i) = -1/2 * atan(B(i)./A(i));

end

end

% nu = nu + pi/2; % For mu=pi/2, we need this to maximize variance of J_z

end

B.9. PK

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the matrix elements of the projection

% operator PK formed by the (N+1-K)-th basis vector in the basis

% of the Dicke states (symmetric collective states). The basis vectors are
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% arranged as follows:

%

% |1> = |J, J>,

% |2> = |J, J-1>,

% |3> = |J, J-2>,

% ...

% |N+1> = |J, -J>,

%

% where N = 2 * J is the total number of elementary spins.

%

% P_K(J, K) = |N+1-K><N+1-K|.

%

% Note the Dicke states are also referred to as E0, E1, ..., EN, where

%

% E0 = |J, -J><J, -J| = P_K(J, 0),

% E1 = |J, -J+1><J, -J+1| = P_K(J, 1),

% ...

% EN = |J, J><J, J| = P_K(J, N).

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function PK = P_K(J, K)

N = 2 * J;

PK = zeros(N + 1);
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PK(N + 1 - K, N + 1 - K) = 1;

end

B.10. Ψ0

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to generate the initial state vector which will

% be the (J + 1 - M)-th basis vector in the basis of the Dicke states.

%

% Note:

% 1. M = J, J-1, ..., -J;

% 2. The Dicke states are arranged as |J, J>, |J, J-1>, ..., |J, -J>.

% 3. For a general CSS state, use the css function to convert them into

% the basis above.

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function Psi0 = Psi_0(J, M)

Psi0 = zeros(2 * J + 1, 1);

Psi0(J + 1 - M) = 1;

end



179

B.11. QPD

%%%%%%%%%%% Purpose of this script %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% This script is used to, given any state vector |Psi> represented in the

% basis of the Dicke states (aka symmetric collective states), plot its

% Husimi quasi-probability distribution (QPD) in terms of the coherent spin

% states (CSS), |theta, phi>.

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function QPD(Psi)

[theta, phi] = meshgrid(0 : pi/100 : pi, -pi : pi/100 : pi); % the spherical

coordinates

x = sin(theta).*cos(phi); % Corresponding x

coordinate

y = sin(theta).*sin(phi); % Corresponding y

coordinate

z = cos(theta); % Corresponding z

coordinate

[m, n] = size(x); % Size of theta

P = zeros(m, n); % Quasi-probability

distribution
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J = (numel(Psi) - 1) / 2; % Total spin quantum

number

for i = 1 : m

for j = 1 : n

css_theta_phi = css(J, theta(i, j), phi(i, j)); % CSS in direction

(theta, phi)

P(i, j) = abs(css_theta_phi’ * Psi).^2; % |<theta,phi|Psi>|^2

end

end

figure

mesh(x, y, z, P)

xlabel(’X’)

ylabel(’Y’)

zlabel(’Z’)

title(’QPD in terms of X, Y and Z’)

colormap parula

colorbar

end

B.12. U oat

%%%%%%%%%%% Purpose of this script %%%%%%%%%%



181

%

% This script is used to compute the matrix elements of the unitary

% transformation operator generated by one-axis twisting Hamiltonian for

% the spin squeezing in the basis of the Dicke states

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function U = U_oat(J, mu)

Jz = J_z(J);

U = expm(-1i * mu * Jz^2);

end

B.13. U tact y

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the matrix elements of the unitary

% transformation operator generated by two-axis counter twisting

% Hamiltonian for the spin squeezing in the basis of the Dicke states.

%

% The two twisting operators are (Jx + iJz) and (Jx - iJz).

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%
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function U = U_tact_y(J, mu)

Jx = J_x(J);

Jz = J_z(J);

Jp = Jx + 1i * Jz;

Jm = Jx - 1i * Jz;

U = expm(-mu/2 * (Jp^2 - Jm^2));

end

B.14. U tact z

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the matrix elements of the unitary

% transformation operator generated by two-axis counter twisting

% Hamiltonian for the spin squeezing in the basis of the Dicke states

%

% The two twisting operators are (Jx + iJy) and (Jx - iJy).

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function U = U_tact_z(J, mu)
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Jp = J_plus(J);

Jm = J_minus(J);

U = expm(-mu/2 * (Jp^2 - Jm^2));

end

B.15. Ux

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the matrix elements of the unitary

% transformation operator generated by rotating around the x-axis by

% an angle of theta in the basis of the Dicke states

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function U = U_x(J, theta)

Jx = J_x(J);

U = expm(-1i * theta * Jx);

end

B.16. Uy

%%%%%%%%%%% Purpose of this script %%%%%%%%%%
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%

% This script is used to compute the matrix elements of the unitary

% transformation operator generated by rotating around the y-axis by

% an angle of theta in the basis of the Dicke states

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function U = U_y(J, theta)

Jy = J_y(J);

U = expm(-1i * theta * Jy);

end

B.17. Uz

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the matrix elements of the unitary

% transformation operator generated by rotating around the z-axis by

% an angle of theta in the basis of the Dicke states

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

function U = U_z(J, theta)
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Jz = J_z(J);

U = expm(-1i * theta * Jz);

end
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APPENDIX C

Matlab Codes for Spin Squeezing Effects

This appendix contains matlab codes for simulating the various results for OAT and

TACT spin squeezing.

C.1. QPD for OAT

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the squeezed spin state (SSS) for a given

% coherent spin states (CSS) using one-axis-twist (OAT) squeezing in the

% basis of the Dicke collective states, and plot it in terms of Husimi

% Quasiprobability Distribution (QPD).

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

%% The actual program starts here %%

clc

clear

close all

%% Timing the program %%

tic
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%% Initial parameters %%

N = 40; % Total number of elementary spin (1/2-spin)

J = N/2; % Total spin of the system (spin-J system)

Jz = J_z(J); % Jz matrix form in the Dicke states

Jx = J_x(J); % Jx matrix form in the Dicke states

Jy = J_y(J); % Jy matrix form in the Dicke states

Jp = J_plus(J); % J+ matrix form in the Dicke states

Jm = J_minus(J); % J- matrix form in the Dicke states

mu = [0, 0.05, 0.1, 0.3]; % Squeezing parameters mu = chi*t

nu = nu_oat_y(J, mu); % Corrective rotation angle rotated around

y-axis

[theta, phi] = meshgrid(0 : pi/500 : pi, -pi : pi/250 : pi); % the spherical

coordinates

x = sin(theta).*cos(phi); % Corresponding x coordinate

y = sin(theta).*sin(phi); % Corresponding y coordinate

z = cos(theta); % Corresponding z coordinate

[m, n] = size(theta);

Psi_i = Psi_0(J, -J); % Initial state vector of the system (assumed

all spin are down)
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Ux = U_x(J, pi/2); % Rotation around x axis for the two

pi/2-pulse interaction zones

L = 2 * length(mu); % Number of probabilities to plot

P_f = zeros(m, n, L); % Final probability distribution

for l = 1 : length(mu)

Uoat_p = U_oat(J, mu(l)); % Unitary transformation for doing one-axis

twisting

Uy_p = U_y(J, nu(l)); % Corrective rotation around y axis after

squeezing

% State vector evolution

P = zeros(m, n, l);

Psi_f = zeros(N + 1, 4);

Psi_f(:, 1) = Psi_i;

Psi_f(:, 2) = Ux * Psi_f(:, 1);

Psi_f(:, 3) = Uoat_p * Psi_f(:, 2);

Psi_f(:, 4) = Uy_p * Psi_f(:, 3);

for i = 1 : m

for j = 1 : n

css_theta_phi = css(J, theta(i, j), phi(i, j)); % state vector of CSS

in direction (theta, phi)
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for k = 1 : 4

P(i, j, k) = abs(css_theta_phi’ * Psi_f(:, k)).^2;

end

end

end

P_f(:, :, 2*l-1) = P(:, :, 3);

P_f(:, :, 2*l) = P(:, :, 4);

end

% Plot the QPD

idx = [1 : 2 : L-1, 2 : 2 : L]; % Index for plotting

figure

for i = 1 : 8

subplot(2, length(mu), i)

mesh(x, y, z, P_f(:, :, idx(i)));

view([180 0])

colormap jet

xlabel(’X’, ’fontsize’, 15)

ylabel(’Y’, ’fontsize’, 15)

zlabel(’Z’, ’fontsize’, 15)

set(gca, ’fontsize’, 20)

end
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%% Print the running time %%

toc

C.2. CPD for OAT

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the squeezed spin state (SSS) for a given

% coherent spin states (CSS) using one-axis-twist (OAT) squeezing in the

% basis of the Dicke collective states, and plot it in terms of

% Collective-state Quasiprobability Distribution (CPD).

