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Abstract

Schrödinger Cat State Atomic Interferometer with Heisenberg-Limited Sensitivity and

Detection of Collective States

Resham Sarkar

An atom interferometric gyroscope (AIG) made with an uncorrelated ensemble of N

two-level atoms, rotating at a rate ΩG about an axis normal to the area Θ accrues a

phase ϕ = 2ωCΘΩG/c
2 due to the Sagnac effect. Here ωC is the Compton frequency of

the atoms used, and c is the speed of light in vacuum. The rotation sensitivity of such

an AIG is restricted by the standard quantum limit (SQL), δΩG = c2/2ωCΘ
√
N . This

is a direct consequence of the Heisenberg uncertainty principle. Introducing entangle-

ment in the system can enhance this precision upto the fundamental Heisenberg limit,

∆ϕ = c2/2ωCΘN . Essentially, this can be interpreted as an AIG with a single particle

of Compton frequency NωC . Motivated by this, we explore the use of large number of

particles treated as a single entity, first without entanglement in a collective state atomic

interferometer (COSAIN), and then under spin squeezing in a Schrödinger cat atomic

interferometer (SCAIN).
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As a first step towards achieving this goal, we investigate the behavior of an ensemble

of N non-interacting, identical atoms, excited by a laser with a wavelength of λ. In his

seminal paper, R. H. Dicke showed that such an ensemble evolves into a superposition of

N + 1 symmetric states, {|E0⟩ , |E1⟩ , . . . , |EN⟩} under conditions that each atom experi-

ences identical motion induced Doppler shift, and Rabi frequency. We show that when

these ideal conditions are breached, i.e., the i-th atom experiences Rabi frequency Ωi, and

Doppler shift δi, the ensemble evolves into a superposition of N + 1 symmetric, as well

as 2N − (N + 1) asymmetric states. For a large value of N , the number of asymmetric

states is far greater than that of the symmetric states. It is important to understand the

behavior of all the collective states under various non-idealities for the realization of a

COSAIN, as well as a collective state atomic clock (COSAC) - a device based on similar

principles.

In this thesis, we show first how to formulate the properties of all the collective states

under various non-idealities, and use this formulation to understand the dynamics thereof.

We show that the collective states corresponding to the absorption of a given number of

photons can be visualized as an abstract, multi-dimensional rotation in the Hilbert space

spanned by the ordered product states of individual atoms. We also consider the effect

of treating the center of mass degree of freedom of the atoms quantum mechanically on

the description of the collective states. In particular, we show that it is indeed possible

to construct a generalized collective state, as needed for the COSAIN, when each atom is

assumed to be in a localized wave packet.

Based on the model of collective states developed thus far, we describe the COSAIN

with the signal fringe as a function of ϕ, and therefore, ΩG narrowed by
√
N compared
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to a conventional Raman atomic interferometer (CRAIN). This effect arises from the

interferences among the collective states, and is a manifestation of interference at 2πωC =

1040 Hz, de Broglie wavelength of 4.5 × 10−15 m, for N = 106 and v = 1 m/s. The

population of the collective state of interest is detected by a null measurement scheme,

in which an event corresponding to detection of zero photons corresponds to the system

being in that particular collective state. The signal is detected by collecting fluorescence

through stimulated Raman scattering of Stokes photons, which are emitted predominantly

against the direction of the probe beam, for a high enough resonant optical density. The

sensitivity of the ideal COSAIN is found to be given by the SQL. However, when detection

efficiency and collection efficiency are taken into account, the detection scheme of the

COSAIN increases the quantum efficiency of detection significantly in comparison to a

typical CRAIN employing fluorescence detection, yielding a net improvement in stability

by as much as a factor of 10. We discuss how the inhomogeneities arising from the non-

uniformity in experimental parameters affect the COSAIN signal. We also describe an

alternate experimental scheme to enhance resonant optical density in a COSAIN by using

cross-linearly polarized counter-propagating Raman beams.

Finally, we explore the application of spin squeezing echo to surpass the SQL, and

achieve Heisenberg scaling of rotation sensitivity in an AIG. We first review the spin

representation of two-level atoms, and Coherent Spin States (CSS) which are equivalent

of the Dicke collective states in this picture. The quantum fluctuations of a CSS are

isotropic in the plane orthogonal to the direction of the mean spin. The application of

spin squeezing to correlate the individual spins via a nonlinear interaction suppresses the

quantum fluctuations along an orthogonal axis (to the mean spin) while inflating that
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along the third axis, generating Squeezed Spin States. We describe the SCAIN, which

is a COSAIN with Heisenberg scaling of phase sensitivity, enhanced by the application

of squeezing echo. Explicitly, we employ what is known as the one axis twisting (OAT)

spin squeezing on an initial CSS followed by a perturbation, at the end of which we seek

to reverse the squeezing by switching the sign of the nonlinear interaction. In practice,

this encourages increased interference between states with higher contrast in Compton

frequency, resulting in the narrowing of signal fringe width by a factor ∼ N .

The parameter of squeezing µ, which indicates length of interaction, dictates the

signal fringe width, and therefore, δΩG. However, this technique inherently depends on

whether N is even or odd. For large ensembles, it is virtually impossible to determine

this a priori. The protocol we describe here eliminates this complexity. At µ = π, the

well known Greenberger–Horne–Zeilinger (GHZ) states are obtained for even values of N .

These states are pure cat states of an equal superposition of |E0⟩ and |EN⟩. The signal

generated from the echo protocol in this regime is narrowed by a factor of N . On the

contrary, odd values of N produce a null signal. In an actual experiment, the total signal

is averaged over multiple runs, and leads to a signal halved in amplitude than what is

expected for even N . The rotation sensitivity of the SCAIN in this regime is given by the

Heisenberg limit. For values of µ < π, both odd and even N generate almost identical

signal fringes. We show that the SCAIN can attain a rotation sensitivity lower than the

Heisenberg limit by a factor of e−1/3 for interaction times significantly less than µ = π.



7

Acknowledgements

”জানার মােঝ অজানাের কেরিছ সƉান”

This line from Rabindranath Tagore’s celebrated Gitabitan that roughly translates to ”I

have searched for the unknown within the realms of the known” sums up the time I have

spent working under the aegis of Selim Shahriar. He is a gifted and willing teacher, whose

optimism and encouragement has pushed me to see beyond the boundaries of my limited

knowledge. I could not have dreamed of a more benevolent adviser to guide my research.

I would like to thank my committee members, John Ketterson and Brian Odom for

their thought-provoking comments, which ignited impassioned debates and have led to

several pivotal points in my research. I am also thankful to Phil Hemmer for his insights

on the experimental aspects of developing the interferometer that shaped our vision for

theoretical modeling.

It would be a matter of unfounded hubris to believe that my academic pursuits were

mine alone. I would like to thank Yanfei Tu and Renpeng Fang for being my guides to

the world of experimental optics when I first began in this field; Mohamed Fouda for

being my live Matlab stackoverflow; Mehjabin Monjur, Minchuan Zhou and Zifan Zhou

for their company during conferences and the much needed lighthearted conversations;

Ye Wang and Subramanian Krishnamurthy for their constant career counseling even after

they had long graduated; and Josh Yablon for supplying the funnies during the most

serious situations. Over the course of exploring special relativity as a side project, I



8

had the privilege of getting acquainted with Daniel Villalon. I thank him for our long

deliberations on logic and philosophy.

The environment at Northwestern fosters a spirit of engagement with the community.

For this, I am grateful, in particular, to Penelope Warren at TGS for fiercely advocating

for graduate students. Her unfaltering support has helped IGSSA thrive, and gifted me

friends that I cherish. I also thank Mearah Quinn-Brauner for her patience and continuous

encouragement when everything seemed to be failing.

I am thankful for the friends with whom I painted the town purple, particularly

Chandrima, Sayantan, Abhishek, Aarohi, Vidya, Amneet, Karthik, Sankar, Rajlakshmi,

Amit and Sanket. They have bequeathed upon me their love, sometimes in cooking for

me, teaching me new recipes or even by their sheer presence on the other end of the phone.

This journey would have been more sensitive to phase change had it not been for

the boisterous rallying of Varun, Srikanth, Breeta, Balachandra, Abhinendra, Shreyas,

Sonam, Monalisa, Vatsala and Swapnil in absentia. Though thousands of miles have

separated us, they have only ever been one phone call and several connecting flights away.

I am eternally indebted to my family - not only ex officio, but for unconditionally

supporting my choices. To my sister, Madhura for being my first guinea pig when I

wanted to teach mathematics. Despite being younger than me, she has on many an

occasion reversed the role and awed me by the dignity in her endeavors. Her grit is a

beacon of inspiration for me. I would have never developed the mettle for success had

it not been for our wrestling matches. To Kunal, my brother-in-law for the love and

enthusiasm with which he celebrates my tiny victories, and lends a compassionate ear on

stormy days.



9

To my parents, Manisha and Rabindranath Sarkar, for encouraging me to weave my

own dreams, and making sure that I don’t ever give up on them. Many a time, it was

only their relentless belief in me that fueled my work. Without their sacrifices and the

humility that they have inculcated in their children, I would not have been able to achieve

an iota of what I have. To my other family, Anwesha, Amritesh, Sarmishtha and Animesh

Maitra, without whom I would not have even finished college, let alone receive a graduate

education. To my mother-in-law, Usha Anil, whose appetite for learning has left me

humbled.

Finally, I must acknowledge my husband, Robin Anil for the celebratory cup of tea on

my acceptance at Northwestern many moons ago, and every step of the journey that has

followed. No amount of gratitude suffices for the incredible patience with which he plays

the sounding board to my usually vociferous, and sometimes unscientific rants. For this

and more, I cannot thank him enough, and so I wouldn’t.



10

List of abbreviations

ACS Asymmetric Collective States

AI Atomic Interferometer

AIG Atom Interferometric Gyroscope

COM Center of Mass

COSAIN Collective State Atomic Interferometer

COSAC Collective State Atomic Clock

CRAIN Conventional Raman Atomic Interferometer

CSS Coherent Spin States

GSO Gram-Schmidt Orthogonalization

HL Heisenberg Limit

MOT Magneto-Optical Trap

RFAC Ramsey Fringe Atomic Clock

RWA Rotating Wave Approximation

SCAIN Schrödinger Cat Atomic Interferometer

SCAC Schrödinger Cat Atomic Clock

SCS Symmetric Collective States

SQL Standard Quantum Limit

SSS Squeezed Spin States



11

Dedication

Dedicated to my grandparents, Sovana and Gokul Chandra Sanyal, Basana and

Manendra Lal Sarkar, who sparked the flame of struggle in the face of immense

adversities.



12

Contents

Abstract 3

Acknowledgements 7

List of abbreviations 10

Dedication 11

List of Figures 15

Chapter 1. Introduction 22

1.1. Brief History of Atom Interferometry 22

1.2. Organization of this Thesis 23

Chapter 2. Fundamentals of Atom Interferometry 25

2.1. Atom-Light Interaction 26

2.2. Sagnac Effect 37

2.3. Conventional Raman Atomic Interferometer 42

Chapter 3. Effects of Non-idealities on Collective States 48

3.1. Introduction 48

3.2. Semiclassical Model of Generalized Collective Excitation 51

3.3. N-Atom Ensemble 59



13

3.4. Quantized COM Model of Ensemble 70

3.5. Equivalence Between Doppler Effect Induced Phase Shift and Position

Change Induced Phase Shift 72

3.6. Summary 77

Chapter 4. Collective State Atomic Interferometer 79

4.1. Introduction 79

4.2. Description of the COSAIN 83

4.3. Parameter Inhomogeneities Affecting Signal 99

4.4. Details of Proposed Experiment 109

4.5. Alternate Experimental Scheme 113

4.6. Performance of the COSAIN Compared to that of the CRAIN 117

4.7. Summary 132

Chapter 5. Spin Squeezing: Overview 134

5.1. Spin Representation of Atomic Ensembles 134

5.2. Spin Squeezed States 138

5.3. Spin Representation of Atom Interferometry 143

5.4. Spin Squeezed CRAIN and COSAIN 147

Chapter 6. Schrödinger Cat Atomic Interferometer 150

6.1. Introduction 150

6.2. Signal Fringewidth, SNR, Quantum Rotation Fluctuation 153

6.3. Squeezing and Unsqueezing Protocol 155

6.4. Schrödinger Cat Atomic Clock 161



14

References 167

Appendix A. Matlab codes for COSAIN Analyses 177

A.1. Effect of Gaussian Beam Profile and Doppler Effect Induced Detuning 177

Appendix B. Matlab Codes for Spin Squeezing Analyses 183

B.1. SCAIN Signal 183

B.2. Pauli matrix definitions 187

B.3. Husimi Quasiprobability Distribution 188



15

List of Figures

2.1 A two-level atom driven by a classical laser field. 27

2.2 (a) A three level atom. (b) An equivalent reduced two-level atom

model. 33

2.3 (a) Diagram of Sagnac’s original Mach-Zehnder type interferometer.

An incoming light beam is split into two beams by the beam-splitter,

A. Two counter-propagating beams then circulate the interferometer.

The beams interfere at A. There are two detection ports, one back

towards the input, the other towards the detector. (b) Waves leaving

a beam-splitter at A and traversing the interferometer in opposite

directions until detection at D, which is also moving with the loop, at

times t− andt+ depending on the direction of travel. 39

2.4 (a) A CRAIN produced via π/2−dark−π−dark−π/2 sequence of

excitation. (b) Signal of the CRAIN, depicted by solid black line

depends on teh phase shift as SCRAIN = N cos2 ϕ/2. The standard

deviation of the signal, ∆SCRAIN =
√
SCRAIN(1 − SCRAIN is shown

by the gray area. 44



16

3.1 Schematic illustration of some of the possible symmetric collective

states and coupling strength to their adjacent states. Blue represents

the atoms being in |g⟩, red represents the atoms in |e⟩. 50

3.2 (a) Rotation of basis states to form collective states in a two-atom

ensemble, (b) the complete set of all collective states and relevant

couplings and detunings in a two-atom ensemble. Here |G′⟩ ≡ |E ′
0⟩ 58

3.3 Hilbert sub-space rotation of the first excited state of an ensemble of

three atoms. 63

3.4 (a) Quantized COM model of an atom, (b) two level model of each

plane wave component. 71

3.5 (a) (left) Two level atom in the lab frame frame, (right) in the atom’s

frame of reference, (b) change in the coordinates of the atom over the

duration of interaction with the laser pulses, (c) laser beam intensity

variation over the duration of interaction. 74

4.1 (a) A three level atom. (b) An equivalent reduced two-level atom

model. (c) A CRAIN produced via π/2 − π − π/2 sequence of

excitation. 81

4.2 (a) Single atom coupled to an N ′-photon state, (b)N -atom ensemble

coupled to an N ′-photon state, (c) Ensemble interferometer formed

by splitting and recombining of |E0⟩ and |EN⟩. 90

4.3 λdB of an Rb-87 atom moving at a constant velocity of 1 m/s is

4.56 nm). In the rest frame of the atom, its characteristic Compton



17

frequency is 1.96(1025Hz). A cluster of 106 such atoms will exhibit

the characteristics of a single entity of mass that is a million times

that of a single Rb-87 atom. Therefore, λdB will be 4.56(10−15 m) and

Compton frequency is 1.96(1031 Hz). 92

4.4 Coupling between an N -atom ensemble symmetric collective states

and N ′ photons. 92

4.5 (a) Measurement of the COSAIN signal (amplitude of |E0⟩) shows a

narrowing of the fringe width. (b) The ratio ϱ(1)/ϱ(N) increases with
√
N . 93

4.6 Illustration of a two atom COSAIN depicting the state trajectories. 95

4.7 Signals derived from the interferometers formed by trajectories A−C,

A − B, and B − C. The bottom panel shows the signal of CRAIN

(broken line) to the signal of a 2-atom COSAIN (solid line). 98

4.8 (a) Variation of signal peak value withN at 0.5µK average temperature

and rectangular intensity profile beams at Ω = 1.9 × 107s−1. (b)

Variation of signal peak value with trap temperature for N ≃ 1.9×104. 105

4.9 Variation of the peak value of the SCOSAIN with increasing MOT size

to beam waist ratio at TMB = 0.5µK for different values of N . 106

4.10 (a) SCOSAIN for N = 2 × 105. (b) Plot of ∆ϱ/ϱ as a function of

∆N/N . 108



18

4.11 (Color online) (a) Interaction between the collective states in the bad

cavity limit. (b) Atomic Interferometer experiment for an ensemble

of Λ-type atoms for detecting state |E0⟩. 111

4.12 (a) Raman transitions between |g ≡ F = 1,mF = 0⟩ and

|e ≡ F = 2,mF = 0⟩ via |a ≡ F ′ = 1,mF ′ = −1⟩ and |b ≡ F ′ = 1,mF ′ = 1⟩,

(b) Raman transitions between |g ≡ F = 1,mF = 0⟩ and
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the collective spin Ĵ in the x, y and z directions are Jx, Jy and Jz. 139

5.2 (a) QPD of the state evolution due to the action of HOAT on |1
2 ,

1
2⟩,

for J = 20. As the value of µ increases, the QPD continues to get

distorted, and begins to exhibit swirliness. (b) For a given J , the

angle of corrective rotation ν decreases with an increase in µ. 141

5.3 (a) Variation of the optimal value of the squeezing parameter with J .