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

%% The actual program starts here %%

clc

clear

close all

%% Timing the program %%

tic

%% Initial parameters %%

N = 40; % Total number of elementary spin (1/2-spin)
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J = N/2; % Total spin of the system (spin-J system)

Jz = J_z(J); % Jz matrix form in the Dicke states

Jx = J_x(J); % Jx matrix form in the Dicke states

Jy = J_y(J); % Jy matrix form in the Dicke states

Jp = J_plus(J); % J+ matrix form in the Dicke states

Jm = J_minus(J); % J- matrix form in the Dicke states

P0 = P_K(J, 0); % P0 matrix form in the Dicke states

PN = P_K(J, N); % PN matrix form in the Dicke states

mu = [0, 0.1, 0.2, 0.6, pi]/2; % Squeezing parameters

nu = nu_oat_y(J, mu); % Corrective rotation angle rotated around

y-axis

Psi_i = Psi_0(J, -J); % Initial state vector of the system (assumed

all spin are down)

Ux = U_x(J, pi/2); % Rotation around x axis for the two

pi/2-pulse interaction zones

Psi_y = Ux * Psi_i; % State vector after the first pi/2-pulse

L = 2 * length(mu); % Number of probabilities to plot

P_f = zeros(N + 1, L); % Final probability distribution

for l = 1 : length(mu)
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Uoat_p = U_oat(J, mu(l)); % Unitary transformation for doing one-axis

twisting

if mu(l) == pi/2

Uy_p = U_x(J, pi/2); % Corrective rotation around x axis after

squeezing

else

Uy_p = U_y(J, nu(l)); % Corrective rotation around y axis after

squeezing

end

P_f(:, 2*l-1) = Uoat_p * Psi_y;

P_f(:, 2*l) = Uy_p * P_f(:, 2*l-1);

end

% Plot the CPD

idx = [1 : 2 : L-1, 2 : 2 : L]; % Index for plotting

xlimits = [-J, J];

ylimits = [0, 0.5];

figure

for i = 1 : L

subplot(2, length(mu), i)

bar(-J : J, abs(P_f(:, idx(i))).^2, ’b’)
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hold on

plot(-J : J, abs(P_f(:, idx(i))).^2, ’r-’, ’Linewidth’, 2)

xlabel(’M’, ’FontSize’, 15)

ylabel(’P’, ’FontSize’, 15)

if i == L

xlim(xlimits)

else

xlim(xlimits*3/4)

end

ylim(ylimits)

end

figure

for i = 1 : length(mu)

subplot(1, length(mu), i)

bar(-J : J, abs(P_f(:, idx(i + length(mu)))).^2, ’b’)

hold on

plot(-J : J, abs(P_f(:, idx(i + length(mu)))).^2, ’r-’, ’linewidth’, 2)

xlabel(’M’, ’fontsize’, 15)

ylabel(’P’, ’fontsize’, 15)

set(gca, ’fontsize’, 20)

if i == length(mu)

xlim(xlimits)

else
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xlim(xlimits*3/4)

end

ylim(ylimits)

end

%% Print the running time %%

toc

C.3. ξKU for OAT

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the spin-squeezing parameter Xi_KU

% for different squeezing parameters mu.

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

%% The actual program starts here %%

clc

clear

close all

%% Timing the program %%

tic
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%% Initial parameters %%

N = 40; % Total number of elementary spin (1/2-spin)

J = N/2; % Total spin of the system (spin-J system)

mu = 0 : pi/100000 : pi/2; % Squeezing parameters

A = 1 - (cos(2*mu)).^(N-2); % Parameter A

B = 4 * sin(mu) .* (cos(mu)).^(N-2); % Parameter B

xi_KU = (1 + 1/2 * (J - 1/2) * (A - sqrt(A.^2 + B.^2))); % Spin-squeezing

parameter proposed by Kitagawa and Ueda

figure

plot(mu, xi_KU, ’-b’, ’linewidth’, 2)

xlabel(’\mu’, ’fontsize’, 15)

ylabel(’\xi_{KU}’, ’fontsize’, 15)

set(gca, ’fontsize’, 25)

xlim([0, pi/2])

%% Print the running time %%

toc

C.4. Enhancement for OAT

%%%%%%%%%%%%%%% Purpose of this script %%%%%%%%%%%%%%%%%%%

%

% This script is used to compute the enhancement of OAT spin squeezing,
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% which is defined as -10*log(Xi_KU), where Xi_KU is the spin squeezing

% parameter for OAT. The final answer will be in unit of dB.

%

%%%%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%%%%%%

%% The actual program starts here %%

clc

clear

close all

%%

tic

%% Computing S_var

mu = 0 : pi/1000000 : pi/5000;

N = [10, 100, 1000, 10000, 100000, 500000, 1000000];

S_var = zeros(length(N), length(mu));

for i = 1 : length(N)

A = 1 - (cos(2 * mu)).^(N(i) - 2);

B = 4 * sin(mu) .* (cos(mu)).^(N(i) - 2);

Q = 1 + (N(i) - 1) / 4 .* (A - sqrt(A.^2 + B.^2));

S_var(i, :) = -10 * log10(Q);

end
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% Plot separately

for i = 1 : length(N)

figure

plot(mu, S_var(i, :), ’b-’, ’linewidth’, 3)

xlabel(’\mu’, ’fontsize’, 30)

ylabel(’S_{var}’, ’fontsize’, 30)

title([’N = ’ num2str(N(i))])

set(gca, ’fontsize’, 15)

end

%% Plot together

figure

plot(mu, S_var(1, :), ’b-’, ’linewidth’, 3)

hold on

plot(mu, S_var(2, :), ’r-’, ’linewidth’, 3)

hold on

plot(mu, S_var(3, :), ’y-’, ’linewidth’, 3)

hold on

plot(mu, S_var(4, :), ’k-’, ’linewidth’, 3)

hold on

plot(mu, S_var(5, :), ’c-’, ’linewidth’, 3)

hold on

plot(mu, S_var(6, :), ’g-’, ’linewidth’, 3)

hold on
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plot(mu, S_var(7, :), ’m-’, ’linewidth’, 3)

xlabel(’\mu’, ’fontsize’, 30)

ylabel(’S_{var}’, ’fontsize’, 30)

legend([’N = ’ num2str(N(1))], [’N = ’ num2str(N(2))], [’N = ’ num2str(N(3))],

[’N = ’ num2str(N(4))], ...

[’N = ’ num2str(N(5))], [’N = ’ num2str(N(6))], [’N = ’ num2str(N(7))])

legend([’N = ’ num2str(N(1))], [’N = ’ num2str(N(2))])

title(’S_{var} vs. \mu’)

set(gca, ’fontsize’, 15)

ax = gca; ax.XAxis.Exponent = 0;

%%

toc

C.5. QPD for TACT

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the squeezed spin state (SSS) for a given

% coherent spin states (CSS) using two-axis-counter-twist (TACT) squeezing

% in the basis of the Dicke collective states, and plot it in terms of

% Husimi Quasiprobability Distribution (QPD).

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%
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%% The actual program starts here %%

clc

clear

close all

%% Timing the program %%

tic

%% Initial parameters %%

N = 40; % Total number of elementary spin (1/2-spin)

J = N/2; % Total spin of the system (spin-J system)

Jz = J_z(J); % Jz matrix form in the Dicke states

Jx = J_x(J); % Jx matrix form in the Dicke states

Jy = J_y(J); % Jy matrix form in the Dicke states

Jp = J_plus(J); % J+ matrix form in the Dicke states

Jm = J_minus(J); % J- matrix form in the Dicke states

mu = [0, 0.025, 0.05, 0.075]; % Squeezing parameters mu = chi*t

nu = nu_oat_y(J, mu); % Corrective rotation angle rotated around

y-axis

[theta, phi] = meshgrid(0 : pi/500 : pi, -pi : pi/250 : pi); % the spherical

coordinates
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x = sin(theta).*cos(phi); % Corresponding x coordinate

y = sin(theta).*sin(phi); % Corresponding y coordinate

z = cos(theta); % Corresponding z coordinate

[m, n] = size(theta);

Psi_i = Psi_0(J, -J); % Initial state vector of the system (assumed

all spin are down)

Ux = U_x(J, pi/2); % Rotation around x axis for the two

pi/2-pulse interaction zones

L = length(mu); % Number of squeezing parameters mu

P_f = zeros(m, n, L); % Final probability distribution

for l = 1 : L

Uoat_p = U_tact_y(J, mu(l)); % Unitary transformation for doing one-axis

twisting

% State vector evolution

P = zeros(m, n, 3);

Psi_f = zeros(N + 1, 3);

Psi_f(:, 1) = Psi_i;

Psi_f(:, 2) = Ux * Psi_f(:, 1);

Psi_f(:, 3) = Uoat_p * Psi_f(:, 2);

for i = 1 : m

for j = 1 : n
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css_theta_phi = css(J, theta(i, j), phi(i, j)); % state vector of CSS

in direction (theta, phi)

for k = 1 : 3

P(i, j, k) = abs(css_theta_phi’ * Psi_f(:, k)).^2;

end

end

end

P_f(:, :, l) = P(:, :, 3);

end

% Plot the QPD

figure

for i = 1 : L

subplot(1, L, i)

mesh(x, y, z, P_f(:, :, i));

view([180 0])

colormap jet

xlabel(’X’, ’fontsize’, 15)

ylabel(’Y’, ’fontsize’, 15)

zlabel(’Z’, ’fontsize’, 15)

set(gca, ’fontsize’, 20)

end
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%% Print the running time %%

toc
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APPENDIX D

Matlab Codes for SCAIN and SCAC

This appendix contains matlab codes for simulating the various results for SCAIN and

SCAC, including QPD evolution, CPD evolution, frequency scanning, and QFR and QFF

calculations. Here I’m only showing codes for X-protocol, which can be modified to account

for Y-protocol.

D.1. QPD for SCAIN Using X-Protocol

%%%%%%%%%%% Purpose of this script %%%%%%%%%%%%%%%%%%

%

% This script is used to compute the state vector evolutioins of

% atomic interferometers with x-protocol spin squeezing (SS) in the basis of the

% Dicke states (aka symmetric collective states) for even or odd number of

% atoms. The state vector is then projected onto the coherent spin states (CSS).