(b) Variation of the angle of corrective rotation with J . 142

5.4 State evolutions by TACT spin squeezing represented in terms of the

QPD for J = 20. The QPD begins to split into two parts as a result

of oversqueezing. 142

5.5 Variation of (a) Signal, (b) standard deviation, (c) angular variation

of signal (AVS), (d) QRF−1 in a CRAIN with N = 100 due to spin

squeezing. Blue lines indicate no squeezing, yellow lines indicate

OAT, and Red lines indicate TACT. 147

5.6 (a) As N increases, the peak value of CRAIN signal amplitude

decreases due to squeezing. (b) 148

5.7 Variation of (a) Signal, (b) standard deviation, (c) angular variation

of signal (AVS), (d) QRF−1 in a COSAIN with N = 100 due to spin



20

squeezing. Blue lines indicate no squeezing, yellow lines indicate

OAT, and Red lines indicate TACT. 149

6.1 (a) Measurement of the interferometer signal (amplitude of |E0⟩)

shows a narrowing of the fringe by a factor 0.35N in an excessively

squeezed SCAIN (yellow line), as compared to an ideal COSAIN.

(b) The rise in quantum projection noise in the vicinity of ΩG = 0

increases with squeezing. (c) Angular variation in signal as a

measure of the slope of the signal. (d) The inverse of quantum phase

fluctuation (QPF−1) in a COSAIN. Black lines indicates the HL case

of a GHZ state clock. Blue lines indicate the ideal COSAIN. For

ΩG → 0, the phase sensitivity of a COSAIN is very close to the SQL. 154

6.2 For even N (a→b) QPD of |ψe⟩ rotated by π/2 about x̂ axis to

yield Schrödinger cat states. (c) Distribution of states of the rotates

SSS, showing an equal proportion of states |E0⟩ and |EN⟩. For odd

N , (d→e) Rotation about x̂ axis does not transform the SSS. (f)

Distribution of states of the rotates SSS. 157

6.3 Variation of population of states distribution with µ. Both even (blue

line) and odd (red line) values of N are considered. 159

6.4 Signal fringes for various µ. N = 200 is indicated by blue lines,

N = 201 by red lines. The broken black lines indicate the average

signal. 160



21

6.5 The Husimi quasiprobability distribution of state evolution through

the SCAIN protocol. The initial CSS |ŷ⟩ (a) evolves under HOAT to
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CHAPTER 1

Introduction

1.1. Brief History of Atom Interferometry

The primary goal of quantum metrology is to measure a physical quantity very pre-

cisely. In an atomic interferometer, atoms are split quantum mechanically, and each

component is made to travel spatially separated trajectories. The separated components

are then recombined to create an interference pattern that is sensitive to the phase dif-

ference accumulated by the atoms over their journey. The first demonstration of atomic

interference in 1950 by N. F. Ramsey used the method of separated oscillatory fields with rf

transitions and an atomic beam source [1]. This paved the way for realizing atom interfer-

ometers. In 1991, four groups demonstrated atom interferometry using entirely different

approaches: gravity measurements using stimulated two-photon Raman transitions with

three laser pulses in a π/2 −π−π/2 configuration [2,3], a Sagnac effect measurement us-

ing optical excitation with four traveling waves [4], a Mach-Zehnder interferometer using

three nanofabricated mechanical gratings [5], and a Young’s double-slit experiment [6].

Since then, atom interferometers have been demonstrated as gyroscopes and accelerome-

ters [7, 8], gravity gradiometers [9, 10], matter-wave clocks [11] and may lead to a more

accurate measurement of the fine structure constant [12, 13]. They also form testbeds

for measuring Newton’s gravitational constant [14], gravitational red-shift [15] and for

testing universality of free fall [16].
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1.2. Organization of this Thesis

The rest of the thesis is organized in the following way. Chapter 2 presents a review of

the fundamental concepts in atom interferometry theory. This chapter develops notation

of the atomic model used throughout this thesis, outlines the derivation of Sagnac effect,

and reviews the theoretical model of a Kasevich-Chu interferometer.

Chapter 3 presents an investigation of the collective behavior of an ensemble of non-

interacting, identical atoms, excited by a laser. We show first how to formulate the

properties of all the Dicke collective states under various non-idealities, and use this

formulation to understand the dynamics thereof. We show that the collective states

corresponding to the absorption of a given number of photons can be visualized as an

abstract, multi-dimensional rotation in the Hilbert space spanned by the ordered product

states of individual atoms. We also consider the effect of treating the center of mass

degree of freedom of the atoms quantum mechanically on the description of the collective

states. This analysis lays the framework that is essential for understanding the dynamics

of the collective state atomic interferometer (COSAIN).

Chapter 4 deals with the details of the proposed N -atom COSAIN with the sig-

nal fringe as a function of phase-difference or rotation narrowed by
√
N compared to

a conventional interferometer. The details of the null measurement scheme for detect-

ing a collective state of interest is outlined. We also describe an alternate experimental

scheme to enhance resonant optical density in a COSAIN by using cross-linearly polar-

ized counter-propagating Raman beams. The effect of inhomogeneities arising from the

non-uniformity in experimental parameters discussed in Chapter 3 is investigated. We

show that the rotation sensitivity of the COSAIN is given by the SQL. However, the
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detection efficiency and collection efficiency from the null detection scheme increase the

overall quantum efficiency of the COSAIN as compared to that of a conventional Raman

atomic interferometer (CRAIN) by as much as a factor of 10.

Having established the fundamental properties and rotation sensitivity of the CO-

SAIN, we explore the application of spin squeezing to exceed the SQL, and attain Heisen-

berg limited sensitivity, the ultimate limit to the performance of any quantum device.

Chapter 5, presents an overview of the spin representation of two-level atoms. We estab-

lish the equivalence between the Dicke collective states and coherent spin states (CSS),

and use that to review the CRAIN, and the SQL. We then review the concepts of one-axis

twist (OAT) and two-axes counter-twist (TACT) spin squeezing.

In Chapter 6, we propose the Schrödinger cat atomic interferometer (SCAIN) to

achieve the Heisenberg limit (HL) with very large N using the experimentally achiev-

able one axis twist spin squeezing in combination with unsqueezing which results in the

generation of Schrödinger cat states corresponding to an equal superposition of the ex-

tremal Dicke collective states. We describe a protocol which employs null detection of one

of the collective states, producing fringes that are narrowed by a factor of N with unit

visibility when N is even, and yields zero signal when N is odd. We show that for all

N atoms, the sensitivity is below the HL by a factor of
√

2. We also show that a degree

of sensitivity enhancement very close to this value can also be achieved for a much lower

degree of squeezing than what is required for reaching the cat states. Finally, we note

that the proposed scheme can also be used to realize a Heisenberg-limited Schrödinger

cat atomic clock, for which the base frequency is effectively enhanced by a factor of N .
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CHAPTER 2

Fundamentals of Atom Interferometry

This chapter is a review of the basic concepts involved in atom interferometry which

lays the foundation for the rest of this dissertation. We will begin with the description

of a two-level atom, and discuss the various considerations and approximations that are

applied to derive a practical model. We will then extend this knowledge to a three-level

atom in a Λ-configuration, which forms the building block of any atomic interferometer.

Though elementary, this encapsulates the physics necessary for the development of the

collective state atomic interferometers that form the heart of this research. More details

about these atomic models can be found in [17–21]. Next, we will briefly review the

Sagnac effect, and derive the expression for phase difference between the two arms of an

interferometer. We will approach this using both the non-relativistic de Broglie wave-

length, and the relativistic Compton frequency methods, and discuss their equivalence.

Finally, we will use the concepts developed in the previous sections to describe the theory

behind the Conventional Raman Atomic Interferometer (CRAIN).
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2.1. Atom-Light Interaction

2.1.1. Two-Level Atom

An atom can be often modeled as a two-level system with wavefunction at time t given

by

(2.1) |ψ(t)⟩ = cg(t) |g⟩ + ce(t) |e⟩ ,

where cg and ce are complex numbers, and |g⟩ and |e⟩ are stable or metastable quantum

states with internal energies ℏωg and ℏωe, respectively. This wavefunction must be nor-

malized so that ⟨ψ|ψ⟩ = |cg|2 + |ce|2 = 1. The two states are driven by a semiclassical

laser with electric field E and wavelength λ propagating in the z direction, as shown in

Fig. 2.1. An example of such a system is an alkali atom with two hyperfine ground states

coupled by a microwave pulse. Assuming that the atom is moving along the x direction,

the Hamiltonian of the atom-field system in the electric dipole approximation is given by

(2.2) H = p2
z

2m
+H0 + qρ · E,

where pz is the center of mass (COM) momentum in the z direction, m is the mass of the

atom, H0 is the internal energy, q is the charge of the electron, ρ is the distance between

the nucleus and the electron. The electric dipole approximation is valid for this system

since λ ≫ ρ.

The Hamiltonian, H and the wavefunction of the COM can be expanded in the basis

of the eigenstates of the non-interacting Hamiltonian, |i⟩ ⊗ |pz⟩ = |i, pz⟩, where i = g, e.

This forms the complete set of basis states for the present system. Since it is understood
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Figure 2.1. A two-level atom driven by a classical laser field.

that all momenta and positions refer to the z-direction, the z subscript on all momenta

will be dropped henceforth. The identity operator can be written in terms of this basis

as

(2.3) Î =
∫

dp
∑

i

|i, p⟩ ⟨i, p|

The matrix elements of the form ⟨i| ρ |i⟩ are assumed to be zero. Thus, in terms of the

dipole matrix elements dij = ⟨i| ρ |j⟩, the position operator can be written as

ρ =
∫

dp
∫

dp′∑
i,j

|i, p⟩ ⟨i, p| ρ |j, p′⟩ ⟨j, p′|

=
∫

dp(dge |g, p⟩ ⟨e, p| + deg |e, p⟩ ⟨g, p|).(2.4)

The atomic raising and lowering operators are defined as

σij = |i, p⟩ ⟨j, p| .(2.5)
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The position operator in terms of the above operators is

ρ =
∫

dp(dgeσge + degσeg).(2.6)

Since the electric field is modeled semiclassically, it can be written as

E(z, t) = E0 cos(ωt− kẑ + ϕ)

= E0

2
(ei(ωt−kẑ+ϕ) + e−i(ωt−kẑ+ϕ)),(2.7)

where ω = 2πcλ−1, and ẑ is the operator associated with the COM position of the atom.

The dipole matrix elements are assumed to be real, so that dge = deg. Thus,

ρ · E =
∫

dpdge · E0

2
(
σge

(
ei(ωt−kẑ+ϕ) + e−i(ωt−kẑ+ϕ)

)
+ σeg

(
ei(ωt−kẑ+ϕ) + e−i(ωt−kẑ+ϕ)

))
=
∫

dpdge · E0

2
(
σge

(
ei(ωt−kẑ+ϕ) + e−i(ωt−kẑ+ϕ)

)
+ h.c.

)
,(2.8)

where h.c. denotes the Hermitian conjugate term.

For the electric dipole approximation to hold true, the electric field must be close to

resonance with the atomic transition, i.e., ω − ω0 = δ ≈ 0, where ω0 = ωe − ωg, and c

is the speed of light in vacuum. Therefore, ω + ω0 ≫ ω − ω0. Therefore, Eq. 2.8 can be

rewritten as

ρ · E =
∫

dpdge · E0

2
(
σgeeiω0t

(
ei(δt−kẑ+ϕ) + e−i((ω+ω0)t−kẑ+ϕ)

)
+ +h.c.

)
.(2.9)

The term e−i((ω+ω0)t−kẑ+ϕ) oscillates rapidly, and thus averages to zero over an appreciable

time scale. Under the rotating wave approximation (RWA), these terms are neglected,
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and the interaction Hamiltonian can be expressed as

ρ · E =
∫

dpdge · E0

2
(
σgeei(ωt−kẑ+ϕ) + h.c.

)
(2.10)

The position dependent phase of the electric field can be expanded in the basis of the

eigenstates as follows

eikẑ =
∑
i,j

∫
dp
∫

dp′ |i, p⟩ ⟨i, p| eikz |j, p′⟩ ⟨j, p′|

=
∑
i,j

∫
dp
∫

dp′ |i, p⟩ ⟨i, p| |i, z⟩ ⟨i, z| eikz |j, z′⟩ ⟨j, z′| |j, p′⟩ ⟨j, p′|

=
∑
i,j

∫
dp
∫

dp′ |i, p⟩ e
−ipz
ℏ eikz′e

ip′z′
ℏ δijδ(z − z′) ⟨j, p′|

=
∑

i

∫
dp |i, p⟩ ⟨i, p− ℏk| .(2.11)

Similarly,

e−ikẑ =
∑

i

∫
dp |i, p⟩ ⟨i, p+ ℏk| .(2.12)

The non-interacting part of the Hamiltonian in Eq. 2.2, H0 may be expanded in terms

of this basis as

H0 =
∫

dp
∑

i

(
p2

2m
+ ℏωi

)
σii.(2.13)
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The complete Hamiltonian in the |p, i⟩ basis is derived by combining Eq. 2.10, Eq. 2.11,

and Eq. 2.12:

H =
∫

dp
(∑

i

( p2

2m
+ ℏωi

)
σii + ℏΩ

2
(
σge |g, p⟩ ⟨e, p+ ℏk| ei(ωt+ϕ)

+σeg |e, p+ ℏk⟩ ⟨g, p| e−i(ωt+ϕ)
))
,(2.14)

where Ω ≡ qdge · E0/ℏ is the strength of the Rabi oscillations.

It is evident from Eq. 2.14 that the transition |g, p⟩ ↔ |e, p+ ℏk⟩ is only possible when

accompanied by the momentum transition indicated. Therefore, the dynamics of the atom

can be succinctly described by considering a single manifold of the momentum p. This

aspect of the quantization of the COM of the atom is discussed in detail in Chapter 3.

Thus, the present discussion will be restricted to p = 0, and can be later generalized

and integrated over all momenta to derive the motion of the wavepacket as a whole. For

the sake of brevity, the momentum components of the basis states are condensed so that

|g⟩ ≡ |g, 0⟩ and |e⟩ ≡ |e, ℏk⟩

The evolution of the atom over time t is dictated by the Schrödinger equation,

iℏ∂t |ψ(t)⟩ = H |ψ(t)⟩ .(2.15)

A unitary transformation, Q converts |ψ⟩ to an interaction-picture state vector |ψ′⟩ =

Q |ψ⟩, where Q is defined as

Q =
2∑

i=1
ei(ait+bi) |i⟩ ⟨i| ,(2.16)
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where ai and bi are arbitrary parameters. The Hamiltonian for |ψ′⟩ is then

H ′ = QHQ−1 − ℏ(∂tQ)Q−1,(2.17)

which dictates the evolution of |ψ′⟩ according to Eq. 2.15. To render H ′ time independent,

we set ag = ωg and ae = ω + ωg. Now, setting bg = 0, be = ϕ makes H ′ independent of

any phase factor as well. In this frame, the Q-transformed Hamiltonian thus becomes

H = ℏ
(

Ω
2

(|g′, 0⟩ ⟨e′, ℏk| + |e′, ℏk⟩ ⟨g′, 0|) −
(
δ − ℏk2

2m

)
|e′, ℏk⟩ ⟨e′, ℏk|

)
(2.18)

The new basis vectors, |g′, 0⟩ and |e′, ℏk⟩, are related to the original basis vectors as

e−iωgt |g, 0⟩ and e−i((δ+ωe)t)+ϕ |e, ℏk⟩, respectively. Assuming that the atom is initially in

cg(0) |g′⟩ + ce(0) |e′⟩, its quantum state can be written as

|ψ′⟩ =eiδ′t/2((cg(0) cos
(

Ω′t

2

)
− icg(0)δ′ + ce(0)Ω

Ω′ sin
(

Ω′t

2

)
) |g′⟩

+(−icg(0)Ω − ce(0)δ′

Ω′ sin
(

Ω′t

2

)
+ ce(0) cos

(
Ω′t

2

)
) |e′⟩),(2.19)

where δ′ = δ − ℏk2/2m is the effective detuning of the atom, and Ω′ =
√

Ω2 + δ′2 is

the effective coupling frequency. In the case where the detuning of the field is matched

perfectly with the detuning arising from the COM momentum of the atom, i.e. δ =

ℏk2/2m, the state of the atom is given by

|ψ′⟩ =
(
cg(0) cos

(
Ωt
2

)
− ice(0) sin

(
Ωt
2

))
|g′⟩

+
(

−icg(0) sin
(

Ωt
2

)
+ ce(0) cos

(
Ωt
2

))
|e′⟩ .(2.20)



32

In the case where no external field is applied to the atom so that Ω = 0, the atom is in

the state |ψ′⟩ = cg(0) |g′⟩ + exp(iδ′t)ce(0) |e′⟩. Thus, even during a dark zone, the atom is

affected by non-zero detuning while the population of the states remain unchanged. The

atom-field system can, in theory, be controlled by changing δ and Ω. This forms the basis

of several atomic devices, eg., Ramsey fringe clocks [22], Bordé-Chu interferometers [2,23],

etc.