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%%%%

%% The actual program starts here %%

clc

clear

close all
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%% Timing the program %%

tic

%% Initial parameters %%

N = 100; % Total number of elementary spin (1/2-spin)

J = N/2; % Total spin of the system (spin-J system)

Jz = J_z(J); % Jz matrix form in the Dicke states

Jx = J_x(J); % Jx matrix form in the Dicke states

Jy = J_y(J); % Jy matrix form in the Dicke states

Jp = J_plus(J); % J+ matrix form in the Dicke states

Jm = J_minus(J); % J- matrix form in the Dicke states

P0 = P_K(J, 0); % P0 matrix form in the Dicke states

PN = P_K(J, N); % PN matrix form in the Dicke states

alpha1 = pi/2/N; % Dark zone phase shift (angle rotated

around z-axis)

beta1 = pi/2; % Interaction zone width for pi/2-pulses

beta2 = pi; % Interaction zone width for pi-pulses

mu = pi/2; % Squeezing parameters

nu = nu_oat_x(J, mu); % Corrective rotation angle rotated around

x-axis

CRS = -1; % Corrective rotation sign
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[theta, phi] = meshgrid(0 : pi/500 : pi, -pi : pi/250 : pi); % the spherical

coordinates

x = sin(theta).*cos(phi); % Corresponding x coordinate

y = sin(theta).*sin(phi); % Corresponding y coordinate

z = cos(theta); % Corresponding z coordinate

[m, n] = size(theta);

%% Initial state vector and operators for spin squeezing %%

Psi_i = Psi_0(J, -J); % Initial state vector of the system (assumed

all spin are down)

Ux = U_x(J, beta1); % Rotation around x axis for the two

pi/2-pulse interaction zones

Uoat_p = U_oat(J, mu); % Unitary transformation for doing one-axis

twisting

Ux_p = U_x(J, nu); % Corrective rotation around x axis after

squeezing

Uz_p = U_z(J, alpha1/2); % Rotation around z axis in the first dark zone

Ux_pi = U_x(J, beta2); % Rotation around x axis for the pi-pulse

interaction zone

Uz_m = U_z(J, -alpha1/2); % Rotation around z axis in the second dark

zone

Ux_m = U_x(J, nu * CRS); % Corrective rotation around x axis before

undoing squeezing

Uoat_m = U_oat(J, -mu); % Unitary transformation for undoing one-axis

twisting
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%% State vector evolution %%

d = 10;

P = zeros(m, n, d);

Psi_f = zeros(N + 1, d);

Psi_f(:, 1) = Psi_i;

Psi_f(:, 2) = Ux * Psi_f(:, 1);

Psi_f(:, 3) = Uoat_p * Psi_f(:, 2);

Psi_f(:, 4) = Ux_p * Psi_f(:, 3);

Psi_f(:, 5) = Uz_p * Psi_f(:, 4);

Psi_f(:, 6) = Ux_pi * Psi_f(:, 5);

Psi_f(:, 7) = Uz_m * Psi_f(:, 6);

Psi_f(:, 8) = Ux_m * Psi_f(:, 7);

Psi_f(:, 9) = Uoat_m * Psi_f(:, 8);

Psi_f(:, 10) = Ux * Psi_f(:, 9);

for i = 1 : m

for j = 1 : n

css_theta_phi = css(J, theta(i, j), phi(i, j)); % state vector of CSS in

direction (theta, phi)

for k = 1 : d

P(i, j, k) = abs(css_theta_phi’ * Psi_f(:, k)).^2;

end

end
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end

%% Plot the probabilities %%

x_axis = -1 : 1/1000 : 1; % auxiliary line

y_axis = -1 : 1/1000 : 1; % auxiliary line

z_axis = -1 : 1/1000 : 1; % auxiliary line

px = cos(pi * x_axis); % auxiliary circle

py = sin(pi * x_axis); % auxiliary circle

if rem(N, 2) == 0

AZ = [185, 185, 95, 185, 185, 185, 185, 95, 95, 185]; % Pespective view

azimuthal angle -- Even N

else

AZ = [185, 185, 185, 185, 185, 185, 185, 95, 95, 95]; % Pespective view

azimuthal angle -- Odd N

end

EL = [-5, -5, -5, -5, -5, -5, -5, -5, -5, -5]; % Pespective view elevation angle

for k = 1 : d

% PLot as a function of theta & phi

figure

mesh(theta/pi, phi/(2*pi), P(:, :, k))

xlabel(’$\frac{\theta}{\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’$\frac{\phi}{2\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)
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zlabel(’P’)

title([’Husimi quasi-probability distribution in terms of \theta and \phi --

Squeezing with y-protocol and N = ’...

num2str(N) ’ and CRS = ’ num2str(CRS) ’ and \mu = ’ num2str(mu/pi)

’*\pi’])

% PLot as a function of x & y & z

figure

mesh(x, y, z, P(:, :, k))

xlabel(’X’)

ylabel(’Y’)

zlabel(’Z’)

title([’Husimi quasi-probability distribution in terms of x, y and z --

Squeezing with x-protocol and N = ’...

num2str(N) ’ and CRS = ’ num2str(CRS) ’ and \mu = ’ num2str(mu/pi)

’*\pi’])

colormap cool

colorbar

% PLot as a function of x & y & z with auxiliary lines

figure

plot3(px, py, zeros(1, numel(px)), ’k’, ’linewidth’, 2) % circle perp to z

hold on

plot3(zeros(1, numel(px)), px, py, ’k’, ’linewidth’, 2) % circle perp to x



209

hold on

plot3(px, zeros(1, numel(px)), py, ’k’, ’linewidth’, 2) % circle perp to y

hold on

plot3(x_axis, zeros(1, numel(x_axis)), zeros(1, numel(x_axis)), ’k’,

’linewidth’, 2) % draws x-axis

hold on

plot3(zeros(1, numel(y_axis)), y_axis, zeros(1, numel(y_axis)), ’k’,

’linewidth’, 2) % draws y-axis

hold on

plot3(zeros(1, numel(z_axis)), zeros(1, numel(z_axis)), z_axis, ’k’,

’linewidth’, 2) % draws z-axis

hold on

sf = surf(x, y, z, P(:, :, k));

alpha(sf, 0.9) % make sure this function is not shadowed by user-defined

variables

shading interp;

axis off;

colormap cool

view(AZ(k), EL(k))

end

%% Print the running time %%

toc
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D.2. CPD for SCAIN Using X-Protocol

%%%%%%%%%%% Purpose of this script %%%%%%%%%%%%%%%%%%

%

% This script is used to compute the state vector evolutioins of

% atomic interferometers with x-protocol spin squeezing (SS) in the basis of the

% Dicke states (aka symmetric collective states) for even or odd number of

% atoms. The state vector is then projected onto the Dicke states to plot the

% population distribution on each symmetric collective state.

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%%%%

%% The actual program starts here %%

clc

clear

close all

%% Timing the program %%

tic

%% Initial parameters %%

N = 41; % Total number of elementary spin (1/2-spin)

J = N/2; % Total spin of the system (spin-J system)

Jz = J_z(J); % Jz matrix form in the Dicke states

Jx = J_x(J); % Jx matrix form in the Dicke states
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Jy = J_y(J); % Jy matrix form in the Dicke states

Jp = J_plus(J); % J+ matrix form in the Dicke states

Jm = J_minus(J); % J- matrix form in the Dicke states

P0 = P_K(J, 0); % P0 matrix form in the Dicke states

PN = P_K(J, N); % PN matrix form in the Dicke states

if rem(N, 2) == 0

alpha = pi/2/N; % Dark zone phase shift (angle rotated around

z-axis) -- even N

else

alpha = pi/4; % Dark zone phase shift (angle rotated around

z-axis) -- odd N

end

beta1 = pi/2; % Interaction zone width for pi/2-pulses

beta2 = pi; % Interaction zone width for pi-pulses

mu = pi/2; % Squeezing parameters

nu = nu_oat_x(J, mu); % Corrective rotation angle rotated around

x-axis

CRS = -1; % Corrective rotation sign

%% Initial state vector and operators for spin squeezing %%

Psi_i = Psi_0(J, -J); % Initial state vector of the system (assumed

all spin are down)
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Ux = U_x(J, beta1); % Rotation around x axis for the two

pi/2-pulse interaction zones

Uoat_p = U_oat(J, mu); % Unitary transformation for doing one-axis

twisting

Ux_p = U_x(J, nu); % Corrective rotation around x axis after

squeezing

Uz_p = U_z(J, alpha/2); % Rotation around z axis in the first dark zone

Ux_pi = U_x(J, beta2); % Rotation around x axis for the pi-pulse

interaction zone

Uz_m = U_z(J, -alpha/2); % Rotation around z axis in the second dark

zone

Ux_m = U_x(J, nu * CRS); % Corrective rotation around x axis before

undoing squeezing

Uoat_m = U_oat(J, -mu); % Unitary transformation for undoing one-axis

twisting

%% State vector evolution %%

d = 10;

Psi_f = zeros(N + 1, d);

Psi_f(:, 1) = Psi_i;

Psi_f(:, 2) = Ux * Psi_f(:, 1);

Psi_f(:, 3) = Uoat_p * Psi_f(:, 2);

Psi_f(:, 4) = Ux_p * Psi_f(:, 3);

Psi_f(:, 5) = Uz_p * Psi_f(:, 4);

Psi_f(:, 6) = Ux_pi * Psi_f(:, 5);
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Psi_f(:, 7) = Uz_m * Psi_f(:, 6);

Psi_f(:, 8) = Ux_m * Psi_f(:, 7);

Psi_f(:, 9) = Uoat_m * Psi_f(:, 8);

Psi_f(:, 10) = Ux * Psi_f(:, 9);

%% Plot the probabilities %%

x_pos = -4; % Position of x label

x_lower = -2; % Lower limit of x axis

x_upper = N + 2; % Upper limit of x axis

% Plot in subplots

if N == 100

y_upper = [1.1, 0.1, 0.6, 0.2, 0.6];

elseif N == 101

y_upper = [1.1, 0.1, 0.2, 0.08, 0.16];

elseif N == 40

y_upper = [1.1, 0.2, 0.6, 0.3, 0.6];

elseif N == 41

y_upper = [1.1, 0.2, 0.3, 0.15, 0.2];

else

y_upper = [1.1, 1.1, 1.1, 1.1, 1.1];

end

Psi_index = [1, 2, 4, 8, 10];
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for k = 1 : 5

subplot(5, 1, k)

plot(N : -1 : 0, abs(Psi_f(:, Psi_index(k))).^2, ’b-’, ’Linewidth’, 2)

set(gca, ’xdir’, ’reverse’)

xlabel(’n’, ’FontSize’, 15, ’Position’, [x_pos, 0, 0])

ylabel(’|E_n|^2’, ’FontSize’, 13)

xlim([x_lower, x_upper])

ylim([0, y_upper(k)])

end

% Plot separately

for k = 1 : d

figure

plot(N : -1 : 0, abs(Psi_f(:, k)).^2, ’b-’, ’Linewidth’, 2)

set(gca, ’xdir’, ’reverse’)

xlabel(’n’, ’FontSize’, 15, ’Position’, [x_pos, 0, 0])

ylabel(’|E_n|^2’, ’FontSize’, 13)

xlim([x_lower, x_upper])

title([’Collective state population distribution -- Squeezing with x-protocol

and N = ’...

num2str(N) ’ and CRS = ’ num2str(CRS) ’ and \mu = ’ num2str(mu/pi)

’*\pi’])

end

%% Print the running time %%
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toc

D.3. Frequency Scanning for SCAIN Using X-Protocol

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the frequency scanning (FS) results of

% atomic interferometer with x-protocol spin squeezing (SS) in the basis of the

% Dicke states (aka symmetric collective states) and compare the cases of

% even and odd number of atoms with fixed squeezing parameters and CRS.

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

%% The actual program starts here %%

clc

clear

close all

%% Timing the program %%

tic

%% Initial parameters %%

n = 200; % Base number of elementary spin

(1/2-spin)
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N = n : n + 1; % Total number of elementary spin

(1/2-spin)

max = 10 * pi/n; % Maximum plottable value of dark

zone phase shift

step = pi/10/n; % Step value for dark zone phase shift

phi = -max : step : max; % Dark zone phase shift (angle rotated

around z-axis)

theta1 = pi/2; % Angle rotated around x-axis for

pi/2-pulse

theta2 = pi; % Angle rotated around x-axis for

pi-pulse

mu = pi/2; % Squeezing parameters

CRS = 1; % Corrective rotation sign

P_E0 = zeros(numel(mu), numel(phi), numel(N)); % P_E0, probability in |E0>, as a

function of phi and mu, with squeezing

P_1 = zeros(numel(mu), numel(phi), numel(N)); % P_1, probability in |1> (spin

down) , as a function of phi and mu, with squeezing

P_z = zeros(numel(mu), numel(phi), numel(N)); % P_z, average value of Jz

operator, as a function of phi and mu, with squeezing

P_E00 = zeros(1, numel(phi), numel(N)); % P_E00, probability in |E0> , as a

function of phi, without squeezing
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P_10 = zeros(1, numel(phi), numel(N)); % P_10, probability in |1> (spin

down), as a function of phi, without squeezing

P_z0 = zeros(1, numel(phi), numel(N)); % P_z0, average value of Jz operator,

as a function of phi, without squeezing

for k = 1 : numel(N)

%% Initial parameters for each case %%

J = N(k)/2; % Total spin of the system (spin-J

system)

Jz = J_z(J); % Jz matrix form in the Dicke states

Jx = J_x(J); % Jx matrix form in the Dicke states

Jy = J_y(J); % Jy matrix form in the Dicke states

Jp = J_plus(J); % J+ matrix form in the Dicke states

Jm = J_minus(J); % J- matrix form in the Dicke states

P0 = P_K(J, 0); % P0 matrix form in the Dicke states

PN = P_K(J, N(k)); % PN matrix form in the Dicke states

Psi_i = Psi_0(J, -J); % Initial state vector of the system

(assumed all spin are down)

Ux = U_x(J, theta1); % Rotation around x axis in the two

pi/2-pulse interaction zones

Ux_pi = U_x(J, theta2); % Rotation around x axis in the

pi-pulse interaction zone

nu = nu_oat_x(J, mu); % Corrective rotation angle rotated

around x-axis
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%% Computation for collective atomic interometer with spin-squeezing %%

for i = 1 : numel(mu)

Uoat_p = U_oat(J, mu(i)); % Unitary transformation for doing

one-axis twisting

Uoat_m = U_oat(J, -mu(i)); % Unitary transformation for undoing

one-axis twisting

Ux_p = U_x(J, nu(i)); % Corrective rotation around x axis

after squeezing

Ux_m = U_x(J, nu(i) * CRS); % Corrective rotation around x axis

before undoing squeezing

for j = 1 : numel(phi)

Uz_p = U_z(J, phi(j)/2); % Rotation around z axis in the first

dark zone

Uz_m = U_z(J, -phi(j)/2); % Rotation around z axis in the

second dark zone

Psi_f = Ux * Uoat_m * Ux_m * Uz_m * Ux_pi * Uz_p * Ux_p * Uoat_p * Ux

* Psi_i; % Final state vector with x-protocol

P_E0(i, j, k) = abs(Psi_f’ * P0 * Psi_f);

P_1(i, j, k) = abs(J - Psi_f’ * Jz * Psi_f) / N(k);

P_z(i, j, k) = real(Psi_f’ * Jz * Psi_f);

end

end

%% Computation for collective atomic interometer without spin-squeezing %%
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for i = 1 : numel(phi)

Uz_p = U_z(J, phi(i)/2); % Rotation around z axis in the first

dark zone

Uz_m = U_z(J, -phi(i)/2); % Rotation around z axis in the

second dark zone

Psi_f = Ux * Uz_m * Ux_pi * Uz_p * Ux * Psi_i;

P_E00(1, i, k) = abs(Psi_f’ * P0 * Psi_f);

P_10(1, i, k) = abs(J - Psi_f’ * Jz * Psi_f) / N(k);

P_z0(1, i, k) = real(Psi_f’ * Jz * Psi_f);

end

end

%% Plot the probabilities %%

for i = 1 : numel(mu)

figure % PLot P_E0

plot(phi/(2*pi), P_E0(i, :, 1), ’r-’, ’Linewidth’, 3)

hold on

plot(phi/(2*pi), P_E0(i, :, 2), ’b-’, ’Linewidth’, 3)

hold on

plot(phi/(2*pi), (P_E0(i, :, 1) + P_E0(i, :, 2))/2, ’k:’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_E00(1, :, 1), ’r--’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_E00(1, :, 2), ’b--’, ’Linewidth’, 2)
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xlabel(’$\frac{\phi}{2\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 20,

’Position’, [-4, 0, 0])

ylabel(’P_{E0}’, ’FontSize’, 15)

xlim([-0.025, 0.025])

ylim([-0.05, 1])

set(gca, ’fontsize’, 25)

legend([’Squeezed with N = ’ num2str(N(1))], [’Squeezed with N = ’

num2str(N(2))], ’Squeezed average’, ...

[’No squeezing with N = ’ num2str(N(1))], [’No squeezing with N = ’

num2str(N(2))])

title(’Collective state detection’, ’FontSize’, 15)

suptitle([’FS -- Squeezing with x-protocol and CRS = ’ num2str(CRS) ’ and \mu

= ’ num2str(mu(i)/pi) ’*\pi’]);

figure % PLot P_1

plot(phi/(2*pi), P_1(i, :, 1), ’r-’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_1(i, :, 2), ’b-’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), (P_1(i, :, 1) + P_1(i, :, 2))/2, ’k:’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_10(1, :, 1), ’r--’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_10(1, :, 2), ’b--’, ’Linewidth’, 2)

xlabel(’$\frac{\phi}{2\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 10)
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ylabel(’P_1’, ’FontSize’, 15)

ylim([0, 1])

legend([’Squeezed with N = ’ num2str(N(1))], [’Squeezed with N = ’

num2str(N(2))], ’Squeezed average’, ...

[’No squeezing with N = ’ num2str(N(1))], [’No squeezing with N = ’

num2str(N(2))])

title(’Conventional detection’, ’FontSize’, 15)

suptitle([’FS -- Squeezing with x-protocol and CRS = ’ num2str(CRS) ’ and \mu

= ’ num2str(mu(i)/pi) ’*\pi’]);

figure % PLot P_z

plot(phi/(2*pi), P_z(i, :, 1), ’r-’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_z(i, :, 2), ’b-’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), (P_z(i, :, 1) + P_z(i, :, 2))/2, ’k:’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_z0(1, :, 1), ’r--’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_z0(1, :, 2), ’b--’, ’Linewidth’, 2)

xlabel(’$\frac{\phi}{2\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 10)

ylabel(’P_z’, ’FontSize’, 15)

ylim([-J, J])

legend([’Squeezed with N = ’ num2str(N(1))], [’Squeezed with N = ’

num2str(N(2))], ’Squeezed average’, ...
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[’No squeezing with N = ’ num2str(N(1))], [’No squeezing with N = ’

num2str(N(2))])

title(’Conventional detection’, ’FontSize’, 15)

suptitle([’FS -- Squeezing with x-protocol and CRS = ’ num2str(CRS) ’ and \mu

= ’ num2str(mu(i)/pi) ’*\pi’]);

end

%% Print the running time %%

toc

D.4. QFR for SCAIN Using X-Protocol

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the quantum frequency fluctuation (QFF)

% for atomic interferometer with x-protocol spin squeezing (SS) in the basis of

the

% Dicke states (aka symmetric collective states) and compare the cases of

% even and odd number of atoms

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

%% The actual program starts here %%

clc

clear
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close all

%% Timing the program %%

tic

%% Initial parameters %%

n = 100; % Base number of elementary

spin (1/2-spin)

N = n : n + 1; % Total number of elementary

spin (1/2-spin)

step = 1e-8; % Step value for dark zone

phase shift

max = 1e-4; % Maximum plottable value of

dark zone phase shift

min = max - step; % Minimum plottable value of

dark zone phase shift

phi = [min, max]; % Dark zone phase shift

(angle rotated around z-axis)

theta1 = pi/2; % Angle rotated around

x-axis for pi/2-pulse

theta2 = pi; % Angle rotated around

x-axis for pi-pulse

mu = 0 : pi/400 : pi/2; % Squeezing parameters

CRS = 1; % Corrective rotation sign
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QFR_inv_P_E0 = zeros(numel(mu), numel(phi), numel(N)); % Inverse of QFR for

collective state detection

QFR_inv_P_Jz = zeros(numel(mu), numel(phi), numel(N)); % Inverse of QFR for

conventional detection

HL_inv = zeros(numel(N), 1); % Inverse of QFR in the

Heisenberg limit (HL)