2.1.2. Three-Level Atom

Here, we will review the basic concepts of a three-level atomic model. We will show how it

can be reduced to an equivalent two-level model for compact representation in an atomic

interferometer. A three-level atom in the Λ-configuration undergoing Raman transitions

driven by two counter-propagating semiclassical laser forms the building block of the

conventional Raman atomic interferometer (CRAIN) [2]. The two metastable states,

|p, g⟩ and |p, e⟩ and an excited state |p, a⟩ are coupled by two counter propagating beams

of wavelengths λ1 and λ2, respectively, as shown in Fig. 2.2(a)). The Hamiltonian for this

system can be written as

H = p2
z

2m
+H0 + qρ · E1 + qρ · E2,(2.21)

where E1 and E2 are the electric field vectors of the lasers coupling |g, p⟩ to |a, p⟩, and

|a, p⟩ to |e, p⟩, respectively. Drawing analogy from Eq. 2.4, the position operator can be
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written as

ρ =
∫

dp(dga |g, p⟩ ⟨a, p| + dag |a, p⟩ ⟨g, p| + dea |e, p⟩ ⟨a, p| + dae |a, p⟩ ⟨e, p|)

=
∫

dp(dgaσga + dagσag + deaσea + daeσae).(2.22)

Figure 2.2. (a) A three level atom. (b) An equivalent reduced two-level
atom model.

Each semiclassical laser field can be expressed as Ej(z, t) = E0j cos(ωjt − kj ẑ + ϕj),

j = 1, 2. The field, E1 interacts only with that part of the electron position operator

which induces the transition |g⟩ ↔ |a⟩, and E2 interacts only with that part which causes

the transition |a⟩ ↔ |e⟩. Upon making the RWA to eliminate the terms which do not
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conserve energy, we get

ρ · E1 =
∫

dp
(

dga · E01

2
(
σgaei(ω1t−k1ẑ+ϕ1) + σage−i(ω1t−k1ẑ+ϕ1)

)

+ dea · E02

2
(
σeaei(ω2t−k2ẑ+ϕ2) + σaee−i(ω2t−k2ẑ+ϕ2)

))
.(2.23)

From Eq. 2.11 and Eq. 2.12 we get eikj ẑ = ∑
i

∫
dp |i, p⟩ ⟨i, p− ℏkj| and e−ikj ẑ =∑

i

∫
dp |i, p⟩ ⟨i, p− ℏkj|, j = 1, 2. Finally, the full Hamiltonian in the |i, p⟩ basis is

H =
∫

dp
(∑

i

(
p2

2m
+ ℏωi

)
σii + ℏΩ1

2

(
|g, p⟩ ⟨a, p+ ℏk1| ei(ω1t+ϕ1)

+ |a, p+ ℏk1⟩ ⟨g, p| e−i(ω1t+ϕ1)
)

+ ℏΩ2

2

(
|e, p⟩ ⟨a, p+ ℏk2| ei(ω2t+ϕ2)

+ |a, p+ ℏk2⟩ ⟨e, p| e−i(ω2t+ϕ2)
))

,(2.24)

where Ω1 ≡ qdga · E01/ℏ and Ω2 ≡ qdea · E02/ℏ

As discussed in Sec. 2.1.1, the Hamiltonian H creates only the following transitions:

|g, p⟩ ↔ |a, p+ ℏk1⟩ ↔ |e, p+ ℏk1 + ℏk2⟩, for a given value of p. Therefore, the following

substitutions for momentum variables are made

∫
dp
(
p2

2m
+ ℏωa

)
|a, p⟩ ⟨a, p| =

∫
dq1

(
(q1 + ℏk1)2

2m
+ ℏωa

)

× |a, q1 + ℏk1⟩ ⟨a, q1 + ℏk1| ,(2.25a)

∫
dp
(
p2

2m
+ ℏωe

)
|e, p⟩ ⟨e, p| =

∫
dq2

(
(q2 + ℏk1 − ℏk2)2

2m
+ ℏωe

)

× |e, q2 + ℏk1 − ℏk2⟩ ⟨e, q2 + ℏk1 − ℏk2| ,(2.25b)
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∫
dp |e, p⟩ ⟨a, p+ ℏk2| =

∫
dq2 |e, q2 + ℏk1 − ℏk2⟩ ⟨a, q2 + ℏk1| .(2.25c)

Thus, Eq. 2.24 can be rewritten as

H =
∫

dp
(∑

i

ℏω′
iσii + ℏΩ1

2

(
|g⟩ ⟨a| ei(ω1t+ϕ1) + |a⟩ ⟨g| e−i(ω1t+ϕ1)

)

+ ℏΩ2

2

(
|e⟩ ⟨a| ei(ω2t+ϕ2) + |a⟩ ⟨e| e−i(ω2t+ϕ2)

))
,(2.26)

where ω′
i is the sum of internal energy and COM motion energy of the i-th state. Here,

the momentum components of the basis states have been dropped for the sake of brevity,

and represent |g⟩ ≡ |g, p⟩, |a⟩ ≡ |a, p+ ℏk1⟩, and |e⟩ ≡ |e, p+ ℏk1 − ℏk2⟩. It is evident

from the above Hamiltonian that the only transitions allowed for the atom at momentum

p are those governed by these particular momentum changes. Thus, it is sufficient to

consider only a single manifold of p to describe the dynamics of the atom. As such, it is

sufficient to restrict to p = 0 for the purpose of this section. The resulting Hamiltonian

is, therefore,

H = ℏω′
g |g⟩ ⟨g| + ℏω′

a |a⟩ ⟨a| + ℏω′
e |e⟩ ⟨e| + ℏΩ1

2

(
|g⟩ ⟨a| ei(ω1t+ϕ1) + |a⟩ ⟨g| e−i(ω1t+ϕ1)

)

+ ℏΩ2

2

(
|e⟩ ⟨a| ei(ω2t+ϕ2) + |a⟩ ⟨e| e−i(ω2t+ϕ2)

)(2.27)

The laser beams are far detuned from resonances. These detunings are defined with

respect to energies of the states as follows

δ1 = ω1 − (ω′
a − ω′

g),(2.28a)
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δ2 = ω2 − (ω′
a − ω′

e).(2.28b)

The state of the atom, |ψ(t)⟩ = cg(t) |g⟩ + ca(t) |a⟩ + ce(t) |e⟩, evolves according to

the Schrödinger equation in Eq. 2.15. The unitary transformation to rid |ψ(t)⟩ of its

time and phase dependence is of the form given in Eq. 2.16, where i = 1, 2, 3. The

evolution of the transformed state vector |ψ′⟩ = c′
g(t) |g′⟩+c′

a(t) |a′⟩+c′
e(t) |e′⟩ is governed

by the Hamiltonian H ′, where H ′ = QHQ−1 − ℏ(∂tQ)Q−1. The time dependence of H ′ is

eliminated by setting ai = ω′
g, a2 = ω′

a + δ+ ∆/2, and a3 = ω′
e + ∆, where δ = (δ1 + δ2)/2,

and ∆ = δ1 − δ2. Setting b1 = 0, b2 = −ϕ1, and b3 = −(ϕ1 + ϕ2) removes the phase

dependence of H ′. The Q-transformed Hamiltonian is thus,

H ′ =ℏ
((

−δ − ∆
2

)
|a′⟩ ⟨a′| − ∆ |e′⟩ ⟨e′|

+Ω1

2
(|g′⟩ ⟨a′| + |a′⟩ ⟨g′|) + Ω2

2
(|e′⟩ ⟨a′| + |a′⟩ ⟨e′|)

)
.(2.29)

The transformed basis vectors are related to the original vectors as: |g′⟩ = e−i(ωg+∆/2)t |g⟩,

|a′⟩ = e−i((ωa+δ)t−ϕ1) |a⟩, and |e′⟩ = e−i((ωe+∆/2)t−(ϕ1+ϕ2)) |e⟩. The equation of motion for

these states are

iċ′
g(t) = Ω1

2
c′

a(t),(2.30a)

iċ′
a(t) = Ω1

2
c′

g(t) −
(
δ + ∆

2

)
c′

a(t) + Ω2

2
c′

e(t),(2.30b)

iċ′
e(t) = Ω2

2
c′

a(t) − ∆c′
e(t).(2.30c)
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Since |δ1| , |δ2| ≫ 0, the adiabatic approximation is applied at this point to reduce the

three-level system to a two-level system. This approximation is accomplished by assuming

that the population of the intermediate state |a′⟩ is negligible, and ċ′
e(t) can be set to zero,

and solving for c′
a(t) in Eq. 2.30b as follows

iċ′
g(t) = Ω2

1

4
(
δ + ∆

2

)c′
g(t) + Ω1Ω2

4
(
δ + ∆

2

)c′
e(t),(2.31a)

iċ′
e(t) = Ω1Ω2

4
(
δ + ∆

2

)c′
g(t) +

−∆ + Ω2
2

4
(
δ + ∆

2

)
 c′

e(t).(2.31b)

These represent the equations of motion of a reduced two-level system driven by a single

pulse of strength

Ω = Ω1Ω2

2(δ + ∆/2)
,(2.32)

as depicted in Fig. 2.2(b). Assuming that the strength of the two counter-propagating

lasers are almost equal, Ω1 = Ω2, and that δ ≫ ∆, we get the Hamiltonian of the effective

two-level system

Hred = ℏ
(

Ω
2

(|g′⟩ ⟨e′| + |e′⟩ ⟨g′|) − ∆ |e′⟩ ⟨e′|
)
.(2.33)

The state of this system at time t is given by Eq. 2.19, by replacing δ′ with ∆.

2.2. Sagnac Effect

The precise measurement of rate of rotation harnessing the Compton frequency of

atoms is the central thesis of this research. The Sagnac effect was originally proposed
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to demonstrate the phase shift arising from rotation in an optical interferometer [24]. A

schematic representation of his interferometer is given in Fig. 2.3(a). The fringes observed

at the detection port are affected by any phase difference, ϕ between the two paths.

For the sake of simplicity, a circular interferometer of radius r is considered. A gener-

alized approach using Feynman path integrals for loops of arbitrary configuration is given

in [25]. An incoming wave is split at point A, and directed to two counter-propagating

paths, as shown in Fig 2.3(b). The velocity of the wave in the rest frame is v. The

time required for the waves traveling along the clockwise and counter-clockwise paths to

arrive at the detector at point D are the same, by symmetry. However, this symmetry is

broken if the interferometer is rotating with angular velocity ΩG about an axis normal to

the plane of the loop and passing through its center. The phase shift elicited from this

difference in arrival times can be calculated via two different approaches. In the following

text, the non-relativistic, and more common approach is discussed first, followed by the

method of relativistic addition of velocities.

2.2.1. Non-Relativistic Method

The wave traveling against the direction of rotation travels a shorter path, and arrives

first at the detector, at time t−. On the other hand, the wave traveling along the direction

of rotation arrives at the detector later at t+, since it travels a longer path. The travel

times are given by

vt− = πr − ΩGrt−,(2.34a)
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Figure 2.3. (a) Diagram of Sagnac’s original Mach-Zehnder type interfer-
ometer. An incoming light beam is split into two beams by the beam-
splitter, A. Two counter-propagating beams then circulate the interferom-
eter. The beams interfere at A. There are two detection ports, one back
towards the input, the other towards the detector. (b) Waves leaving a
beam-splitter at A and traversing the interferometer in opposite directions
until detection at D, which is also moving with the loop, at times t− andt+
depending on the direction of travel.

vt+ = πr + ΩGrt+.(2.34b)

Therefore, the time difference between the two counter-propagating waves is given by

∆t = t+ − t− = 2AΩG

v2 − Ω2
Gr

2 ,(2.35)

where A is the area of the loop enclosed by the interferometer. For slow rotation rates,

which fall under the regime in which the majority of the atomic interferometers operate,

∆t = 2AΩG/v
2. The phase difference between the two paths is given by ϕ = v∆t/λ, where

λ is the wavelength of the wave. For massive particle, λ is the de Broglie wavelength,

λdB = 2πℏ/mv, where m is the mass of the particle. Therefore, the phase shift between
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the paths can be written as

ϕ = 2mAΩG

ℏ
.(2.36)

Thus, for a massive particle, the phase shift is independent of the velocity with which it

is traveling.

2.2.2. Relativistic Method

This method invokes the relativistic addition of velocities to determine the time lag in the

arrival of the two branches of the wave. The relative velocity of the wave moving against

the direction of rotation of the interferometer is given by

v− = v − rΩG

1 − vrΩG/c2 ,(2.37)

c being the speed of light in vacuum. Similarly, the relative velocity of the wave moving

along the direction of rotation of the interferometer is

v+ = v + rΩG

1 + vrΩG/c2 .(2.38)

The travel times of each of these waves before arriving at the detector, D are

v−t− = πr − ΩGrt−,(2.39a)

v+t+ = πr + ΩGrt+,(2.39b)
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Therefore, the time difference is given by

∆t = 2AΩG

c2(1 − (rΩG)2/c2)
.(2.40)

The phase difference between the paths is given by ϕ = ω∆t, where ω is the angular

frequency of the wave. For a massive particle, this frequency is the Compton frequency,

ωC = mc2/ℏ. Therefore, for slow rotation rates, the phase shift between the paths can be

written as

ϕ = 2mAΩG

ℏ
.(2.41)

A more rigorous derivation of the Sagnac effect involves the application of general

relativity [26]. In the present context of atomic interferometers, the application of special

relativity suffices.

2.2.3. Equivalence of the Two Approaches

The two approaches described in Sec. 2.2.1 and Sec 2.2.2 are equivalent due to the fact

that λdB is the laboratory-frame manifestation of the ωC induced phase variation in the

rest-frame of the atom [11,27–29]. To understand this without loss of generality, consider

the direction of the velocity of the particle as x̂. For non-relativistic velocities, mixing

between the spinors can be ignored, and the phase factor of a positive energy spinor, in

the rest frame of the particle, is given simply as exp(−iϕ), where ϕ = ωCτ with τ being

the proper time. The phase, ϕ, is a Lorentz invariant parameter, and can in general

be written as a contraction between the position four vector xµ and momentum four

vector ℏkµ : ϕ = kµx
µ. In the rest frame of the particle, the position four-vector is xµ =
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{cτ, 0, 0, 0} and the momentum four vector is ℏkµ = ℏ{ωC/c, 0, 0, 0}. In the laboratory

frame, the position four vector is, by definition, xµ = {ct, 0, 0, 0}, and application of

Lorentz transform shows that the momentum four vector is ℏkµ = ℏ{ω′
C/c, kdB, 0, 0},

where kdB = γmv/ℏ = 2π/λdB and the phase factor becomes ϕ = ω′
Ct − kdBx. Again,

in the non-relativistic limit, γ ≈ 1 and we get λdB ≈ 2πℏ/mv. Thus, the de Broglie

wavelength is simply the laboratory frame manifestation of the phase variation in the rest

frame due to the Compton frequency.

2.3. Conventional Raman Atomic Interferometer

This section gives an overview of the theory behind the Conventional Raman Atomic

Interferometer (CRAIN) which is based on the Kasevich-Chu interferometer [2]. The

quantum state transitions that take place in an interferometer, leading to the observation

of phase dependent signal fringes, are worked out. This is necessary for understanding

the collective state atomic interferometer (COSAIN) which operates on the same basic

principles [30], but has properties that differ significantly from a CRAIN employing the

same π/2 − π − π/2 sequence.

An atomic interferometer is based on the principle that two or more intermediate states

evolving from an initial quantum state are not uniquely distinguishable by a measurement

process:

|ψ⟩ → |g⟩ + |e⟩ .(2.42)
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The probability of finding the atom in |ψf⟩ is given by the expectation value of the

projection operator |ψf⟩ ⟨ψf | as follows

⟨|ψf⟩ ⟨ψf |⟩ = |⟨g|ψf⟩|2 + |⟨e|ψf⟩|2 + 2Re{⟨ψf |g⟩ ⟨e|ψf⟩}.(2.43)

The interference is observed due to the cross-term, which carries the signature of the

phase difference between the states |g⟩ and |e⟩.

A three-level atom of the type described in Sec. 2.1.2 is initially prepared in the state

|g, pz = 0⟩ ≡ |g, 0⟩. The atom is assumed to be initially situated at (x = 0, z = 0) and

traveling along the x-direction with a velocity v. Three pairs of counter-propagating laser

beams with rectangular intensity profile form the splitting-reflecting-combining sequence

of an interferometer. It is assumed that the single-photon detuning of the beams is

considerably greater than the Rabi frequencies of the beams, i.e., δ ≫ Ω1,Ω2. Therefore,

the atom-laser interaction can be effectively described as a reduced two-level system with

states |g, 0⟩ and |e, ℏk⟩ excited by an effective traveling wave with a momentum ℏk =

ℏ(k1 + k2), and a Rabi frequency given by Eq. 2.32 (Fig. 2.2 (b)). It is also assumed that

δ ≫ Γ, where Γ is the decay rate of |a⟩, so that the effect of Γ can be neglected.

For simplicity, we assume for now that ∆ ≪ Ω, so that its effect can be ignored during

the laser-atom interactions. The more rigorous treatment that takes into account the

effect of ∆ is given in Chapter 4. At t = 0, a first π/2−pulse of duration τ is applied to

the atoms, such that Ωτ = π/2. The state of each atom at the end of the pulse is given

by Eq. 2.20

|ψ(τ)⟩ = |g⟩ − i |e⟩√
2

.(2.44)
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Figure 2.4. (a) A CRAIN produced via π/2−dark−π−dark−π/2 sequence
of excitation. (b) Signal of the CRAIN, depicted by solid black line depends
on teh phase shift as SCRAIN = N cos2 ϕ/2. The standard deviation of the
signal, ∆SCRAIN =

√
SCRAIN(1 − SCRAIN is shown by the gray area.

At this point, the first dark zone ensues, and continues for a duration TD. During the

dark zone, the component of each atom in state |ei⟩ drifts to (x = vTD, z = ℏkTD/m).

The state |gi⟩ continues along the x-direction. The trajectories taken by |gi⟩ and |ei⟩, are

labeled A and B respectively. The dark zone also imparts a phase to the atom, so that
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at its conclusion the state of the atom is

|ψ(τ + TD)⟩ = |ψ(τ + TD)⟩A + |ψ(τ + TD)⟩B ,

|ψ(τ + TD)⟩A = 1√
2

|g⟩ ,

|ψ(τ + TD)⟩B = −i exp(i∆TD)√
2

|e⟩ .(2.45)

At this point, a π−pulse is applied to the atoms. This pulse acts as a mirror, and affects

the transition |g⟩ ↔ |e⟩, so that the state of the atoms at t = 3τ + TD is

|ψ(3τ + TD)⟩ = |ψ(3τ + TD)⟩A + |ψ(3τ + TD)⟩B ,

|ψ(3τ + TD)⟩A = − i√
2

|e⟩ ,

|ψ(3τ + TD)⟩B = −exp(i∆TD)√
2

|g⟩ .(2.46)

A second dark zone begins at the end of the π−pulse. During this, the component of the

atom in trajectory A begins to drift diagonally, as shown in Fig. 2.4(a), due to the gain

of momentum in z-direction. On the other hand, the component following path B starts

moving along the x-direction because of loss of momentum in z-direction. At the end of

the second dark-zone the two trajectories converge, and the state of the atom is

|ψ(3τ + 2TD)⟩ = |ψ(3τ + 2TD)⟩A + |ψ(3τ + 2TD)⟩B ,

|ψ(3τ + 2TD)⟩A = − i exp(i∆TD)√
2

|e⟩ ,

|ψ(3τ + 2TD)⟩B = −exp(i∆TD)√
2

|g⟩ .(2.47)
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Following this, a last π/2−pulse is applied, causing an interference between the two trajec-

tories. If the entire interferometer system is rotating about the y-axis, a phase difference

ϕ is introduced between the two paths A and B, as explained in Sec. 2.2. The state of

the atom at the end of the π/2−dark−π−dark−π/2 sequence is, therefore,

|ψ(4τ + 2TD)⟩ = |ψ(4τ + 2TD)⟩A + |ψ(4τ + 2TD)⟩B ,

|ψ(4τ + 2TD)⟩A = − exp(i∆TD)(exp(−iϕ) |g⟩ + i |e⟩)
2

,

|ψ(4τ + 2TD)⟩B = −i exp(i∆TD)(−i |g⟩ + exp(iϕ) |e⟩)
2

.(2.48)

The final fringe pattern is the result of the interference of the states from the two trajec-

tories. This is observed by measuring the number of atoms in either of the two states.

The signal as a measure of the number of atoms in |g⟩ is, therefore,

SCRAIN = N

∣∣∣∣∣1 + exp(−iϕ)
2

∣∣∣∣∣
2

= N cos2
(
ϕ

2

)
.(2.49)

A CRAIN of this type can be realized by employing an atomic beam with a continuous

flux, or by employing pulses of atoms pushed out periodically from a magneto-optical-trap

(MOT). The behavior of the CRAIN is essentially the same in both modes if the number

of atoms interrogated in a given time window is the same. However, as will be described

in Chapter 4, the collective state atomic interferometer (COSAIN) must operate in the

latter (pulsed) mode. Thus, for proper comparison, the rest of this document will assume

that the CRAIN is operated in the pulsed mode.
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In the next chapter, we will detail upon the nature of collective states of atomic ensem-

bles, the study of which is indispensable to the understanding of the COSAIN [30]. In par-

ticular, we will describe the conditions under which the asymmetric collective states (ACS)

are intercoupled with the symmetric collective states of an ensemble of non-interacting,

identical atoms excited by a laser. Additionally, we will also consider the effect of treat-

ing the center of mass degree of freedom of the atoms quantum mechanically on the

description of the collective states, illustrating that it is indeed possible to construct a

generalized collective state, as needed for the COSAIN, when each atom is assumed to be

in a localized wave packet.
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CHAPTER 3

Effects of Non-idealities on Collective States

3.1. Introduction

The rotation sensitivity of an atom interferometric gyroscope (AIG) due to the phase

difference ϕ between two paths arising from the Sagnac effect has been described in Sec 2.2.

This phase difference is proportional to the area enclosed by the interferometer as well as

the mass of each atom. Motivated by this mass dependence of the rotation sensitivity of an

AIG, we proposed an interferometer that exploits the collective excitation of an ensemble

of atoms [30]. The principle behind the COSAIN is discussed at length in Chapter 4. In

this chapter, we present a description of collective states under generalized and non-ideal

conditions, including a situation where the motion of the COM of each atom is treated

quantum mechanically. Such a comprehensive model of the collective states is important

for understanding the behavior of the COSAIN. The analysis presented in this chapter,

including the case where the COM motion is quantized, is also likely to help advance

the analysis and optimization of spin squeezing [31–34], under non-idealities that are

unavoidable in any practical scheme.

Dicke showed that for a dilute ensemble of N atoms where the atoms do not interact,

the ensemble evolves to a superposition of N+1 symmetric states (shown in Fig. 3.1) [35].
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Some of the possible Dicke states are defined as follows

|E0⟩ = |g1, g2, ..., gN⟩ ,

|E1⟩ =
∑N

i=1
|g1, g2, ..., ei, ..., gN⟩ /

√
N,

|E2⟩ =
∑(N

2 )
j,k(j ̸=k)

|g1, ..., ej, ...ek, ..., gN⟩ /

√√√√(N
2

)
,

|EN−1⟩ =
∑N

i=1
|e1, e2, ..., gi, ..., eN⟩ /

√
N,

|EN⟩ = |e1, e2, ..., eN⟩ ,(3.1)

etc. where
(

N
n

)
= N !/n!(N − n)!.

As noted in Sec. 2.3, the CRAIN as well as the COSAIN makes use of counter-

propagating Raman transitions. As such, the characteristic wave number is k, where

k = (k1 + k2), and k1 and k2 are the wave numbers of the two laser beams. The non-

zero temperature of a MOT provides a spread in the velocity of the constituent atoms.

Therefore, each atom in the ensemble experiences a Doppler shift leading to a spread in

detuning, with a zero mean value. Due to the finite size of the ensemble, each atom may

experience a slightly different Rabi frequency depending on the spatial variation in the

intensity profile of the laser beam. These factors contribute to a complex picture of an

ensemble in a practical experiment. Furthermore, a semiclassical treatment of a quantum

mechanical problem is not adequate. The wavepacket nature of the atoms must also be

taken into account by considering the COM momentum of the atomic states.
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Figure 3.1. Schematic illustration of some of the possible symmetric collec-
tive states and coupling strength to their adjacent states. Blue represents
the atoms being in |g⟩, red represents the atoms in |e⟩.

The rest of the chapter is organized as follows. Sec. 3.2 presents a description of

the semiclassical model of generalized collective excitation to lay down the mathemat-

ical framework on which the present analysis is based. For the sake of simplicity and

transparency, the concepts are first introduced with the example of a 2-atom ensemble

identical to the Dicke formalism of collective excitation. Next, an analysis of how vari-

able Rabi frequencies and atomic velocities affect this simple ensemble is presented. In

Sec. 3.3, this investigation is extended to a general N -atom ensemble. In particular, it

is shown that under certain conditions, the generalized asymmetric states of an ensemble

are not decoupled from the symmetric set. The general method of finding the generalized
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collective symmetric and asymmetric states in an ensemble of arbitrary size is developed.

In Sec.3.4, the COM motion degree of freedom of the atoms is considered to investigate

the implications of the wavepacket nature of the atoms, and therefore, of the ensemble.

Finally, the equivalence between the phase shift induced due to Doppler shift, and that

due to position change is presented in Sec. 3.5.

3.2. Semiclassical Model of Generalized Collective Excitation

Without loss of generality, consider a collection of N two level atoms, released from a

cold trap, excited by a laser field traveling in the z direction, assuming the field amplitude

to be of Gaussian profile in x and y directions, and constant in the z direction. Each

atom is modeled as having two energy levels, |gi⟩ and |ei⟩. As mentioned in Sec. 2.1.2, a

Λ-type atomic system excited by a pair of optically off-resonant laser fields propagating

in opposite directions can be modeled as an effective two level system of this type [17],

so that the decay rate of the |ei⟩ state can be set to zero. This effective two-level system

is shown in Fig. 2.2(b). The laser field is assumed to be resonant for stationary atoms

so that ω = ω0. Each atom, however, experiences a different Doppler shift due to the

thermal motion of the atoms, and consequently, a different effective laser frequency, ω0i.

The net consequence of this is that the i-th atom picks up a detuning of δi depending on

its velocity. The Rabi frequency, Ωi experienced by the i-th atom depends on its position.

The laser field is assumed, arbitrarily, to be polarized in the x direction. In the

laboratory frame, the electric field at any point r = xx̂ + yŷ + zẑ, defined arbitrarily with
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respect to an origin, can be expressed as

Ei(r, t) = x̂E0 exp
(

−(x2 + y2)
2σ2

L

)
cos(ω0t− kz),(3.2)

where σL represents the width of the laser beam in the transverse directions. At t = 0,

the i-th atom is positioned at

r0i = x0ix̂ + y0iŷ + z0iẑ,(3.3)

and is moving at a velocity

vi = vxix̂ + vyiŷ + vziẑ.(3.4)

Any change to this velocity due to the interaction with the laser field is ignored for now.

This issue will be addressed later when the motion of the COM of the atom is considered

quantum mechanically. In the reference frame of this atom, which is defined by the vector

ri = r0i + vit, the electric field can be expressed as

Ei(ri, t) = x̂E0 exp
(

−(x0i + vxit)2 + (y0i + vyit)2

2σ2
L

)
cos (ω0t− k(z0i + vzit)) .(3.5)

The transverse motion of the atom will lead to a time dependent variation of the amplitude

of the Rabi frequency. For typical systems of interest, |vxit ≪ σL| and |vyit ≪ σL|, so

that this variation can be ignored. The field seen by the atom in its reference frame as

can then be written as

Ei(r, t) = x̂E0 exp
(

−(x2
0i + y2

0i)
2σ2

L

)
cos(ω0it− ξi),(3.6)
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where ω0i = ω0 − kvzi is the Doppler shifted frequency seen by the atom, and ξi = kz0i

is a reference phase relation, determined by the initial position of the atom, between the

atom and the field for all values of t.

In the electric dipole approximation, the Hamiltonian for the i-th atom can be written

as Hi = Pi
2/2m+H0i + qρi.Ei, where Pi is the COM momentum in the z-direction, H0i

is the internal energy of the atom, ρi is the position of the electron with respect to the

nucleus, q is the electronic charge, and m is the mass of the atom. As mentioned above,

we are treating the motion of the COM of the atom semiclassically, deferring the quantum

mechanical model thereof to Sec. 3.4. As such, the COM term in the Hamiltonian can be

ignored. Upon making the RWA, and Q-transformation (Eq. 2.16, setting ai1 = ωg and

ai2 = ω0i + ωgand, bi1 = 0, bi2 = −ξi), the Hamiltonian in the basis |g′
i⟩ = exp(−iωgt) |gi⟩

and |e′
i⟩ = exp(−i((ωe + δi)t− ξi)) |ei⟩ is

(3.7) H ′
i/ℏ = −δi |e′

i⟩ ⟨e′
i| + Ωi(|g′

i⟩ ⟨e′
i| + h.c.)/2.

Assuming that the i-th atom is initially in the state cgi(0) |g′
i⟩ + cei(0) |e′

i⟩, its quantum

state can be written as

|ψ′
i⟩ =eiδit/2((cgi(0) cos

(
Ω′

it

2

)
− i

cgi(0)δi + cei(0)Ωi

Ω′
i

sin
(

Ω′
it

2

)
) |g′

i⟩

+ (−icgi(0)Ωi − cei(0)δi

Ω′
i

sin
(

Ω′
it

2

)
+ cei(0) cos

(
Ω′

it

2

)
) |e′

i⟩),(3.8)

where Ω′
i =

√
Ω2

i + δ2
i is the effective coupling frequency of this atom.

Since the atoms are assumed to be non-interacting, the ensemble Hamiltonian is the

sum of all the individual Hamiltonians corresponding to each atom in the ensemble, H ′
C =
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ΣiH
′
i. The state of the ensemble, therefore, evolves according to the Schrödinger equation,

iℏ∂ |Ψ′
C⟩ /∂t = H ′

C |Ψ′
C⟩. For illustrative purposes, as well as transparency, consider first

the case of N = 2. H ′
C can be expressed as

H ′
1⊗I ′

2 + I ′
1⊗H ′

2,(3.9)

where I ′
i is the identity operator in the basis of |g′

i⟩ and |e′
i⟩ for the i-th atom. For instance,

⟨g′
1g

′
2|H ′

C |g′
1e

′
2⟩ = ⟨g′

1|H ′
1 |g′

1⟩ ⟨g′
2| I ′

2 |e′
2⟩ + ⟨g′

1| I ′
1 |g′

1⟩ ⟨g′
2|H ′

2 |e′
2⟩

= ⟨g′
2|H ′

2 |e′
2⟩

= ℏ
Ω2

2
.(3.10)

Using this process, we can now express H ′
C in the basis of product states of the two atoms,

|g′
1g

′
2⟩, |e′

1g
′
2⟩, |g′

1e
′
2⟩ and |e′

1e
′
2⟩ as

H ′
C/ℏ = − δ1 |e′

1g
′
2⟩ ⟨e′

1g
′
2| − δ2 |g′

1e
′
2⟩ ⟨g′

1e
′
2| − (δ1 + δ2) |e′

1e
′
2⟩ ⟨e′

1e
′
2|

+ Ω1(|g′
1g

′
2⟩ ⟨e′

1g
′
2| + |e′

1e
′
2⟩ ⟨g′

1e
′
2| + h.c.)/2 + Ω2(|g′

1g
′
2⟩ ⟨g′

1e
′
2|

+ |e′
1e

′
2⟩ ⟨e′

1g
′
2| + h.c.)/2.(3.11)

Consider first the case where all the Rabi frequencies are the same, and there are no

detunings. The Q-transformed Hamiltonian for each atom is then formally identical, since

the phase factors due to different positions are encoded in the transformed basis states

|g′
i⟩ and |e′

i⟩. Thus, the coupled collective states would now be formally identical to the
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symmetric Dicke states. For example,

|E ′
0⟩ = |g′

1⟩ |g′
2⟩ ,

|E ′
1⟩ =(|g′

1e
′
2⟩ + |e′

1g
′
2⟩)/

√
2,

|E ′
2⟩ = |e′

1⟩ |e′
2⟩ .(3.12)

It should be noted that each of the constituent individual atomic states in these ex-

pressions include the temporal and spatial phase factors. Thus, these states behave the

same way as the conventional Dicke symmetric collective states, independent of the dis-

tance between the two atoms. It should also be noted that there exists another collective

state, |E ′
1,1⟩ ≡ (|g′

1e
′
2⟩ − |e′

1g
′
2⟩)/

√
2 which remains fully uncoupled from the symmetric

set. The states |E ′
1⟩ and |E ′

1,1⟩ result from a π/4 rotation in the Hilbert subspace spanned

by |e′
1g

′
2⟩ and |g′

1e
′
2⟩, as illustrated in Fig. 3.2(a).