SQL_inv = zeros(numel(N), 1); % Inverse of QFR in the

standard quantum limit (SQL)

QFR_inv_HL = zeros(numel(mu), 2); % Inverse of QFR in the

Heisenberg limit (HL)

QFR_inv_SQL = zeros(numel(mu), 2); % Inverse of QFR in the

standard quantum limit (SQL)

P_E0 = zeros(numel(phi), 2); % P_E0, probability in |E0>

with squeezing

P_E0_2 = zeros(numel(phi), 2); % (P_E0)^2

P_Jz = zeros(numel(phi), 2); % P_Jz, average value of Jz

with squeezing

P_Jz_2 = zeros(numel(phi), 2); % (P_Jz)^2

for k = 1 : numel(N)

%% Initial parameters for each case %%

J = N(k)/2; % Total spin of the system

(spin-J system)
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Jz = J_z(J); % Jz matrix form in the

Dicke states

Jx = J_x(J); % Jx matrix form in the

Dicke states

Jy = J_y(J); % Jy matrix form in the

Dicke states

Jp = J_plus(J); % J+ matrix form in the

Dicke states

Jm = J_minus(J); % J- matrix form in the

Dicke states

P0 = P_K(J, 0); % P0 matrix form in the

Dicke states

PN = P_K(J, N(k)); % PN matrix form in the

Dicke states

Psi_i = Psi_0(J, -J); % Initial state vector

(assumed all spin are down)

Ux = U_x(J, theta1); % Rotation around x axis in

the two pi/2-pulse interaction zones

Ux_pi = U_x(J, theta2); % Rotation around x axis in

the pi-pulse interaction zone

nu = nu_oat_x(J, mu); % Corrective rotation angle

rotated around x-axis

HL_inv(k) = N(k); % Inverse of QFR in the

Heisenberg limit (HL)
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SQL_inv(k) = HL_inv(k) / sqrt(N(k)); % Inverse of QFR in the

standard quantum limit (SQL)

QFR_inv_HL(:, k) = repmat(HL_inv(k), numel(mu), 1); % Inverse of QFR in the

Heisenberg limit (HL)

QFR_inv_SQL(:, k) = repmat(SQL_inv(k), numel(mu), 1); % Inverse of QFR in the

standard quantum limit (SQL)

%% Computation for collective atomic clock with spin-squeezing %%

for i = 1 : numel(mu)

Uoat_p = U_oat(J, mu(i)); % Unitary transformation for

doing one-axis twisting

Uoat_m = U_oat(J, -mu(i)); % Unitary transformation for

undoing one-axis twisting

Ux_p = U_x(J, nu(i)); % Corrective rotation around

x axis after squeezing

Ux_m = U_x(J, nu(i) * CRS); % Corrective rotation around

x axis before undoing squeezing

for j = 1 : numel(phi)

Uz_p = U_z(J, phi(j)/2); % Rotation around z axis in

the first dark zone

Uz_m = U_z(J, -phi(j)/2); % Rotation around z axis in

the second dark zone

Psi_f = Ux * Uoat_m * Ux_m * Uz_m * Ux_pi * Uz_p * Ux_p * Uoat_p * Ux

* Psi_i; % Final state vector with x-protocol
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P_E0(j, k) = abs(Psi_f’ * P0 * Psi_f);

P_E0_2(j, k) = abs(Psi_f’ * P0 * P0 * Psi_f);

P_Jz(j, k) = abs(Psi_f’ * Jz * Psi_f);

P_Jz_2(j, k) = abs(Psi_f’ * Jz * Jz * Psi_f);

Delta_P_E0 = sqrt(abs(P_E0_2(j, k) - P_E0(j, k).^2));

Delta_P_Jz = sqrt(abs(P_Jz_2(j, k) - P_Jz(j, k).^2));

Partial_P_E0 = 0;

Partial_P_Jz = 0;

if j > 1

Partial_P_E0 = abs(P_E0(j, k) - P_E0(j - 1, k)) / step;

Partial_P_Jz = abs(P_Jz(j, k) - P_Jz(j - 1, k)) / step;

end

QFR_inv_P_E0(i, j, k) = Partial_P_E0 / Delta_P_E0;

QFR_inv_P_Jz(i, j, k) = Partial_P_Jz / Delta_P_Jz;

end

end

end

%% Plot inverse of QFF vs. squeezing parameter mu %%
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point = numel(phi); % The point to take the QFF of the dark zone phase

shift

% Plot in subplots

subplot(1, 3, 1) % Plot QFR_inv for conventional detection but different N

plot(mu/pi, QFR_inv_P_Jz(:, point, 1)/HL_inv(1), ’r-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_P_Jz(:, point, 2)/HL_inv(2), ’b--’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2)

legend({[’N = ’ num2str(N(1))], [’N = ’ num2str(N(2))], ’HL’, ’SQL’},

’FontSize’, 12)

legend(’boxoff’)

xlabel(’\mu/\pi’, ’FontSize’, 15)

ylabel(’QFR^{-1}/QFR^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title(’Atomic State Detection’, ’FontSize’, 15)

subplot(1, 3, 2) % Plot QFR_inv for even N but different detection schemes

plot(mu/pi, QFR_inv_P_Jz(:, point, 1)/HL_inv(1), ’r-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_P_E0(:, point, 1)/HL_inv(1), ’b--’, ’Linewidth’, 2)

hold on
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plot(mu/pi, QFR_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2) % Normaized HL

hold on

plot(mu/pi, QFR_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2) % Normaized SQL

legend({’Atomic State Det’, ’Collective State Det’, ’HL’, ’SQL’}, ’FontSize’, 12)

legend(’boxoff’)

xlabel(’\mu/\pi’, ’FontSize’, 15)

ylabel(’QFR^{-1}/QFR^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title([’N = ’ num2str(N(1))], ’FontSize’, 15)

subplot(1, 3, 3) % Plot QFR_inv for odd N but different detection schemes

plot(mu/pi, QFR_inv_P_Jz(:, point, 2)/HL_inv(2), ’r-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_P_E0(:, point, 2)/HL_inv(2), ’b--’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2) % Normaized HL

hold on

plot(mu/pi, QFR_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2) % Normaized SQL

legend({’Atomic State Det’, ’Collective State Det’, ’HL’, ’SQL’}, ’FontSize’, 12)

legend(’boxoff’)

xlabel(’\mu/\pi’, ’FontSize’, 15)

ylabel(’QFR^{-1}/QFR^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title([’N = ’ num2str(N(2))], ’FontSize’, 15)
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% Plot separately

figure % Plot QFR_inv for collective state detection but different N

plot(mu/pi, QFR_inv_P_E0(:, point, 1)/HL_inv(1), ’r-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_P_E0(:, point, 2)/HL_inv(2), ’b--’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2) % Normaized HL

hold on

plot(mu/pi, QFR_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2) % Normaized SQL

legend([’N = ’ num2str(N(1))], [’N = ’ num2str(N(2))], ’HL’, ’SQL’)

xlabel(’$\frac{\mu}{\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’QFR^{-1}/QFR^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title(’Collective state detection -- QFR^{-1}/QFR^{-1}_{HL} vs. \mu’,

’FontSize’, 12)

suptitle([’QFR -- Squeezing with x-protocol and CRS = ’ num2str(CRS)]);

figure % Plot QFR_inv for conventional detection but different N

plot(mu/pi, QFR_inv_P_Jz(:, point, 1)/HL_inv(1), ’r-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_P_Jz(:, point, 2)/HL_inv(2), ’b--’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2)
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legend([’N = ’ num2str(N(1))], [’N = ’ num2str(N(2))], ’HL’, ’SQL’)

xlabel(’$\frac{\mu}{\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’QFR^{-1}/QFR^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title(’Atomic state detection -- QFR^{-1}/QFR^{-1}_{HL} vs. \mu’, ’FontSize’, 12)

suptitle([’QFR -- Squeezing with x-protocol and CRS = ’ num2str(CRS)]);

figure % Plot QFR_inv for even N but different detection schemes

plot(mu/pi, QFR_inv_P_Jz(:, point, 1)/HL_inv(1), ’r-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_P_E0(:, point, 1)/HL_inv(1), ’b--’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2) % Normaized HL

hold on

plot(mu/pi, QFR_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2) % Normaized SQL

legend(’Atomic state detection’, ’Collective state detection’, ’HL’, ’SQL’)

xlabel(’$\frac{\mu}{\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’QFR^{-1}/QFR^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title([’N = ’ num2str(N(1)) ’ -- QFR^{-1}/QFR^{-1}_{HL} vs. \mu’], ’FontSize’,

12)

suptitle([’QFR -- Squeezing with x-protocol and CRS = ’ num2str(CRS)]);

figure % Plot QFR_inv for odd N but different detection schemes

plot(mu/pi, QFR_inv_P_Jz(:, point, 2)/HL_inv(2), ’r-’, ’Linewidth’, 2)
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hold on

plot(mu/pi, QFR_inv_P_E0(:, point, 2)/HL_inv(2), ’b--’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFR_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2) % Normaized HL

hold on

plot(mu/pi, QFR_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2) % Normaized SQL

legend(’Atomic state detection’, ’Collective state detection’, ’HL’, ’SQL’)

xlabel(’$\frac{\mu}{\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’QFR^{-1}/QFR^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title([’N = ’ num2str(N(2)) ’ -- QFR^{-1}/QFR^{-1}_{HL} vs. \mu’], ’FontSize’,

12)

suptitle([’QFR -- Squeezing with x-protocol and CRS = ’ num2str(CRS)]);

%% Print the running time %%

toc

D.5. QPD for SCAC Using X-Protocol

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the state vector evolutioins of