Consider next the case where there is still no detuning, but the Rabi frequencies are

unequal. It is not obvious what the form of the symmetric collective states should be in

this case. Consider first the task of finding the first excited symmetric collective state

(SCS). Since the |E ′
0⟩ state will, by definition, be coupled only to this state, we can define

this state, in general, as

(3.13) |E ′
1⟩ = H ′

C |E ′
0⟩√

⟨E ′
0|H

′†
CH

′
C |E ′

0⟩
,
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where the denominator ensures that this state is normalized. When applied to the par-

ticular case at hand, we thus get

|E ′
1⟩ = (Ω1 |e′

1g
′
2⟩ + Ω2 |g′

1e
′
2⟩)√

Ω2
1 + Ω2

2

.(3.14)

A rotation operator, R, rotates the Hilbert sub-space, Φ2,1, formed by |e′
1g

′
2⟩ and |g′

1e
′
2⟩

by an angle θ = tan−1(Ω1/Ω2), such that one of the resulting states is |E ′
1⟩. This also

produces a state

|E ′
1,1⟩ = (Ω2 |e′

1g
′
2⟩ − Ω1 |g′

1e
′
2⟩)√

Ω2
1 + Ω2

2

,(3.15)

which is orthogonal to |E ′
1⟩. In this rotated frame, the ensemble Hamiltonian, H̃ ′

C =

RH ′
CR

−1 becomes

H̃ ′
C/ℏ =

√
Ω2

1 + Ω2
2 |E ′

0⟩ ⟨E ′
1| /2 + Ω1Ω2 |E ′

1⟩ ⟨E ′
2| /

√
Ω2

1 + Ω2
2

+ (Ω2
2 − Ω2

1) |E ′
1,1⟩ ⟨E ′

2| /2
√

Ω2
1 + Ω2

2 + h.c.(3.16)

Thus, the asymmetric collective state (ACS), |E ′
1,1⟩ does not remain isolated but is coupled

to |E ′
2⟩, which, in turn is coupled to |E ′

1⟩. Consider next the case where we also allow

for potentially different detunings for the two atoms, δ1 and δ2. It is easy to see, based

on the general definition in Eq. (3.13) of the first excited SCS, that |E ′
1⟩ has the same

form as in Eq. (3.13). Similarly, the expression for |E ′
1,1⟩ is also the same as above, and

these states are generated by the same rotation operator, R, as given above. However,

the coupling between the states in this rotated basis are now modified. Explicitly the
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ensemble Q-transformed Hamiltonian in the rotated frame becomes

H̃ ′
C/ℏ = − (δ1Ω2

1 + δ2Ω2
2)(|E ′

1⟩ ⟨E ′
1| + |E ′

1,1⟩ ⟨E ′
1,1|)/(Ω2

1 + Ω2
2)

− (δ1 + δ2) |E ′
2⟩ ⟨E ′

2| +
√

Ω2
1 + Ω2

2 |E ′
0⟩ ⟨E ′

1| /2

+ Ω1Ω2 |E ′
1⟩ ⟨E ′

2| /
√

Ω2
1 + Ω2

2 + (Ω2
2 − Ω2

1) |E ′
1,1⟩ ⟨E ′

2| /2
√

Ω2
1 + Ω2

2

− (δ1 − δ2)Ω1Ω2 |E ′
1⟩ ⟨E ′

1,1| /(Ω2
1 + Ω2

2) + h.c.(3.17)

Thus, the ACS |E ′
1,1⟩ is now coupled directly to the SCS |E ′

1⟩, in addition to being coupled

to the state |E ′
2⟩. Furthermore, the energies of the states are also shifted with respect to

|E ′
0⟩. These couplings and shifts are illustrated in Fig. 3.2(b).

In an ensemble with a large number of atoms, the number of asymmetric states is far

larger than that of the symmetric states. A more generalized view of collective states, con-

sidering the variations in different parameters and manifestations thereof in the behavior

of the collective states is discussed in the next section.

The preceding discussions take into account the facts that each atom is at a unique

position (which means that it sees a unique phase of the laser), sees a potentially unique

Rabi frequency, and is moving with a particular velocity which in turn produces a Doppler

shift. A natural question that may arise is whether the change in position of the atom

with time is accounted for, so that it would see a time varying Rabi frequency and laser

phase. The temporal variation in Rabi frequency can be ignored because the velocity of

each atom is assumed to be very small. In Sec. 3.5, it is shown that the temporal change

in the laser phase seen by the atom is akin to taking into account the Doppler shift.
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Figure 3.2. (a) Rotation of basis states to form collective states in a two-
atom ensemble, (b) the complete set of all collective states and relevant
couplings and detunings in a two-atom ensemble. Here |G′⟩ ≡ |E ′

0⟩
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3.3. N-Atom Ensemble

The Hamiltonian of an ensemble of N non-interacting and non-overlapping atoms is

simply given by the sum of the Hamiltonians of the constituent atoms as noted above. It

is convenient to express these as a sum of three parts: raising, lowering and detuning:

H ′
C = H ′

r +H ′
l +H ′

d,

H ′
r =

∑N

i

ℏΩi

2
|e′

i⟩ ⟨g′
i| ,

H ′
l =

∑N

i

ℏΩi

2
|g′

i⟩ ⟨e′
i| ,

H ′
d = −

∑N

i
ℏδi |e′

i⟩ ⟨e′
i| .(3.18)

The raising part of the Hamiltonian, H ′
r couples |E ′

n⟩ to its adjacent higher SCS, |E ′
n+1⟩.

Similarly, the lowering part of the Hamiltonian, H ′
l couples |E ′

n⟩ to its adjacent lower

SCS, |E ′
n−1⟩. The function of the third term, H ′

d is two fold. First, it leads to a shift in

the energy of the collective states (symmetric and asymmetric). Second, under certain

conditions, it leads to a coupling between the SCS and all the ACS’s, as well as among

all the ACS’s, within the same manifold (i.e., the set of collective states corresponding to

the absorption of a given number of photons). Analogous to Eq. (3.13), |E ′
n+1⟩ can be

generated from |E ′
n⟩, for any value of n, using the following prescription

|E ′
n+1⟩ = H ′

r |E ′
n⟩√

⟨E ′
n|H ′†

r H ′
r|E ′

n⟩
.(3.19)

To illustrate the use of Eq. (3.19), consider first the ideal case where each atom sees

the same Rabi frequency, and experiences no Doppler shift, while still allowing for the
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fact that different atoms see different spatial phases. Since H ′
d = 0, the asymmetric

states remain fully uncoupled from the symmetric states. Using Eq. (3.19), |E ′
1⟩ can be

easily found. Application of H ′
r to |E ′

0⟩, upon normalization, then leads to the result that

|E ′
1⟩ = ∑N

k=1 |g′
1g

′
2, ...e

′
k, ..., g

′
N⟩ /

√
N . This is essentially the same as the well-known first-

excitation Dicke state, with the exception that the spatial phases seen by the individual

atoms are incorporated in the constituent states |g′⟩ and |e′⟩, as noted before in the

context of N = 2.

It is now easy to see how to generate |E ′
n⟩ for any value of n, by repeated application

of H ′
r, and allowing for the normalization, as prescribed by Eq. (3.19). Specifically,

|E ′
n⟩ = J(N, n)−1/2

J(N,n)∑
k=1

Pk |g′⊗(N−n)e′⊗n⟩ ,(3.20)

where J(N, n) ≡ J =
(

N
n

)
, and Pk is the permutation operator [36].

Under the ideal condition being considered here, the ACS’s remain fully decoupled

from the symmetric set at all times, as noted above. As such, an explicit description of

the forms of the ACS’s is not necessary for understanding the behavior of the ensemble.

However, the understanding of the form of the ACS’s is important when considering

the non-idealities. Therefore, in what follows, the method for determining these states

explicitly in the ideal case is presented. A simple modification of this is used later on for

the non-ideal cases, where the ACS’s are relevant.

Consider a particular manifold corresponding to the absorption of n photons. The

SCS is |E ′
n⟩, and there are (J − 1) ACS’s, denoted as |E ′

n,j⟩ for j = 1 to (J − 1). To

find these states, we consider ΦN,n, the Hilbert sub-space of dimension J spanned by the

states Pk |g′⊗(N−n)e′⊗n⟩. The elements of ΦN,n are arbitrarily labeled ŝ1, ŝ2, . . . , ŝJ . The
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SCS is a particular vector in this Hilbert space, and the ACS’s are any set of mutually

orthogonal vectors that are all normal to the SCS. Thus, the set of ACS’s is not unique,

and there are many ways to construct them. The standard procedure for finding such a

set of orthonormal vectors is the Gram-Schmidt Orthogonalization (GSO) process. From

a geometric point of view, the GSO process can be seen as a set of generalized rotations

(with potentially complex angles) in the Hilbert space. Given that the SCS consists of

a superposition of the basis vectors with real coefficients, these rotations can be viewed

in terms of physical angles for N = 2 and 3, whereas for N > 3, the angles have to be

interpreted in an abstract manner. In order to elucidate an understanding of the ACS’s,

the construction of ACS’s for arbitrary N and n, by successive rotations of the Hilbert

subspace, ΦN,n is formulated first. Next, this model is applied to N = 3 for constructing

some explicit version of the ACS’s (noting that the N = 2 case has only a single ACS

which can be found trivially and has been explained in detail in Sec. 3.2).

The elements of ΦN,n, labeled ŝ1, ŝ2, . . . , ŝJ , form the coordinate axes of this Hilbert

space. In this picture, the SCS can be represented as V = (ŝ1 + ŝ2 + . . . + ŝJ)/
√
J , a

vector that makes an angle, θ = cos−1(1/
√
J) with each of the axes. Thus, the process to

find all the collective states of ΦN,n, including the SCS and all the ACS’s, is as follows.

Starting with the original set of coordinate axes: ŝ1, ŝ2, . . . , ŝJ , a set of (J − 1) rotations

are carried out, producing a new set of coordinate axes that are mutually orthogonal. The

rotation angles are chosen to ensure that after the (J−1) rotations, one of the coordinate

axes is parallel to V (which is the SCS), so that the remaining set of coordinate axes can

be identified as the ACS’s. This is accomplished by carrying out the following steps:



62

Step 1: V is written as a sum of two terms, V12 and Vrest, where V12 = (ŝ1 + ŝ2)/
√
J .

Normalization of V12 gives the unit vector V̂12 = (ŝ1 + ŝ2)/
√

2, revealing that it makes

an angle cos−1(1/
√

2) with ŝ1 and ŝ2. Therefore, the plane of ŝ1 and ŝ2 must be rotated

around the origin by θ2 = (− cos−1(1/
√

2)) to give ŝ′
1 = (ŝ1−ŝ2)/

√
2 and ŝ′

2 = (ŝ1+ŝ2)/
√

2.

Obviously, ŝ′
2 is parallel to V12. By construction, ŝ′

1 is orthogonal to ŝ′
2, and therefore to

V12. Since Vrest does not contain any component in the {ŝ1, ŝ2} plane, it then follows

that ŝ′
1 is orthogonal to V, and is therefore an ACS. For N = 2 described in Sec. 3.2,

ŝ′
1 = |E ′

1,1⟩ and ŝ′
2 = |E ′

1⟩, and the process stops at this point.

Step 2: The vector, V is rewritten as another sum of two terms, V123 and V′
rest,

where V123 = (ŝ1 + ŝ2 + ŝ3)/
√
J . Normalization of V123 gives the unit vector V̂123 =

(ŝ1 + ŝ2 + ŝ3)/
√

3, showing that it makes an angle cos−1(1/
√

3) with ŝ1, ŝ2 and ŝ3. Since

ŝ′
1 is orthogonal to V, we leave it undisturbed. The plane of ŝ′

2 and ŝ3 is rotated around

the origin by θ3 = (− cos−1(1/
√

3)), resulting in ŝ′′
2 = (ŝ1 + ŝ2 − 2ŝ3)/

√
6 and ŝ′3 =

(ŝ1 + ŝ2 + ŝ3)/
√

3. It is clear that ŝ′
3 is parallel to V123. By construction, ŝ′′

2 is orthogonal

to ŝ′
3, and therefore, to V123. Furthermore, since V′

rest does not contain any component

in the {ŝ1, ŝ2, ŝ3} plane, it then follows that ŝ′′
2 is orthogonal to V. ŝ′′

2 is also orthogonal to

ŝ′
1, since it is a linear combination of ŝ′

2 and ŝ′
3, which are both orthogonal to ŝ′

1. Thus, ŝ′′
2

is the second ACS. For N = 3 and n = 2, this is the terminal step, resulting in ŝ′
1 = |E ′

2,1⟩,

ŝ′′
2 = |E ′

2,2⟩ and ŝ′
3 = |E ′

2⟩, as shown in Fig. 3.3.

Step 3: V is written again as V = V1234 +V′′
rest, where V1234 = (ŝ1 + ŝ2 + ŝ3 + ŝ4)/

√
J .

Again, normalizing V1234 gives V̂1234 = (ŝ1 + ŝ2 + ŝ3 + ŝ4)/
√

4, showing that it makes an

angle cos−1(1/
√

4) with ŝ1, ŝ2, ŝ3 and ŝ4. As described in Step 2 above, ŝ′
1 and ŝ′′

2 are

orthogonal to each other and to V, and, therefore, these two are left undisturbed. To
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find the vector orthogonal to this pair as well as to V, the plane of ŝ′
3 and ŝ4 is rotated

about the origin by θ4 = (− cos−1(1/
√

4)), and derive ŝ′′
3 = (ŝ1 + ŝ2 + ŝ3 − 3ŝ4)/

√
12 and

ŝ′
4 = (ŝ1 + ŝ2 + ŝ3 + ŝ4)/

√
4. Following the same set of arguments presented in Step 2,

it is easy to show that ŝ′′
3 is orthogonal to ŝ′

1, ŝ
′′
2 and V. As such, this is the third ACS.

For N = 4 and n = 1, this is the terminal step, resulting in ŝ′
1 = |E ′

1,1⟩, ŝ′′
2 = |E ′

1,2⟩,

ŝ′′
3 = |E ′

1,3⟩ and ŝ′
4 = |E ′

1⟩.

Figure 3.3. Hilbert sub-space rotation of the first excited state of an en-
semble of three atoms.

For arbitrary N and n, there are (J − 1) such steps to arrive at the Hilbert sub-

space Φ′
N,n spanned by ŝ′

1, ŝ
′′
2, ŝ

′′
3, . . . , ŝ

′
J , where ŝ′

J is the SCS and the rest are the ACS’s.

This process can be formalized by the method of matrix rotations considering the column
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vector formed by the elements of the space ΦN,n as follows

S =
[
ŝ1 ŝ2 . . . ŝJ

]T

.(3.21)

The vector, S undergoes a series of rotations that transforms it to another vector, SC

whose elements are the symmetric and asymmetric collective states for that particular

manifold of the ensemble. The first rotation matrix, R(2) causes a rotation of S in the

{ŝ1, ŝ2} plane to form S2 whose elements are {ŝ′1, ŝ′2, ŝ3, . . . , ŝJ}. The second rotation

matrix, R(3) further rotates the vector S2 in the {ŝ′2, ŝ3} plane to give S3. This process is

continued until the vector, SJ ≡ SC is formed by applying R(J) on SJ−1. Therefore, the

overall process may be expressed as SC = RT S, where RT = R(J)R(J − 1) . . . R(3)R(2).

The j-th rotation vector is of the form

R(j)m,n =



1 for m = n,m ̸= j − 1, j

cos θj for m = n = j − 1, j

− sin θj for m = j, n = j − 1

sin θj for m = j − 1, n = j

0 otherwise

,(3.22)

where θj = cos−1(1/
√
j), so that cos θj = 1/

√
j and sin θj =

√
(j − 1)/j. This matrix

represents a simple rotation by an angle of (−θj) in the plane of ŝ′
j−1 and ŝj. To visualize
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this, the explicit form of R(2), R(3) and R(4) is shown below.

R(2) =



cos θ2 − sin θ2 0 0 . . . 0

sin θ2 cos θ2 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
... ... ... ... . . . ...

0 0 0 0 . . . 1



,

θ2 = cos−1(1/
√

2)(3.23a)

R(3) =



1 0 0 0 . . . 0

0 cos θ3 − sin θ3 0 . . . 0

0 sin θ3 cos θ3 0 . . . 0

0 0 0 1 . . . 0
... ... ... ... . . . ...

0 0 0 0 . . . 1



,

θ3 = cos−1(1/
√

3)(3.23b)
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R(4) =



1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 cos θ4 − sin θ4 . . . 0

0 0 sin θ4 cos θ4 . . . 0
... ... ... ... . . . ...

0 0 0 0 . . . 1



,

θ4 = cos−1(1/
√

4).(3.23c)

In general, for arbitrary N , n and therefore, J , the SCS and ACS’s can be expressed

as follows

|E ′
n⟩ =

J∑
l=1

ŝl/
√
J,

|E ′
n,j⟩ =(

j∑
l=1

ŝl − jŝj+1)/
√
j(j + 1),(3.24)

where j = 1, 2, . . . , n − 1. Conversely, the original unrotated vectors can be written in

terms of the rotated, collective states bases as follows

ŝ1 = |E ′
n⟩ /

√
J +

J−1∑
j=1

|E ′
n,j⟩ /

√
j(j + 1),

ŝj = |E ′
n⟩ /

√
J +

J−1∑
l=j

|E ′
n,l⟩ /

√
l(l + 1) −

√
j − 1 |E ′

n,j−1⟩ /
√
j,(3.25)

where j = 2, . . . , n−1. This inversion is useful in illustrating the behavior of the collective

states in more complex situations, an example of which will be presented shortly.
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In order to get a clearer picture of how the spread in detuning affects the behavior of

the ensemble, the simple case of a 3-atom ensemble interacting with a laser of uniform

profile is considered next. Additionally, the i-th atom is assumed to experience a detuning

of δi. The manifold corresponding to the absorption of 1 photon is spanned by the set

Φ3,1, whose elements, given by |e′
1g

′
2g

′
3⟩ , |g′

1e
′
2g

′
3⟩ and |g′

1g
′
2e

′
3⟩, are now labeled as ŝ1, ŝ2

and ŝ3, respectively. The SCS of this manifold, as defined in Eq. (3.24), is given by

|E ′
1⟩ = (ŝ1 + ŝ2 + ŝ3)/

√
3 = (|e′

1g
′
2g

′
3⟩ + |g′

1e
′
2g

′
3⟩ + |g′

1g
′
2e

′
3⟩)/

√
3.(3.26)

One of the possible ways of forming the set of ACS’s is

|E ′
1,1⟩ = ŝ1 − ŝ2√

2
= |e′

1g
′
2g

′
3⟩ − |g′

1e
′
2g

′
3⟩√

2
,(3.27)

and

|E ′
1,2⟩ = (ŝ1 + ŝ2 − 2ŝ3)√

6
= |e′

1g
′
2g

′
3⟩ + |g′

1e
′
2g

′
3⟩ − 2 |g′

1g
′
2e

′
3⟩√

6
.(3.28)

The action of the ensemble Hamiltonian, H ′
C = H ′

r + H ′
l + H ′

d on |E ′
1⟩ shows how it

experiences an energy shift, and couples with its adjacent states as follows:

H ′
r |E ′

1⟩ /ℏ = Ω(|e′
1e

′
2g

′
3⟩ + |e′

1g
′
2e

′
3⟩ + |g′

1e
′
2e

′
3⟩)/

√
3,(3.29a)

H ′
l |E ′

1⟩ /ℏ =
√

3Ω |g′
1g

′
2g

′
3⟩ /2,(3.29b)

H ′
d |E ′

1⟩ /ℏ = (−δ1 |e′
1g

′
2g

′
3⟩ − δ2 |g′

1e
′
2g

′
3⟩ − δ3 |g′

1g
′
2e

′
3⟩)/

√
3.(3.29c)
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It can be seen from Eq. (3.24) that Eq. (3.29a) can be written as H ′
r |E ′

1⟩ /ℏ = Ω |E ′
2⟩

and Eq. (3.29b) can be written as H ′
l |E ′

1⟩ /ℏ =
√

3Ω |E ′
0⟩ /2. Furthermore, each term on

the right hand side in Eq. (3.29c) can be written in terms of the relevant SCS and ACS’s

according to Eq. (3.25):

H ′
d |E ′

1⟩ /ℏ = − δ1ŝ1/
√

3 − δ2ŝ2/
√

3 − δ3ŝ3/
√

3

= − (δ1 + δ2 + δ3) |E ′
1⟩ /3 − (δ1 − δ2) |E ′

1,1⟩ /
√

6

− (δ1 + δ2 − 2δ3) |E ′
1,2⟩ /

√
18.(3.30)

The first term in parentheses on the right hand side of Eq. (3.30) is the energy shift in

|E ′
1⟩. The second and third terms give the coupling strength of |E ′

1⟩ with |E ′
1,1⟩ and |E ′

1,2⟩,

respectively. In the case that each atom in the ensemble experiences the same detuning

due to Doppler shift, these two terms go to zero, and the ACS’s remain uncoupled from

the symmetric set.

In the more complex case where each atom in the ensemble experiences a unique

Rabi frequency, the raising part of the ensemble Hamiltonian applied to any SCS yields

the next higher SCS of that ensemble, as prescribed in Eq. (3.19). To illustrate this,

consider the example of a 4-atom ensemble where the raising part of the Hamiltonian is
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H ′
r = ∑4

i=1ℏΩi |e′
i⟩ ⟨g′

i| /2. The set of SCS’s are therefore, the following:

|E ′
1⟩ =(Ω1 |e′

1g
′
2g

′
3g

′
4⟩ + Ω2 |g′

1e
′
2g

′
3g

′
4⟩ + Ω3 |g′

1g
′
2e

′
3g

′
4⟩ + Ω4 |g′

1g
′
2g

′
3e

′
4⟩)

× (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)−1/2

|E ′
2⟩ =(Ω1Ω2 |e′

1e
′
2g

′
3g

′
4⟩ + Ω1Ω3 |e′

1g
′
2e

′
3g

′
4⟩ + Ω1Ω4 |e′

1g
′
2g

′
3e

′
4⟩ + Ω2Ω3 |g′

1e
′
2e

′
3g

′
4⟩

+ Ω2Ω4 |g′
1e

′
2g

′
3e

′
4⟩ + Ω3Ω4 |g′

1g
′
2e

′
3e

′
4⟩)((Ω1Ω2)2 + (Ω1Ω3)2 + (Ω1Ω4)2

+ (Ω2Ω3)2 + (Ω2Ω4)2 + (Ω3Ω4)2)−1/2

|E ′
3⟩ =(Ω1Ω2Ω3 |e′

1e
′
2e

′
3g

′
4⟩ + Ω1Ω2Ω4 |e′

1e
′
2g

′
32′

4⟩ + Ω1Ω3Ω4 |e′
1g

′
2e

′
3e

′
4⟩

+ Ω2Ω3Ω4 |g′
1e

′
2e

′
3e

′
4⟩)((Ω1Ω2Ω3)2 + (Ω1Ω2Ω4)2 + (Ω1Ω3Ω4)2

+ (Ω2Ω3Ω4)2)−1/2

|E ′
4⟩ = |e′

1e
′
2e

′
3e

′
4⟩ .(3.31)

The set of ACS’s corresponding to |E ′
n⟩ in the present case of non-uniform Rabi fre-

quency consists of (J − 1) elements that are orthogonal to one another as well as to |E ′
n⟩.

As mentioned above, they can be constructed using the GSO process. The realization of

this process as a set of rotations follows a similar set of rules as described above. However,

the rotation angles will now depend on the relative amplitudes of all the Rabi frequencies.

The details of this process are beyond the scope of the present discussion and will be

presented elsewhere.
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3.4. Quantized COM Model of Ensemble

In a Conventional Raman Atomic Interferometer (CRAIN), one must take into account

the quantum nature of the COM motion. Similarly, for a COSAIN, the COM motion of

the atom must be considered quantum mechanically. In doing so, one must consider all

the degrees of freedom of the COM. However, for a CRAIN as well as the COSAIN (which

is a variant of the CRAIN), only the motion in the direction parallel to the laser beams

(which we have chosen to be the z direction) has to be quantized. As such, in what

follows, the discussion is kept confined to such a scenario.

The i-th atom is now a Gaussian wavepacket formed by the superposition of an infinite

number of plane waves, where the p-th plane wave can exist in two energy states, |gip, ℏk′
ip⟩

and |eip, ℏ(k′
ip + k)⟩, which differ by a momentum ℏk. Since the laser field amplitude is

assumed to be constant in the z direction, the Rabi frequency experienced by each plane

wave manifold of the i-th atom is Ωi. The Doppler shift induced due to the thermal

motion of the atoms in the z direction ascribes a detuning of δT i to this atom. As such,

the Hamiltonian of the p-th plane wave of the i-th atom is

Hip/ℏ =(ωg + ℏk′2
ip/2m) |gip⟩ ⟨gip|

+ (ωe + ℏ(k′
ip + k)2/2m) |eip⟩ ⟨eip|

+ Ωi(exp (i(ω0it− ξi)) |gip⟩ ⟨eip| + h.c.)/2.(3.32)

The Schrödinger equation governing the evolution of the state vector of this plane

wave, |ψip⟩, is iℏ∂ |ψip⟩ /∂t = Hip |ψip⟩. Similar to the description given in Sec 2.1.1, a
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Figure 3.4. (a) Quantized COM model of an atom, (b) two level model of
each plane wave component.

unitary transformation, Qip changes |ψip⟩ to |ψ′
ip⟩ such that

Qip =
2∑

j=1
exp (i(aipjt+ bipj)) |j⟩ ⟨j| ,(3.33)

where aipj and bipj are arbitrary parameters. The Hamiltonian in the new basis vector thus

formed is H ′
ip = QipHipQ

−1
ip −ℏQ̇ipQ

−1
ip , so that iℏ∂ |ψ′

ip⟩ /∂t = H ′
ip |ψ′

ip⟩. It can be stripped

of its time dependence by setting aip1 = ωg + ℏk′2
ip/2m and aip2 = ωe + δvi + ℏk′2

ip/2m.

For bip1 = 0 and bip2 = −ξi, H ′
ip is rendered independent of any phase factors. In the
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transformed frame, the Hamiltonian is thus

H ′
ip/ℏ =(−δvi + ℏk2/2m+ ℏkk′

ip/m) |e′
ip⟩ ⟨e′

ip| + Ωi(|g′
ip⟩ ⟨e′

ip| + h.c.)/2.(3.34)

Since the atom is a sum of these individual plane waves, it evolves according to the

equation that is the sum of the individual Schrödinger equations, iℏ∂(∑∞
p→−∞ |ψ′

ip⟩)/∂t =∑∞
p→−∞H

′
ip |ψ′

ip⟩. In the limit that the Rabi frequency of the i-th atom is large compared

to the Doppler shift due to the COM momentum of each of the constituent plane waves,

i.e. Ωi ≫ ℏkk′
ip/m , the corresponding Hamiltonians become identical to one another.

The resulting evolution equation is then iℏ∂ |ψ′
i⟩ /∂t = H ′

i |ψ′
i⟩, where |ψ′

i⟩ = ∑∞
p→−∞ |ψ′

ip⟩

and H ′
i = H ′

i1 = H ′
i2, etc. In this regime, the atom’s Hamiltonian becomes H ′

i/ℏ =

−δi |e′
i⟩ ⟨e′

i| + Ωi(|g′
i⟩ ⟨e′

i| + h.c.)/2, where δi = δvi − ℏk2/2m. This is identical to the

semiclassical Hamiltonian of the atom where the COM mass degree of freedom of the

atom is not considered. Thus, it is concluded that, under approximations that are valid

for the COSAIN, a semi-classical description of the COM motion of each atom is sufficient.

As such, all the results derived above regarding the properties of collective state remain

valid for the COSAIN.

3.5. Equivalence Between Doppler Effect Induced Phase Shift and Position

Change Induced Phase Shift

Consider an ideal two level atom, excited by a laser field traveling in the z direction,

assuming the field amplitude to be uniform in all directions. The atom is modeled as

having two energy levels, |g⟩ and |e⟩. For the issue at hand, it is not necessary to consider

the radiative decay of |e⟩. As such, both of the states are assumed to be long-lived.
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This two-level system is shown in Fig. 3.5(a), where ω0 is the frequency of the laser

field, assumed to be resonant for a stationary atom. The laser field is assumed to be

polarized, arbitrarily, in the x direction. As illustrated in Fig. 3.5(b), the atom is initially

(t = 0) positioned at r0i = x0ix̂ + y0iŷ + z0iẑ and is moving in the z direction with a

non-relativistic velocity v. The electric field at a time t, in the atom’s frame of reference,

is E(r, t) = x̂E0 cos(ω0t − kz), where z = z0i + vt. In the semiclassical model employed

here, the Hamiltonian of this atom can be written as H = H0i + qρ · E, where the terms

have their usual meanings as given in Sec. 3.2. After making the RWA as prescribed in

Sec. 3.2, H can be written in the bases of |g⟩ and |e⟩ as

H/ℏ =ωg |g⟩ ⟨g| + ωe |e⟩ ⟨e| + Ω(exp(i(ω0t− k(z0i + vt))) |g⟩ ⟨e| + h.c.)/2,(3.35)

where Ω ≡ ⟨g| (x · ρ) |e⟩E/ℏ = ⟨e| (x · ρ) |g⟩E/ℏ.

The state of this atom, |ψ⟩ evolves according to the Schrödinger equation, iℏ∂ |ψ⟩ /∂t =

H |ψ⟩. A unitary transformation, Q defined as Q = ∑2
j=1 exp(i(ajt + bj)) |j⟩ ⟨j| changes

|ψ⟩ to |ψ′⟩ = Q |ψ⟩, where aj and bj are arbitrary parameters. The Q-transformed Hamil-

tonian for this state vector is then H ′ = QHQ−1 − ℏQ̇Q−1, so that iℏ∂ |ψ′⟩ /∂t = H ′ |ψ′⟩.

H ′ is stripped of its time dependence by setting a1 = ωg and a2 = ω0 + ωg = ωe − kv.

Now, setting b1 = 0, b2 = −kz0i makes H ′ independent of any phase factor as well. The

Q-transformed Hamiltonian thus becomes

H ′/ℏ = kv |e′⟩ ⟨e′| + Ω(|g′⟩ ⟨e′| + h.c.)/2.(3.36)

Therefore, the velocity of the atom induces a net detuning of δ = −kv. The new ba-

sis vectors, |g′⟩ and |e′⟩, are related to the original basis vectors as exp(−iωgt) |g⟩ and
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Figure 3.5. (a) (left) Two level atom in the lab frame frame, (right) in the
atom’s frame of reference, (b) change in the coordinates of the atom over
the duration of interaction with the laser pulses, (c) laser beam intensity
variation over the duration of interaction.

exp(−i((ωe −kv)t−kz0i)) |e⟩, respectively. If the atom is initially in cgi(0) |g′
i⟩+cei(0) |e′

i⟩,

its state after interaction for a time t is given by Eq. (4.10).

This atom interacts with two consecutive laser fields separated by a dark zone of

duration T , as illustrated in Fig. 3.5(c). The time of interaction of the atom with each

field is such that τ = π/2Ω. The atom initially at z = z0i drifts to z = z0f by the end

of the entire interaction sequence. For the sake of simplicity, it is assumed that kv ≪ Ω

and that the atom’s position does not change appreciably over the duration of the pulse.

Starting with the atom in state |g⟩ at t = 0, the state of the atom at the end of the first

pulse (t = τ) is |ψ′⟩ = (|g′⟩ − i |e′⟩)/
√

(2). The Q-transformed Hamiltonian in the dark



75

zone is given by H ′
d = kv |e′⟩ ⟨e′|. At t = τ + T , the state of the atom can be expressed as

(3.37) |ψ′⟩ = (|g′⟩ − i exp(−ikvT ) |e′⟩)/
√

2.

After the atom’s encounter with the second pulse (t = 2τ + T ), its quantum state can

be written as |ψ′⟩ = (1 − exp(−ikvT )) |g′⟩ /2 − i(1 + exp(−ikvT )) |e′⟩ /2. In the original

bases of |g⟩ and |e⟩, the final state of the atom at the end of the separated field interaction

sequence is given by

|ψ⟩ =(1 − exp(−ikvT )) exp(−iωgt) |g⟩ /2 − i(1 + exp(−ikvT ))

× exp(−i(ωe − kv)t+ ikz0i) |e⟩ /2.(3.38)

Now, the same interaction shown in Fig. 3.5(c) is considered in the laboratory frame

of reference in which the electric field at any point along the laser’s direction of propa-

gation (z direction) is given by E(r, t) = x̂E0 cos(ω0t − kz). Considering that at t = 0

the atom is positioned at z = z0i, the Hamiltonian for the first interaction zone is given

by HL1/ℏ = ωg |g⟩LL⟨g| + ωe |e⟩LL⟨e| + Ω(exp(i(ω0t − kz0i)) |g⟩LL⟨e| + h.c.)/2, where the

subscript L indicates that this is in the laboratory frame. The state of the atom evolves ac-

cording to iℏ∂ |ψ⟩L /∂t = HL1 |ψ⟩L. Therefore, the transformation Q1 to remove time and

phase dependence from HL1 is given by Q1 = exp(iωgt) |1⟩ ⟨1| + exp(i(ωet− kz0i)) |2⟩ ⟨2|.

The resulting Q-transformed Hamiltonian in the bases of |g′⟩L and |e′⟩L is H ′
L1/ℏ =

(Ω |g′⟩LL⟨e′| + h.c.)/2. As a result, considering that the atom is in state |g′⟩L at t = 0,

the state of the atom at t = τ is |ψ′⟩ = (|g′⟩L − i |e′⟩L)/
√

2.
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The dark zone Q-transformed Hamiltonian, H ′
Ld contains no non-zero elements. Thus,

at the end of the dark zone (t = τ+T ), the quantum state of the atom remains unaltered.

Since the atom has a non zero velocity, v along z direction, by the end of the dark zone

it will have moved to z = z0f . As a consequence, the Hamiltonian for the second pulse

will be HL2/ℏ = ωg |g⟩LL⟨g|+ωe |e⟩LL⟨e|+Ω(exp(i(ω0t−kz0f )) |g⟩LL⟨e|+h.c.)/2. The Q-

transformation required to make HL2 time and phase factor independent may be written

as Q2 = exp(iωgt) |1⟩ ⟨1| + exp(i(ωet − kz0f )) |2⟩ ⟨2| so that |ψ′′⟩L = Q2 |ψ⟩L. The new

basis states thus formed are |g′′⟩L = exp(iωgt) |g⟩L and |e′′⟩L = exp(i(ωet − kz0f )) |e⟩L.

Therefore, the quantum state of the atom at the end of the dark zone (t = τ + T ),

must now be written in the Q2-transformed bases of |g′′⟩L and |e′′⟩L. Therefore, |ψ′′⟩L =

Q2Q
−1
1 |ψ′⟩L = (|g′′⟩L − i exp(ik(z0i − z0f )) |e′′⟩L)/

√
2. This is the initial condition for the

second pulse. At the end of the second pulse, t = 2τ + T , the atom’s quantum state is,

therefore, given by |ψ′′⟩L = (1−exp(ik(z0i−z0f ))) |g′′⟩L /2−i(1+exp(ik(z0i−z0f ))) |e′′⟩L /2.

Thus, in the original bases of |g⟩L and |e⟩L, the state of the atom is

|ψ⟩L =(1 − exp(ik(z0i − z0f ))) exp(−iωgt) |g⟩L /2

− i(1 + exp(ik(z0i − z0f ))) exp(−iωet+ ikz0f ) |e⟩L /2.(3.39)

Since z0f = z0i + vT , Eq. (3.39) is identical to Eq. (3.38). Thus, when one takes into

account the Doppler shift, it is no longer necessary to consider explicitly the fact that the

atom sees a different laser phase at different times.