% atomic clocks with x-protocol spin squeezing (SS) in the basis of the

% Dicke states (aka symmetric collective states) for even or odd number of

% atoms. The state vector is then projected onto the coherent spin states (CSS).
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%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

%% The actual program starts here %%

clc

clear

close all

%% Timing the program %%

tic

%% Initial parameters %%

N = 40; % Total number of elementary spin (1/2-spin)

J = N/2; % Total spin of the system (spin-J system)

Jz = J_z(J); % Jz matrix form in the Dicke states

Jx = J_x(J); % Jx matrix form in the Dicke states

Jy = J_y(J); % Jy matrix form in the Dicke states

Jp = J_plus(J); % J+ matrix form in the Dicke states

Jm = J_minus(J); % J- matrix form in the Dicke states

P0 = P_K(J, 0); % P0 matrix form in the Dicke states

PN = P_K(J, N); % PN matrix form in the Dicke states

alpha1 = pi/2/N; % Dark zone phase shift (angle rotated around

z-axis)
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beta = pi/2; % Interaction zone pulse width for pi/2 pulse

mu = pi/2; % Squeezing parameters

nu = nu_oat_x(J, mu); % Corrective rotation angle rotated around

x-axis

CRS = -1; % Corrective rotation sign

[theta, phi] = meshgrid(0 : pi/500 : pi, -pi : pi/250 : pi); % the spherical

coordinates

x = sin(theta).*cos(phi); % Corresponding x coordinate

y = sin(theta).*sin(phi); % Corresponding y coordinate

z = cos(theta); % Corresponding z coordinate

[m, n] = size(theta);

%% Initial state vector and operators for spin squeezing %%

Psi_i = Psi_0(J, -J); % Initial state vector of the system (assumed

all spin are down)

Ux = U_x(J, beta); % Rotation around x axis in the two

interaction zones

Uoat_p = U_oat(J, mu); % Unitary transformation for doing one-axis

twisting

Ux_p = U_x(J, nu); % Corrective rotation around x axis after

squeezing

Uz = U_z(J, alpha1); % Rotation around z axis in the dark zone

Ux_m = U_x(J, nu * CRS); % Corrective rotation around x axis before

undoing squeezing
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Uoat_m = U_oat(J, -mu); % Unitary transformation for undoing one-axis

twisting

%% State vector evolution %%

d = 8;

P = zeros(m, n, d);

Psi_f = zeros(N + 1, d);

Psi_f(:, 1) = Psi_i;

Psi_f(:, 2) = Ux * Psi_f(:, 1);

Psi_f(:, 3) = Uoat_p * Psi_f(:, 2);

Psi_f(:, 4) = Ux_p * Psi_f(:, 3);

Psi_f(:, 5) = Uz * Psi_f(:, 4);

Psi_f(:, 6) = Ux_m * Psi_f(:, 5);

Psi_f(:, 7) = Uoat_m * Psi_f(:, 6);

Psi_f(:, 8) = Ux * Psi_f(:, 7);

for i = 1 : m

for j = 1 : n

css_theta_phi = css(J, theta(i, j), phi(i, j)); % state vector of CSS in

direction (theta, phi)

for k = 1 : d

P(i, j, k) = abs(css_theta_phi’ * Psi_f(:, k)).^2;

end

end
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end

%% Plot the probabilities %%

x_axis = -1 : 1/1000 : 1; % auxiliary line

y_axis = -1 : 1/1000 : 1; % auxiliary line

z_axis = -1 : 1/1000 : 1; % auxiliary line

px = cos(pi * x_axis); % auxiliary circle

py = sin(pi * x_axis); % auxiliary circle

if rem(N, 2) == 0

AZ = [185, 185, 95, 185, 185, 95, 95, 185]; % Pespective view azimuthal angle

-- Even N

else

AZ = [185, 185, 185, 185, 185, 95, 185, 185]; % Pespective view azimuthal

angle -- Odd N

end

EL = [-5, -5, -5, -5, -5, -5, -5, -5]; % Pespective view elevation angle

for k = 1 : d

% PLot as a function of theta & phi

figure

mesh(theta/pi, phi/(2*pi), P(:, :, k))

xlabel(’$\frac{\theta}{\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’$\frac{\phi}{2\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)
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zlabel(’P’)

title([’Husimi quasi-probability distribution in terms of \theta and \phi --

Squeezing with y-protocol and N = ’...

num2str(N) ’ and CRS = ’ num2str(CRS) ’ and \mu = ’ num2str(mu/pi)

’*\pi’])

% PLot as a function of x & y & z

figure

mesh(x, y, z, P(:, :, k))

xlabel(’X’)

ylabel(’Y’)

zlabel(’Z’)

title([’Husimi quasi-probability distribution in terms of x, y and z --

Squeezing with x-protocol and N = ’...

num2str(N) ’ and CRS = ’ num2str(CRS) ’ and \mu = ’ num2str(mu/pi)

’*\pi’])

colormap cool

colorbar

% PLot as a function of x & y & z with auxiliary lines

figure

plot3(px, py, zeros(1, numel(px)), ’k’, ’linewidth’, 2) % circle perp to z

hold on

plot3(zeros(1, numel(px)), px, py, ’k’, ’linewidth’, 2) % circle perp to x

hold on
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plot3(px, zeros(1, numel(px)), py, ’k’, ’linewidth’, 2) % circle perp to y

hold on

plot3(x_axis, zeros(1, numel(x_axis)), zeros(1, numel(x_axis)), ’k’,

’linewidth’, 2) % draws x-axis

hold on

plot3(zeros(1, numel(y_axis)), y_axis, zeros(1, numel(y_axis)), ’k’,

’linewidth’, 2) % draws y-axis

hold on

plot3(zeros(1, numel(z_axis)), zeros(1, numel(z_axis)), z_axis, ’k’,

’linewidth’, 2) % draws z-axis

hold on

sf = surf(x, y, z, P(:, :, k));

alpha(sf, 0.9) % make sure this function is not shadowed by user-defined

variables

shading interp;

axis off;

colormap cool

view(AZ(k), EL(k))

end

%% Print the running time %%

toc

D.6. CPD for SCAC Using X-Protocol
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%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the state vector evolutioins of

% atomic clocks with x-protocol spin squeezing (SS) in the basis of the

% Dicke states (aka symmetric collective states) for even or odd number of

% atoms. The state vector is then projected onto the Dicke states to plot the

% population distribution on each symmetric collective state.

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

%% The actual program starts here %%

clc

clear

close all

%% Timing the program %%

tic

%% Initial parameters %%

N = 40; % Total number of elementary spin (1/2-spin)

J = N/2; % Total spin of the system (spin-J system)

Jz = J_z(J); % Jz matrix form in the Dicke states

Jx = J_x(J); % Jx matrix form in the Dicke states

Jy = J_y(J); % Jy matrix form in the Dicke states
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Jp = J_plus(J); % J+ matrix form in the Dicke states

Jm = J_minus(J); % J- matrix form in the Dicke states

P0 = P_K(J, 0); % P0 matrix form in the Dicke states

PN = P_K(J, N); % PN matrix form in the Dicke states

if rem(N, 2) == 0

alpha = pi/2/N; % Dark zone phase shift (angle rotated around

z-axis) -- even N

else

alpha = pi/4; % Dark zone phase shift (angle rotated around

z-axis) -- odd N

end

beta = pi/2; % Interaction zone width for pi/2-pulses

mu = pi/2; % Squeezing parameters

nu = nu_oat_x(J, mu); % Corrective rotation angle rotated around

x-axis

CRS = -1; % Corrective rotation sign

%% Initial state vector and operators for spin squeezing %%

Psi_i = Psi_0(J, -J); % Initial state vector of the system (assumed

all spin are down)

Ux = U_x(J, beta); % Rotation around x axis for the two

pi/2-pulse interaction zones
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Uoat_p = U_oat(J, mu); % Unitary transformation for doing one-axis

twisting

Ux_p = U_x(J, nu); % Corrective rotation around x axis after

squeezing

Uz = U_z(J, alpha); % Rotation around z axis in the dark zone

Ux_m = U_x(J, nu * CRS); % Corrective rotation around x axis before

undoing squeezing

Uoat_m = U_oat(J, -mu); % Unitary transformation for undoing one-axis

twisting

%% State vector evolution %%

d = 8;

Psi_f = zeros(N + 1, d);

Psi_f(:, 1) = Psi_i;

Psi_f(:, 2) = Ux * Psi_f(:, 1);

Psi_f(:, 3) = Uoat_p * Psi_f(:, 2);

Psi_f(:, 4) = Ux_p * Psi_f(:, 3);

Psi_f(:, 5) = Uz * Psi_f(:, 4);

Psi_f(:, 6) = Ux_m * Psi_f(:, 5);

Psi_f(:, 7) = Uoat_m * Psi_f(:, 6);

Psi_f(:, 8) = Ux * Psi_f(:, 7);

%% Plot the probabilities %%

x_pos = -4; % Position of x label

x_lower = -2; % Lower limit of x axis
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x_upper = N + 2; % Upper limit of x axis

% Plot in subplots

if N == 100

y_upper = [1.1, 0.1, 0.6, 0.2, 0.6];

elseif N == 101

y_upper = [1.1, 0.1, 0.2, 0.08, 0.16];

elseif N == 40

y_upper = [1.1, 0.2, 0.6, 0.3, 0.6];

elseif N == 41

y_upper = [1.1, 0.2, 0.3, 0.15, 0.2];

else

y_upper = [1.1, 1.1, 1.1, 1.1, 1.1];

end

Psi_index = [1, 2, 4, 6, 8];

for k = 1 : 5

subplot(5, 1, k)

plot(N : -1 : 0, abs(Psi_f(:, Psi_index(k))).^2, ’b-’, ’Linewidth’, 2)

set(gca, ’xdir’, ’reverse’)

xlabel(’n’, ’FontSize’, 15, ’Position’, [x_pos, 0, 0])

ylabel(’P(E_n)’, ’FontSize’, 13)

xlim([x_lower, x_upper])

ylim([0, y_upper(k)])
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end

% Plot separately

for k = 1 : d

figure

plot(N : -1 : 0, abs(Psi_f(:, k)).^2, ’b-’, ’Linewidth’, 2)

set(gca, ’xdir’, ’reverse’)

xlabel(’n’, ’FontSize’, 15, ’Position’, [x_pos, 0, 0])

ylabel(’P(E_n)’, ’FontSize’, 13)

xlim([x_lower, x_upper])

title([’Collective state population distribution -- Squeezing with x-protocol

and N = ’...