77

3.6. Summary

In this chapter, we investigated the behavior of an ensemble of N non-interacting,

identical atoms, excited by a laser with a wavelength of λ. In doing so, it was assumed

that the wavefunctions of the atoms do not overlap with one another, so that quantum

statistical properties are not relevant. In general, the i-th atom sees a Rabi frequency Ωi,

an initial position dependent laser phase ϕi, and a motion induced Doppler shift of δi.

When Ωi = Ω and δi = δ for all atoms, the system evolves into a superposition of (N + 1)

generalized symmetric collective states, independent of the values of ϕi. If ϕi = ϕ for all

atoms, these states simplify to the well known Dicke collective states. When Ωi or δi is

distinct for each atom, the system evolves into a superposition of symmetric as well as

asymmetric collective states. For large values of N , the number of asymmetric states (2N −

(N+1)) is far larger than that of the symmetric states. For a COSAIN and a COSAC it is

important to understand the behavior of all the collective states under various conditions.

Here, we described how to formulate systematically the properties of all the collective

states under various non-idealities, and used this formulation to understand the dynamics

thereof. Specifically, for the case where Ωi = Ω and δi = δ for all atoms, we showed how

the amplitudes of each of the generalized collective states can be determined explicitly in

a simple manner. For the case where Ωi or δi is distinct for each atom, we have shown

how the symmetric and asymmetric collective states can be treated on the same footing.

Furthermore, we have shown that the collective states corresponding to the absorption of

a given number of photons can be visualized as an abstract, multi-dimensional rotation

in the Hilbert space spanned by the ordered product states of individual atoms. This

technique enables one to construct the explicit expression for any asymmetric state of
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interest. Such expressions in turn can be used to determine the evolution of such a state

in the COSAIN or the COSAC. We have also considered the effect of treating the COM

degree of freedom of the atoms quantum mechanically on the description of the collective

states. This is particularly relevant for the COSAIN. In particular, we have shown that it

is indeed possible to construct a generalized collective state when each atom is assumed

to be in a localized wave packet.
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CHAPTER 4

Collective State Atomic Interferometer

4.1. Introduction

A COSAIN is configured essentially the same way as the CRAIN, with two excep-

tions. First, it must make use of trapped atoms, released sequentially to the interfer-

ometer. Second, the detection process is designed to measure the probability of finding

all the atoms in one of the collective states, such as |E0⟩. It is, therefore, essential

to recapitulate the dynamics of the CRAIN here briefly. A detailed description of this

is given in Sec. 2.3. The building block of a CRAIN is a three level atom, with two

metastable states, |g, pz = 0⟩ ≡ |g, 0⟩ and |e, pz = ℏ(k1 + k2)⟩ ≡ |e, ℏk⟩ and an excited

state |a, pz = ℏk1⟩ ≡ |a, ℏk1⟩ coupled by two counter propagating beams, with a single

photon detuning δ (Fig. 4.1(a)). One of the beams, with Rabi frequency Ω1, couples |g, 0⟩

to |a, ℏk1⟩, while the other beam, with Rabi frequency Ω2, couples |a, ℏk1⟩ to |e, ℏk⟩. For

δ ≫ Ω1,Ω2, the interaction can be described as an effective two level system excited by

an effective traveling wave with a momentum ℏk = ℏ(k1 + k2), with a Rabi frequency

Ω = Ω1Ω2/2δ (Fig. 4.1(b)) [17]. We assume that δ ≫ Γ, where Γ is the decay rate of

|a⟩, so that the effect of Γ can be neglected. Under a sequence of π/2 − π − π/2 pulses

(Fig. 4.1 (c)), the wavepacket first separates into two components, then gets redirected

and finally recombined. If this interferometer is rotating at a rate ΩG about an axis nor-

mal to the area, a time lag is introduced between the two paths. The phase difference, ϕ
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is then the product of the time lag and the wave frequency. For the CRAIN, this is the

Compton-frequency of the atom, ΩC = mc2/ℏ, for non-relativistic velocities, where m is

the rest mass of the atom. A detailed derivation of this effect is given in Sec. 2.2. The

expression for ϕ (Eq. 2.41), in terms of ΩC is

ϕ = 2ΘΩGωC

c2 .(4.1)

The signal of the CRAIN, which is a measure of the amplitude of |g⟩ at the end varies as

cos2(ϕ/2) [2,23].

The dependence of ϕ on ωC has motivated matter wave interferometry with large

molecules. To date, the largest molecule used has a mass of ∼ 10000 atomic-mass-

unit [37], corresponding to the mass of ∼ 75 133Cs atoms. These interferometers, based

on the Talbot effect, are not suited for rotation sensing. Furthermore, for interferometry

with much larger particles it would be necessary to use gratings with spacings too small

to be realized with existing technologies. Additionally, effects such as van der Waals in-

teraction would become dominant for such gratings. Inspired by these developments, we

proposed an experiment that would reveal evidence of matter wave interference where a

collection of N non-interacting, unentangled atoms acts as a single particle. For 87Rb and

N = 106, ωC is ∼ ten nonillion Hz, and λdB is ∼ 4.5 femtometer at a velocity of 1 m/s.

Furthermore, it can improve the phase measurement ability by a factor of as much as 10.

This type of matter wave interferometry may also open up new opportunities for sensitive

measurement of gravitational redshift [15] or matter wave clocks [11]. It may also serve

as a testbed for macroscopic quantum decoherence due to gravitational redshift [38].
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Figure 4.1. (a) A three level atom. (b) An equivalent reduced two-level
atom model. (c) A CRAIN produced via π/2 − π− π/2 sequence of excita-
tion.

Consider an assembly of N identical noninteracting atoms, subjected to the π/2−π−

π/2 sequence. If we imagine a situation where the ground state, |E0⟩ ≡ |g1, g2, . . . , gN⟩

is coupled, directly and only, to the state where all the atoms are in the excited state,

|EN⟩ ≡ |e1, e2, . . . , eN⟩, the resulting ensemble interferometer would experience a phase-

difference, ϕEI = Nϕ. However, existing technology does not enable such an excitation.
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Even if one were to use a pure Fock state of N ′ > N photons, the ensemble would evolve

into a superposition of (N+1) symmetric collective states |En⟩ |N ′ − n⟩, where |N ′ − n⟩ is

a state of the field with (N ′ −n) photons, and |En⟩ = J(N,n)−1/2∑J(N,n)
k=1 Pk |g⊗(N−n)e⊗n⟩,

where J(N, n) ≡
(

N
n

)
,Pk is the permutation operator, and n = 0, 1, 2, . . . , N [36]. Since

a laser is a superposition of many Fock states, the evolution of this system under laser

excitation would produce a seemingly intractable superposition of these collective states.

Modeling the laser field as a semi-classical one also does not simplify the picture much [].

However, we show here that, by measuring the quantum state of a single collective state,

it is possible to determine the effect of the interference among all the collective states,

and describe how such a measurement can be done. Choosing this collective state to be

one of the two extremal states (i.e., |E0⟩ or |EN⟩) also makes it possible to calculate this

signal easily, since the state of the whole system can be described as the tensor product

of individual atomic states. We show that the fringe width is reduced by a factor of
√
N ,

without using entanglement. For the current state of the art, the value of N can easily

exceed 106, so that a reduction of fringe width by a factor of more than 103 is feasible.

We also show that the phase fluctuation of the COSAIN can be significantly smaller, by

as much as a factor of 10, than that for a conventional interferometer employing the same

transition and the same atomic flux. The extremely narrow resonances produced in the

COSAIN may also help advance the field of spin squeezing [35, 39–41], which in turn

is useful for approaching the Heisenberg limit in precision metrology. A collective state

atomic clock, which employs the principle of collective excitation of atomic ensemble, and

exhibits a similar narrowing in signal fringe [42].
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In this chapter, we discuss the various aspects of the COSAIN. The rest of the chapter

is arranged in the following way: in Sec. 4.2, we describe the theory of the working

principle of a COSAIN. We also describe the physical phenomenon behind the narrowing

of the signal fringes. Sec. 4.3 gives an account of the various parameter inhomogeneities

that affect the signal amplitude and width. Sec. 4.4 details the description of the COSAIN

experiment, also including a discussion of the role of the optical density of the ensemble.

We also propose an alternate experimental scheme to achieve a higher value of effective

optical density in Sec. 4.5. In Sec. 4.6, we analyze the performance of the COSAIN as

compared to that of the CRAIN. We consider the effect of quantum and classical noise,

detector efficiency, and collection efficiency.

4.2. Description of the COSAIN

Consider an ensemble of N noninteracting atoms of the kind described above [35], with

the i-th atom in its ground state, |gi⟩. The ensemble is assumed to be initially situated

at (x = 0, z = 0) and traveling along the x-direction with a velocity v. The ensemble

undergoes the same π/2−π−π/2 sequence as described for the CRAIN. Assuming resonant

excitation, the Hamiltonian of the i-th atom after the rotating-wave transformation is

Hi = Ωi |gi⟩ ⟨ei| /2+ c.c. [39], where Ωi is the Rabi frequency of the i-th atom. Here, a

phase transformation on the Hamiltonian has also been applied to render Ωi real. For the

sake of simplicity and brevity, we consider only the case where the intensity profile of the

beams are rectangular, so that Ωi = Ω. In a real experiment, the Rabi-frequency of each

atom depends on its position relative to the Gaussian distribution of the beam intensity

profile. Due to the non-zero temperature of the trapped atoms, they also experience
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Doppler shift arising from thermal motion. A detailed description of the effect of these

inhomogeneities on the COSAIN signal is presented in Sec. 4.3.

A π/2-pulse of duration τ is applied to the ensemble at t = 0, following which each

atom is in state |ψi(τ)⟩=(|gi⟩− i |ei⟩)/
√

2. After the first dark-zone of duration of Td, the

component of the atom in state |ei⟩ drifts to (x = vTd, z = ℏkTd/m). The state |gi⟩ contin-

ues along the x-direction. We label the trajectories taken by |gi⟩ and |ei⟩, A and B respec-

tively. The state of an atom at t=τ+Td is |ψi(τ+Td)⟩ = |ψi(τ+Td)⟩A+|ψi(τ+Td)⟩B, where

|ψi(τ+Td)⟩A = |gi⟩ /
√

2 and |ψi(τ+Td)⟩B =−i |ei⟩ /
√

2. At the end of this zone, a π-pulse

causes the state |gi⟩ to evolve into |ei⟩ and vice-versa. The state at the end of this pulse

is |ψi(3τ+Td)⟩ = |ψi(3τ+Td)⟩A+|ψi(3τ+Td)⟩B, such that |ψi(3τ+Td)⟩A =−i |ei⟩ /
√

2 and

|ψi(3τ+Td)⟩B =− |gi⟩ /
√

2. Following the second dark zone of duration Td, the two trajec-

tories converge, as shown in Fig. 4.1(c), and |ψi(3τ+2Td)⟩ = |ψi(3τ+Td)⟩. At t = 3τ+2Td,

a third pulse of duration τ is applied to the atoms. If a phase-difference of ϕ is introduced

between the paths, the state of the atom at the end of the last π/2-pulse is |ψi(4τ+2Td)⟩=

|ψi(4τ+2Td)⟩A+|ψi(4τ+2Td)⟩B, where |ψi(4τ+2Td)⟩A =−i(−i exp(−iϕ) |gi⟩+|ei⟩)/2 and

|ψi(4τ+2Td)⟩B = −(|gi⟩−i exp(iϕ) |ei⟩)/2. This phase-difference can occur, for example,

due to a rotation of the entire system about the y-direction.

The final fringe pattern is the result of the interference of the states from the two

trajectories. This is observed by measuring the probability of finding the atom in either

of the two states. The signal as a measure of the amplitude of |g⟩, is therefore, SCRAIN =

|(1+exp(−iϕ))/2|2 = cos2(ϕ/2). We note now that the state |Ψ⟩ of the ensemble is the

direct product of its constituent atoms: |Ψ⟩=∏N
i=1 |ψi⟩ [39,40]. The signal of the COSAIN

is a measurement of any of the arising collective states. We choose to measure the state
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|E0⟩, so that the resulting signal is the probability of finding all the atoms of the ensemble

simultaneously in |g⟩. This choice of state will be explained later on when we discuss the

detection system of the COSAIN. The signal of the COSAIN is thus the product of the

signals from the constituent atoms, SCOSAIN = ∏N
i=1SCRAIN = cos2N(ϕ/2). The fringe

linewidth as a function of ϕ decreases with increasing N . We define this linewidth as the

full width at half maximum (FWHM) of the signal fringe, ϱ(N) = 2 cos−1(2−1/2N). We

have verified that ϱ(1)/ϱ(N)≈
√
N .

4.2.1. Physical Interpretation of Fringe Narrowing

The narrowing of the signal fringes in a COSAIN can be understood by considering

the physical properties of the collective excitations. If the ensemble in the ground state

interacts with a single photon of momentum ℏk, it will oscillate between |E0, 0⟩↔|E1, ℏk⟩.

Consequently, it will exhibit collective behavior such that its center of mass recoils with

a velocity in the z-direction equal to ℏk/Nm. Thus, this ensemble can be viewed as a

single entity with a mass of Nm, and a Compton frequency, ωC that is N times that of a

single atom, despite no interaction between the atoms. Conversely, the ensemble can be

viewed as having a λdB of h/Nmv that is N times lower than that of a single atom, where

v is the magnitude of its total velocity (e.g., a constant velocity in the x-direction that

is much larger than the velocity in the z-direction due to the recoil). In the ideal case of

uniform Rabi-frequencies and no Doppler shift related detunings, the first π/2-pulse splits

the ensemble into a superposition of N + 1 symmetric collective states (we have shown

the corresponding interpretation of the other, more general cases in ref. [39]). The state

|En⟩ receives a recoil of nℏk due to the first π/2-pulse and is deflected in the z-direction
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by nℏkTd/Nm by the end of the first dark zone, making an angle θn =tan−1(nℏk/Nmv)

with the x-axis. We label the path taken by this state as Path-n. The subsequent π-pulse

causes |En⟩ to evolve to |EN−n⟩. This results in the deflection of the trajectory of the

states so that all the N + 1 trajectories converge by the end of the second dark-zone. The

third pulse causes each of the N + 1 states to split further. The resulting COSAIN is,

thus, J(N + 1, 2) collective interferometers operating simultaneously. Of these, there are

x interferometers of area (N − x + 1)Θ/N , producing signal fringe amplitudes equaling

cos2((N −x+1)ϕ/2), where x assumes values 1, 2, . . . , N . The interference between these

cosinusoidal fringes result in the narrowing of the total fringe width. In what follows, we

illustrate the physical mechanism behind this narrowing by considering first the role of

Compton frequency in a CRAIN. We then extend this analysis to an ensemble of N atoms

to describe the phenomenon of narrowing in the COSAIN.

We consider the product state of the atom and a Fock state with N ′ photons de-

noted by |N ′⟩ or with N ′ − 1 photons denoted by |N ′ − 1⟩. Thus, at t = 0, the atom

photon system is assumed to be in the state |g⟩ |N ′⟩ ≡ |g,N ′⟩. The atom-field interac-

tion couples it to the state |e⟩ |N ′ − 1⟩ ≡ |e,N ′ − 1⟩, as illustrated in Fig. 4.2(a). We

assume that the photon energy, ℏω, exactly matches the energy difference between the

atomic internal states |e⟩ and |g⟩. We define the dressed frequency of the atom-photon

system as ωP A, which is a constant, for all possible states of the system. If we define

ωC,e = mec
2/ℏ as the Compton frequency of the excited atom, where me = mg + ℏω/c2

is the rest mass of the excited atom, and mg = m is the rest mass of the atom in the

ground state, then we have ωP A = mec
2/ℏ + (N ′ − 1)ω = mgc

2/ℏ + N ′ω. The Compton

frequency of the atom in the ground state is ωC,g = mgc
2/ℏ. The effect of temporal
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phase accumulation on the system during an interval ∆t, if the system is in an arbi-

trary superposition of |g⟩ and |e⟩, i.e. cg |g⟩ + ce |e⟩ at the start of the interval, will be

exp(−iωP A∆t)(cg |g,N ′⟩ + ce |e,N ′ − 1⟩). Thus, after the first π/2 pulse of a time du-

ration, τ , the quantum state of the system is exp(ωP Aτ)(|g,N ′⟩A − i |e,N ′ − 1⟩B)/
√

2,

where the subscripts A and B indicate the lower and upper trajectory of the interferom-

eter, respectively. This is followed by a dark zone of duration Td at the end of which

the quantum state of the system is exp(−iωP A(τ + Td))(|g,N ′⟩A − i |e,N ′ − 1⟩B)/
√

2.