num2str(N) ’ and CRS = ’ num2str(CRS) ’ and \mu = ’ num2str(mu/pi)

’*\pi’])

end

%% Print the running time %%

toc

D.7. Frequency Scanning for SCAC Using X-Protocol

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the frequency scanning (FS) results of

% atomic clocks with x-protocol spin squeezing (SS) in the basis of the
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% Dicke states (aka symmetric collective states) and compare the cases of

% even and odd number of atoms

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%

%% The actual program starts here %%

clc

clear

close all

%% Timing the program %%

tic

%% Initial parameters %%

n = 100; % Base number of elementary spin

(1/2-spin)

N = n : n + 1; % Total number of elementary spin

(1/2-spin)

max = 10 * pi/n; % Maximum plottable value of dark

zone phase shift

step = pi/2000; % Step value for dark zone phase shift

phi = -max : step : max; % Dark zone phase shift (angle

rotated around z-axis)
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theta = pi/2; % Interaction zone pulse width. For

Pi/2 pulse, theta = pi/2

mu = pi/2; % Squeezing parameters

CRS = 1; % Corrective rotation sign

P_EN = zeros(numel(mu), numel(phi), numel(N)); % P_EN, probability in |EN> with

squeezing

P_2 = zeros(numel(mu), numel(phi), numel(N)); % P_2, probability in |2>

(spin-up) with squeezing

P_z = zeros(numel(mu), numel(phi), numel(N)); % P_z, average value of Jz, as a

function of phi and mu, with squeezing

P_EN0 = zeros(1, numel(phi), numel(N)); % P_EN0, probability in |EN> without

squeezing

P_20 = zeros(1, numel(phi), numel(N)); % P_20, probability in |2> (spin-up)

without squeezing

P_z0 = zeros(1, numel(phi), numel(N)); % P_z0, average value of Jz, as a

function of phi, without squeezing

for k = 1 : numel(N)

%% Initial parameters for each case %%

J = N(k)/2; % Total spin of the system (spin-J

system)

Jz = J_z(J); % Jz matrix form in the Dicke states
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Jx = J_x(J); % Jx matrix form in the Dicke states

Jy = J_y(J); % Jy matrix form in the Dicke states

Jp = J_plus(J); % J+ matrix form in the Dicke states

Jm = J_minus(J); % J- matrix form in the Dicke states

P0 = P_K(J, 0); % P0 matrix form in the Dicke states

PN = P_K(J, N(k)); % PN matrix form in the Dicke states

Psi_i = Psi_0(J, -J); % Initial state vector of the system

(assumed all spin are down)

Ux = U_x(J, theta); % Rotation around x axis in the two

interaction zones

nu = nu_oat_x(J, mu); % Corrective rotation angle around

x-axis

%% Computation for collective atomic clock with spin-squeezing %%

for i = 1 : numel(mu)

Uoat_p = U_oat(J, mu(i)); % Unitary transformation for doing

one-axis twisting

Uoat_m = U_oat(J, -mu(i)); % Unitary transformation for undoing

one-axis twisting

Ux_p = U_x(J, nu(i)); % Corrective rotation around x axis

after squeezing

Ux_m = U_x(J, nu(i) * CRS); % Corrective rotation around x axis

before undoing squeezing

for j = 1 : numel(phi)
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Uz = U_z(J, phi(j)); % Rotation around z axis in the dark

zone

Psi_f = Ux * Uoat_m * Ux_m * Uz * Ux_p * Uoat_p * Ux * Psi_i; % Final

state vector with x-protocol

P_EN(i, j, k) = abs(Psi_f’ * PN * Psi_f);

P_2(i, j, k) = abs(J + Psi_f’ * Jz * Psi_f) / N(k);

P_z(i, j, k) = real(Psi_f’ * Jz * Psi_f);

end

end

%% Computation for collective atomic clock without spin-squeezing %%

for i = 1 : numel(phi)

Uz = U_z(J, phi(i)); % Rotation around z axis in the dark

zone

Psi_f = Ux * Uz * Ux * Psi_i; % Final state vector without squeezing

P_EN0(i, k) = abs(Psi_f’ * PN * Psi_f);

P_20(i, k) = abs(J + Psi_f’ * Jz * Psi_f) / N(k);

P_z0(i, k) = real(Psi_f’ * Jz * Psi_f);

end

end

%% Plot the probabilities %%

for i = 1 : numel(mu)

figure % PLot P_EN

plot(phi/(2*pi), P_EN(i, :, 1), ’b-’, ’Linewidth’, 2)
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hold on

plot(phi/(2*pi), P_EN(i, :, 2), ’r-’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), (P_EN(i, :, 1) + P_EN(i, :, 2))/2, ’k:’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_EN0(:, 1), ’b:’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_EN0(:, 2), ’r:’, ’Linewidth’, 2)

xlabel(’$\frac{\phi}{2\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’P_{EN}’, ’FontSize’, 15)

ylim([0, 1])

legend([’Squeezed with N = ’ num2str(N(1))], [’Squeezed with N = ’

num2str(N(2))], ’Squeezed average’, ...

[’No squeezing with N = ’ num2str(N(1))], [’No squeezing with N = ’

num2str(N(2))])

title(’Collective state detection’, ’FontSize’, 15)

suptitle([’FS -- Squeezing with x-protocol and CRS = ’ num2str(CRS) ’ and \mu

= ’ num2str(mu(i)/pi) ’*\pi’]);

figure % PLot P_2

plot(phi/(2*pi), P_2(i, :, 1), ’b-’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_2(i, :, 2), ’r-’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), (P_2(i, :, 1) + P_2(i, :, 2))/2, ’k:’, ’Linewidth’, 2)
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hold on

plot(phi/(2*pi), P_20(:, 1), ’b:’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_20(:, 2), ’r:’, ’Linewidth’, 2)

xlabel(’$\frac{\phi}{2\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’P_2’, ’FontSize’, 15)

ylim([0, 1])

legend([’Squeezed with N = ’ num2str(N(1))], [’Squeezed with N = ’

num2str(N(2))], ’Squeezed average’, ...

[’No squeezing with N = ’ num2str(N(1))], [’No squeezing with N = ’

num2str(N(2))])

title(’Conventional detection’, ’FontSize’, 15)

suptitle([’FS -- Squeezing with x-protocol and CRS = ’ num2str(CRS) ’ and \mu

= ’ num2str(mu(i)/pi) ’*\pi’]);

figure % PLot P_z

plot(phi/(2*pi), P_z(i, :, 1), ’b-’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_z(i, :, 2), ’r-’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), (P_z(i, :, 1) + P_z(i, :, 2))/2, ’k:’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_z0(:, 1), ’b:’, ’Linewidth’, 2)

hold on

plot(phi/(2*pi), P_z0(:, 2), ’r:’, ’Linewidth’, 2)
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xlabel(’$\frac{\phi}{2\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’P_z’, ’FontSize’, 15)

ylim([-J, J])

legend([’Squeezed with N = ’ num2str(N(1))], [’Squeezed with N = ’

num2str(N(2))], ’Squeezed average’, ...

[’No squeezing with N = ’ num2str(N(1))], [’No squeezing with N = ’

num2str(N(2))])

title(’Conventional detection’, ’FontSize’, 15)

suptitle([’FS -- Squeezing with x-protocol and CRS = ’ num2str(CRS) ’ and \mu

= ’ num2str(mu(i)/pi) ’*\pi’]);

end

%% Print the running time %%

toc

D.8. QFF for SCAC Using X-Protocol

%%%%%%%%%%% Purpose of this script %%%%%%%%%%

%

% This script is used to compute the quantum frequency fluctuation (QFF)

% for atomic clocks with x-protocol spin squeezing (SS) in the basis of the

% Dicke states (aka symmetric collective states) and compare the cases of

% even and odd number of atoms

%

%%%%%%%%%%%%%% End of purpose %%%%%%%%%%%%%%%
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%% The actual program starts here %%

clc

clear

close all

%% Timing the program %%

tic

%% Initial parameters %%

n = 40; % Base number of elementary

spin (1/2-spin)

N = n : n + 1; % Total number of elementary

spin (1/2-spin)

step = 1e-8; % Step value for dark zone

phase shift

max = 1e-4; % Maximum plottable value of

dark zone phase shift

min = max - step; % Minimum plottable value of

dark zone phase shift

phi = [min, max]; % Dark zone phase shift

(angle rotated around z-axis)

theta = pi/2; % Interaction zone pulse

width. Here theta = pi/2

mu = 0 : pi/400 : pi/2; % Squeezing parameters
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CRS = 1; % Corrective rotation sign

HL_inv = zeros(numel(N), 1); % Inverse of QFF in the

Heisenberg limit (HL) -- single value

SQL_inv = zeros(numel(N), 1); % Inverse of QFF in the

standard quantum limit (SQL) -- single value

QFF_inv_HL = zeros(numel(mu), 2); % Inverse of QFF in the

Heisenberg limit (HL)

QFF_inv_SQL = zeros(numel(mu), 2); % Inverse of QFF in the

standard quantum limit (SQL)

QFF_inv_P_EN = zeros(numel(mu), numel(phi), numel(N)); % Inverse of QFF for

collective state detection

QFF_inv_P_Jz = zeros(numel(mu), numel(phi), numel(N)); % Inverse of QFF for

conventional detection

QFF_inv_P_SU = zeros(numel(mu), numel(phi), numel(N)); % Inverse of QFF for

SU-protocol

P_EN = zeros(numel(phi), 2); % P_EN, probability in |EN>

with squeezing

P_EN_2 = zeros(numel(phi), 2); % (P_EN)^2

P_Jz = zeros(numel(phi), 2); % P_Jz, average value of Jz

with squeezing

P_Jz_2 = zeros(numel(phi), 2); % (P_Jz)^2
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P_SU = zeros(numel(phi), 2); % P_SU, average value of Jy

with squeezing for the SU protocol

P_SU_2 = zeros(numel(phi), 2); % (P_SU)^2

for k = 1 : numel(N)

%% Initial parameters for each case %%

J = N(k)/2; % Total spin of the system

(spin-J system)

Jz = J_z(J); % Jz matrix form in the

Dicke states

Jx = J_x(J); % Jx matrix form in the

Dicke states

Jy = J_y(J); % Jy matrix form in the

Dicke states

Jp = J_plus(J); % J+ matrix form in the

Dicke states

Jm = J_minus(J); % J- matrix form in the

Dicke states

P0 = P_K(J, 0); % P0 matrix form in the

Dicke states

PN = P_K(J, N(k)); % PN matrix form in the

Dicke states

Psi_i = Psi_0(J, -J); % Initial state vector

(assumed all spin are down)
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Psi_i_SU = css(J, pi/2, 0); % Initial state vector for

SU-protocol: CSS |+x>

Ux = U_x(J, theta); % Rotation around x axis in

the two interaction zones

nu = nu_oat_x(J, mu); % Corrective rotation angle

rotated around x-axis

HL_inv(k) = N(k); % Inverse of QFF in the

Heisenberg limit (HL)

SQL_inv(k) = HL_inv(k) / sqrt(N(k)); % Inverse of QFF in the

standard quantum limit (SQL)

QFF_inv_HL(:, k) = repmat(HL_inv(k), numel(mu), 1); % Inverse of QFF in the

Heisenberg limit (HL)

QFF_inv_SQL(:, k) = repmat(SQL_inv(k), numel(mu), 1); % Inverse of QFF in the

standard quantum limit (SQL)

%% Computation for collective atomic clock with spin-squeezing %%

for i = 1 : numel(mu)

Uoat_p = U_oat(J, mu(i)); % Unitary transformation for

doing one-axis twisting

Uoat_m = U_oat(J, -mu(i)); % Unitary transformation for

undoing one-axis twisting

Ux_p = U_x(J, nu(i)); % Corrective rotation around

x axis after squeezing
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Ux_m = U_x(J, nu(i) * CRS); % Corrective rotation around

x axis before undoing squeezing

for j = 1 : numel(phi)

Uz = U_z(J, phi(j)); % Rotation around z axis in

the dark zone

Psi_f = Ux * Uoat_m * Ux_m * Uz * Ux_p * Uoat_p * Ux * Psi_i; % Final

state vector with x-protocol

P_EN(j, k) = abs(Psi_f’ * PN * Psi_f);

P_EN_2(j, k) = abs(Psi_f’ * PN * PN * Psi_f);

P_Jz(j, k) = abs(Psi_f’ * Jz * Psi_f);

P_Jz_2(j, k) = abs(Psi_f’ * Jz * Jz * Psi_f);

Delta_P_EN = sqrt(abs(P_EN_2(j, k) - P_EN(j, k).^2));

Delta_P_Jz = sqrt(abs(P_Jz_2(j, k) - P_Jz(j, k).^2));

Partial_P_EN = 0;

Partial_P_Jz = 0;

if j > 1

Partial_P_EN = abs(P_EN(j, k) - P_EN(j - 1, k)) / step;

Partial_P_Jz = abs(P_Jz(j, k) - P_Jz(j - 1, k)) / step;

end
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QFF_inv_P_EN(i, j, k) = Partial_P_EN / Delta_P_EN;

QFF_inv_P_Jz(i, j, k) = Partial_P_Jz / Delta_P_Jz;

% SU-protocol

Uy = U_y(J, phi(j)); % Rotation around y axis for

SU-protocol

Psi_f_SU = Uoat_m * Uy * Uoat_p * Psi_i_SU; % Final state vector with

SU-protocol

P_SU(j, k) = abs(Psi_f_SU’ * Jy * Psi_f_SU);

P_SU_2(j, k) = abs(Psi_f_SU’ * Jy * Jy * Psi_f_SU);

Delta_P_SU = sqrt(abs(P_SU_2(j, k) - P_SU(j, k).^2));

Partial_P_SU = 0;

if j > 1

Partial_P_SU = abs(P_SU(j, k) - P_SU(j - 1, k)) / step;

end

QFF_inv_P_SU(i, j, k) = Partial_P_SU / Delta_P_SU;

end

end

end

%% Plot inverse of QFF vs. squeezing parameter mu %%
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point = numel(phi); % The point to take the QFF of the dark zone phase

shift

%Plot in subplots

subplot(1, 2, 1) % Plot QFF_inv for even N but different detection schemes

plot(mu/pi, QFF_inv_P_Jz(:, point, 1)/HL_inv(1), ’r-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_P_EN(:, point, 1)/HL_inv(1), ’b--’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_P_SU(:, point, 1)/HL_inv(1), ’g-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2) % Normaized HL

hold on

plot(mu/pi, QFF_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2) % Normaized SQL

legend({’Atomic State Det’, ’Collective State Det’, ’SU Protocol’, ’HL’, ’SQL’},

’FontSize’, 14)

legend(’boxoff’)

xlabel(’\mu/\pi’, ’FontSize’, 15)

ylabel(’QFF^{-1}/QFF^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title([’N = ’ num2str(N(1))], ’FontSize’, 15)

subplot(1, 2, 2) % Plot QFF_inv for odd N but different detection schemes

plot(mu/pi, QFF_inv_P_Jz(:, point, 2)/HL_inv(2), ’r-’, ’Linewidth’, 2)

hold on
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plot(mu/pi, QFF_inv_P_EN(:, point, 2)/HL_inv(2), ’b--’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_P_SU(:, point, 2)/HL_inv(2), ’g-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2) % Normaized HL

hold on

plot(mu/pi, QFF_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2) % Normaized SQL

legend({’Atomic State Det’, ’Collective State Det’, ’SU Protocol’, ’HL’, ’SQL’},

’FontSize’, 14)

legend(’boxoff’)

xlabel(’\mu/\pi’, ’FontSize’, 15)

ylabel(’QFF^{-1}/QFF^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title([’N = ’ num2str(N(2))], ’FontSize’, 15)

% Plot separately

figure % Plot QFF_inv for collective state detection but different N

plot(mu/pi, QFF_inv_P_EN(:, point, 1)/HL_inv(1), ’r-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_P_EN(:, point, 2)/HL_inv(2), ’b:’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2) % Normalized HL

hold on

plot(mu/pi, QFF_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2) % Normalized SQL

legend([’N = ’ num2str(N(1))], [’N = ’ num2str(N(2))], ’HL’, ’SQL’)
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xlabel(’$\frac{\mu}{\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’QFF^{-1}/QFF^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title(’Collective state detection -- QFF^{-1}/QFF^{-1}_{HL} vs. \mu’,

’FontSize’, 15)

suptitle([’QFF -- Squeezing with x-protocol and CRS = ’ num2str(CRS)]);

figure % Plot QFF_inv for conventional detection but different N

plot(mu/pi, QFF_inv_P_Jz(:, point, 1)/HL_inv(1), ’r-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_P_Jz(:, point, 2)/HL_inv(2), ’b:’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2)

legend([’N = ’ num2str(N(1))], [’N = ’ num2str(N(2))], ’HL’, ’SQL’)

xlabel(’$\frac{\mu}{\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’QFF^{-1}/QFF^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title(’Conventional detection -- QFF^{-1}/QFF^{-1}_{HL} vs. \mu’, ’FontSize’, 15)

suptitle([’QFF -- Squeezing with x-protocol and CRS = ’ num2str(CRS)]);

figure % Plot QFF_inv for even N but different detection schemes

plot(mu/pi, QFF_inv_P_Jz(:, point, 1)/HL_inv(1), ’r-’, ’Linewidth’, 2)

hold on
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plot(mu/pi, QFF_inv_P_EN(:, point, 1)/HL_inv(1), ’b--’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2) % Normalized HL

hold on

plot(mu/pi, QFF_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2) % Normalized SQL

legend(’Conventional detection’, ’Collective state detection’, ’HL’, ’SQL’)

xlabel(’$\frac{\mu}{\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’QFF^{-1}/QFF^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])

title([’N = ’ num2str(N(1)) ’ -- QFF^{-1}/QFF^{-1}_{HL} vs. \mu’], ’FontSize’,

15)

suptitle([’QFF -- Squeezing with x-protocol and CRS = ’ num2str(CRS)]);

figure % Plot QFF_inv for odd N but different detection schemes

plot(mu/pi, QFF_inv_P_Jz(:, point, 2)/HL_inv(1), ’r-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_P_EN(:, point, 2)/HL_inv(2), ’b:’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_HL(:, 1)/HL_inv(1), ’k-’, ’Linewidth’, 2)

hold on

plot(mu/pi, QFF_inv_SQL(:, 1)/HL_inv(1), ’k:’, ’Linewidth’, 2)

legend(’Conventional detection’, ’Collective state detection’, ’HL’, ’SQL’)

xlabel(’$\frac{\mu}{\pi}$’, ’Interpreter’, ’latex’, ’FontSize’, 15)

ylabel(’QFF^{-1}/QFF^{-1}_{HL}’, ’FontSize’, 10)

ylim([0, 1.2])
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title([’N = ’ num2str(N(2)) ’ -- QFF^{-1}/QFF^{-1}_{HL} vs. \mu’], ’FontSize’,

15)

suptitle([’QFF -- Squeezing with x-protocol and CRS = ’ num2str(CRS)]);

%% Print the running time %%

toc
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