A π-pulse is applied at the end of the first dark zone, and therefore, at t = 3τ +

Td, the quantum state of the system is |ψ(3τ + Td)⟩ = |ψ(3τ + Td)⟩A + |ψ(3τ + Td)⟩B,

where |ψ(3τ + Td)⟩A = −i exp(−iωP A(3τ + Td)) |e,N ′ − 1⟩ /
√

2 and |ψ(3τ + Td)⟩B =

− exp(−iωP A(3τ + Td)) |g,N ′⟩ /
√

2. At this point the second dark zone begins, at the

end of which the state of the system can be written as |ψ(3τ + 2Td)⟩ = |ψ(3τ + 2Td)⟩A +

|ψ(3τ + 2Td)⟩B, where |ψ(3τ + 2Td)⟩A = −i exp(−iωP A(3τ + 2Td)) |e,N ′ − 1⟩ /
√

2 and

|ψ(3τ + 2Td)⟩B = − exp(−iωP A(3τ + 2Td)) |g,N ′⟩ /
√

2. Finally, the last π/2-pulse causes

each of the arms to further split in to |g,N ′⟩ and |e,N ′ − 1⟩, so that the state of the

system at t = 4τ + 2Td is given by |ψ(4τ + 2Td)⟩ = |ψ(4τ + 2Td)⟩A + |ψ(4τ + 2Td)⟩B,

where

|ψ(4τ + 2Td)⟩A = −i
2

exp(−iωP A(4τ + 2Td))

× (−i |g,N ′⟩ + |e,N ′ − 1⟩),

|ψ(4τ + 2Td)⟩B = −1
2

exp(−iωP A(4τ + 2Td))

× (|g,N ′⟩ − i |e,N ′ − 1⟩).(4.2)
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The two arms, thus, yield identical proportions of |g,N ′⟩ and |e,N ′ − 1⟩. The probability

of finding the atom in the ground state, which is the signal for the CRAIN, is therefore,

SCRAIN = 1. However, if the entire system is rotating at the rate ΩG about an axis

perpendicular to the area carved by the interferometer, a time delay, ∆T is introduced

between the two paths. To consider its effect on the signal of the CRAIN, we note that

the state of the system at t = 3τ + 2Td is such that

|ψ(3τ + 2Td)⟩A = −i√
2

exp(−iωP A(3τ + 2Td))

× exp(i(ωC,g + ωC,e)∆T/4) |e,N ′ − 1⟩ ,

|ψ(3τ + 2Td)⟩B = −1√
2

exp(−iωP A(3τ + 2Td))

× exp(−i(ωC,e + ωC,g)∆T/4) |g,N ′⟩ .(4.3)

Finally, the state of the system due to rotation at the end of the π/2-dark-π-dark-π/2

sequence is such that

|ψ(4τ + 2Td)⟩A = −i
2

exp(−iωP A(4τ + 2Td))

× exp(iωC,avg∆T/2)(−i |g,N ′⟩

+ |e,N ′ − 1⟩),

|ψ(4τ + 2Td)⟩B = −1
2

exp(−iωP A(4τ + 2Td))

× exp(−iωC,avg∆T/2)(|g,N ′⟩

− i |e,N ′ − 1⟩),(4.4)
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where ωC,avg = (ωC,g + ωC,e)/2. The probability of finding the atom in the ground state,

which is the signal for the CRAIN, is therefore given by SCRAIN = cos2(ϕ/2), where ϕ =

ωC,avg∆T . From the special relativistic addition of velocities along the two trajectories, the

time delay is found to be ∆T = 2θΩG/c
2, where θ is the area enclosed by the CRAIN [28].

In a real experiment, one makes use of a laser, which is a coherent state, and not a Fock

state. However, when the mean photon number in the laser is very large, the excitation is

akin to what we described here. In effect, the laser in this limit can be viewed effectively

as a Fock state with a photon number equaling the mean photon number in the laser.

This is the semiclassical approximation, where the quantum state of the field is assumed

to remain unchanged (and thus factorized) independent of the state of the atom.

Next, we consider an ensemble of N such two level atoms that are independent and

non-interacting. Furthermore, we consider the product state of this ensemble and a

Fock state of N ′ photon as described above. Initially, all the atoms are in the state

|g⟩, so that the state of the ensemble-photon system is |E0⟩ |N ′⟩ ≡ |E0, N
′⟩, where

|E0⟩ = |g1, g2, . . . , gN⟩. Now, let us imagine a scenario (which is impossible in practice)

that the state |E0, N
′⟩ is directly coupled to the state |EN , N

′ −N⟩ via the exchange of

N photons between the states, where |EN⟩ = |e1, e2, . . . , eN⟩ as illustrated in 4.2(b). Such

a process can be used to realize an atomic interferometer in a manner analogous to the

CRAIN, as illustrated in 4.2(c). The area enclosed in this case would be the same as that

for a CRAIN. However, the average Compton frequency will now be NωC,avg (and the de

Broglie wavelength will be λdB,SingleAtom/N), so that the signal given by the population

of state |E0⟩ measured at the end, will be Sensemble = cos2(Nϕ/2), where ϕ is the phase

shift experienced by a CRAIN for the same amount of rotation.
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Figure 4.2. (a) Single atom coupled to an N ′-photon state, (b)N -atom en-
semble coupled to an N ′-photon state, (c) Ensemble interferometer formed
by splitting and recombining of |E0⟩ and |EN⟩.
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However, since the electric dipole moment for a superposition of |E0⟩ and |EN⟩ van-

ishes, there is no way to realize the type of excitation envisioned above. Instead, when

excited by a Fock state of N ′(> N) photons, this ensemble unfolds into a superposi-

tion of (N + 1) symmetric collective states given by |En⟩ |N ′ − n⟩, where |N ′ − n⟩ is a

state of the field with (N ′ − n) photons and |En⟩ = J(N, n)−1/2∑J(N,n)
k=1 Pk |g⊗(N−n)e⊗n⟩,

J(N,n) =
(

N
n

)
, Pk is the permutation operator, and n = 0, 1, 2, . . . , N [36]. The state

|En⟩ has a momentum of nℏk in the direction of the beam, since it has absorbed n pho-

tons. Thus, it will exhibit collective behavior such that its center of mass (COM) recoils

with a velocity equal to nℏk/Nm. As such, an ensemble in such a state can be viewed

as a single entity with a mass of Nm and a Compton frequency ωC that is N times that

of a single constituent atom, despite no interaction between the atoms. Conversely, the

ensemble can also be viewed as having a de Broglie wavelength λdB = h/Nmv that is N

times smaller than that of a single atom, where v is the magnitude of the total velocity

(e.g., a constant velocity in the x-direction that is much larger than the recoil velocity).

This is illustrated schematically in Fig 4.3.

Some of these states and their relevant couplings are illustrated in Fig. 4.4. For

example, state |E0, N
′⟩ is coupled to the state |E1, N

′ − 1⟩ at the rate of
√
NΩN ′ , where

ΩN ′ =
√
N ′Ω0, with Ω0 being the single-photon Rabi frequency (for exciting a single atom)

and the
√
N factor results from the collective enhancement of coupling. If the excitation

is carried out by a laser field where the mean photon number is much larger than N ,

then we can make a semiclassical approximation that ΩN ′ ∼= ΩN ′−1 ∼= . . . ∼= ΩN ′−N ≡ Ω.

Furthermore, the quantum state of the laser remains unchanged, (and thus factorized)

independent of the state of the ensemble. The Compton frequency of the state |En⟩ is given
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Figure 4.3. λdB of an Rb-87 atom moving at a constant velocity of 1 m/s
is 4.56 nm). In the rest frame of the atom, its characteristic Compton
frequency is 1.96(1025Hz). A cluster of 106 such atoms will exhibit the
characteristics of a single entity of mass that is a million times that of a
single Rb-87 atom. Therefore, λdB will be 4.56(10−15 m) and Compton
frequency is 1.96(1031 Hz).

by ωC,En = mEnc
2/ℏ, where mEn = mE0 +nℏω/c2 is the rest mass of the ensemble in state

|En⟩, and mE0 = Nm is the rest mass of the ensemble in state |E0⟩. Thus, the dressed

frequency of the ensemble-photon system ωP E, which is a constant for all possible states

of the system can be written as ωP E(N,N ′) = mEnc
2/ℏ + (N ′ − n)ω = mE0c

2/ℏ +N ′ω.

Figure 4.4. Coupling between an N -atom ensemble symmetric collective
states and N ′ photons.

In the absence of an effective detuning, the COSAIN is based on the coherent split-

ting and recombining of all of these symmetric collective states. The signal of the

COSAIN is, thus, the product of the signals of the constituent CRAIN’s that work

simultaneously, resulting in the narrowing of the signal fringes. The fringe linewidth,
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Figure 4.5. (a) Measurement of the COSAIN signal (amplitude of |E0⟩)
shows a narrowing of the fringe width. (b) The ratio ϱ(1)/ϱ(N) increases
with

√
N .

defined as the full width at half maximum (FWHM) of the signal fringe is given by

ϱ(N) = 2 cos−1(2−1/2N). It is evident from Fig. 4.5 that the ϱ(N) decreases with in-

creasing N . To illustrate the mechanism behind the COSAIN more transparently, we

now consider the simplest ensemble: an assembly of two atoms of the kind described

above and N ′ photons. At t = 0, the ensemble-photons system is assumed to be in

the state |E0, N
′⟩. The atom-field interaction couples it to the state |E1, N

′ − 1⟩, which

in turn is coupled to the state |E2, N
′ − 2⟩. Following the notations of the π/2-dark-π-

dark-π/2 sequence established for the CRAIN, the state of the ensemble after the first

π/2 pulse is |Ψ(τ)⟩ = exp(−iωP Eτ)(|E0, N
′⟩A − i

√
2 |E1, N

′ − 1⟩B − |E2, N
′ − 2⟩C)/2,

where ωP E ≡ ωP E(2, N ′) and the subscripts A, B, and C denote the lower, middle

and upper trajectories of the interferometer, respectively, as shown in Fig. 4.6. This
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is followed by a dark zone of duration Td, at the end of which the state of the en-

semble is |Ψ(τ + Td)⟩ = exp(−iωP ETd) |Ψ(τ)⟩. The component |E1, N
′ − 1⟩B is dis-

placed by ℏkTd/2m along the z-axis since it has absorbed the recoil from one pho-

ton (ℏk), and it has a mass of 2(mC,g + mC,e) ≈ 2m. Similarly, |E2, N
′ − 2⟩ is dis-

placed by ℏkTd/m along the z-axis since it has absorbed recoils from two photons (2ℏk),

and it has a mass of 2mC,e ≈ 2m. At t = τ + Td, the system interacts with the π-

pulse (of duration 2τ) which causes the transition |E0, N
′⟩ ↔ |E2, N

′ − 2⟩. The state

|E1, N
′ − 1⟩, however only picks up a phase due to the π interaction, and its trajec-

tory remains unchanged. Explicitly, the state of the system at the end of the π-pulse is

|Ψ(3τ + Td)⟩ = |Ψ(3τ + Td)⟩A + |Ψ(3τ + Td)⟩B + |Ψ(3τ + Td)⟩C , where

|Ψ(3τ + Td)⟩A = −1
2

exp(−iωP E(3τ + Td)) |E2, N
′ − 2⟩ ,

|Ψ(3τ + Td)⟩B = − 1√
2

exp(−iωP E(3τ + Td))

× |E1, N
′ − 1⟩ ,

|Ψ(3τ + Td)⟩C = 1
2

exp(−iωP E(3τ + Td)) |E0, N
′⟩ .(4.5)

At the end of this pulse, the system passes through a second dark zone of duration

Td, which causes the state of the system to become

|Ψ(3τ + 2Td)⟩ = |Ψ(3τ + 2Td)⟩A + |Ψ(3τ + 2Td)⟩B + |Ψ(3τ + 2Td)⟩C ,(4.6)

where

|Ψ(3τ + 2Td)⟩A = exp(−iωP ETd) |Ψ(3τ + Td)⟩A ,(4.7a)
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Figure 4.6. Illustration of a two atom COSAIN depicting the state trajectories.

ketΨ(3τ + 2Td)B = exp(−iωP ETd) |Ψ(3τ + Td)⟩B ,(4.7b)

|Ψ(3τ + 2Td)⟩C = exp(−iωP ETd) |Ψ(3τ + Td)⟩C .(4.7c)
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By the end of this dark zone, the three trajectories converge and a last π/2-pulse is applied

which causes each of the trajectories to further split as follows:

|Ψ⟩A = −1
4

exp(−iωP E(4τ + 2Td))(− |E0, N
′⟩

− i
√

2 |E1, N
′ − 1⟩ + |E2, N

′ − 2⟩),

|Ψ⟩B = 1
2

exp(−iωP E(4τ + 2Td))(|E0, N
′⟩

+ |E2, N
′ − 2⟩),

|Ψ⟩C = 1
4

exp(−iωP E(4τ + 2Td))(|E0, N
′⟩

− i
√

2 |E1, N
′ − 1⟩ − |E2, N

′ − 2⟩).(4.8)

The signal of the COSAIN is the probability of finding the ensemble in any of the

collective states. We choose to measure the probability of |E0, N
′⟩. The probability of

finding the ensemble in state |E0, N
′⟩, is therefore, SCOSAIN = 1. However, as explained

above for the case of the CRAIN, if the entire system is rotating at the rate ΩG about an

axis perpendicular to the area carved by the interferometer, a time delay is introduced

between the paths. This time delay depends only on the area enclosed and the rate of

rotation, as noted earlier. Let us assume that the delay between the paths C and A,

which forms the A− C loop, is ∆T . Therefore, the delay between paths B and A which

form the A− B loop, will be ∆T/2. Similarly, the delay between paths C and B, which

form the B − C loop, will also be ∆T/2. Since only the relative delay between two

paths matter, we assume, for simplicity, that there is no delay on path B. Thus, just

before the final π/2 pulse, we can write the quantum states of these paths under rotation

as |Ψ⟩BR = |Ψ(3τ + 2Td)⟩B, |Ψ⟩AR = exp(i(ωC,E0 + ωC,E2)∆T/4) |Ψ(3τ + 2Td)⟩A, and



97

|Ψ⟩CR = exp(−i(ωC,E2 + ωC,E0)∆T/4) |Ψ(3τ + 2Td)⟩C . The last π/2-pulse causes each

of these components to further split so that the state of the system at the end of the

π/2-dark-π-dark-π/2 sequence is

|Ψ⟩AR = −1
4

exp(−iωP E(4τ + 2Td))

× exp(i(ωC,E0 + ωC,E2)∆T/4)

× (− |E0, N
′⟩ − i

√
2 |E1, N

′ − 1⟩ + |E2, N
′ − 2⟩),

|Ψ⟩BR = 1
2

exp(−iωP E(4τ + 2Td))(|E0, N
′⟩

+ |E2, N
′ − 2⟩),

|Ψ⟩CR = 1
4

exp(−iωP E(4τ + 2Td))

× exp(−i(ωC,E2 + ωC,E0)∆T/4)

× (|E0, N
′⟩ − i

√
2 |E1, N

′ − 1⟩ − |E2, N
′ − 2⟩).(4.9)

The signal of the COSAIN can, thus, be viewed as the aggregation of interference

patterns due to three independent CRAIN’s working simultaneously., i.e. those formed

by paths A − B, B − C and A − C. To illustrate this, we denote the component of

|E0, N
′⟩ in paths A, B and C as χA, χB and χC , respectively. The interferometers formed

by A − B and B − C are identical. The measurement of the amplitude of |E0, N
′⟩ from

each of these interferometers is given by SA−B = SB−C = |χA + χB|2 = |χB + χC |2 =

3/16 + cos2(ωC,avg∆T/2)/4. This corresponds to a CRAIN that is operating with an

atom of average Compton frequency ωC,avg. The interferometer formed by A − C yields

the signal value SA−C = |χA + χC |2 = cos2(ωC,avg∆T )/4, behaving analogously to a
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Figure 4.7. Signals derived from the interferometers formed by trajectories
A− C, A− B, and B − C. The bottom panel shows the signal of CRAIN
(broken line) to the signal of a 2-atom COSAIN (solid line).

CRAIN formed by an atom of average Compton frequency 2ωC,avg. The total COSAIN

signal arises due to the interference of the component of |E0, N
′⟩ from the three paths,

SCOSAIN = |χA+χB +χC |2 = cos4(ωC,avg∆T/2), as shown in Fig 4.7. This is reconciled by

the fact that |χA+χB +χC |2 = |χA+χB|2+|χB +χC |2+|χA+χC |2−(|χA|2+|χB|2+|χC |2).

The collective atomic recoil laser (CARL) mechanism is similar to this concept presented

here, in the sense that no interaction between atoms are needed [43, 44]. On the other

hand, the Dicke Phase transition pertains to the BEC regime, and is not closely related

to what is being presented here [45].
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4.3. Parameter Inhomogeneities Affecting Signal

In this section, we present a detailed description of the effect of inhomogeneity in

Rabi frequency and Doppler shift on the signal of a COSAIN. These inhomogeneities

put significant constraints on the ensemble size, temperature of the trapped atoms, and

the intensity profile and size of the laser beams. The manifestations of these effects can

be analyzed by considering an ensemble of N identical non-interacting and independent

atoms of the type described in Sec. 4.2.1. A laser beam propagating along the z-axis

will impart a momentum ℏk to an atom upon absorption of recoil from a single photon,

driving it to a superposition of the states |gi, 0⟩ and |ei, ℏk⟩, with the amplitude of each

state depending on the intensity of the laser beam and the time of interaction. The field

amplitude of the laser beams are assumed to be of Gaussian profile in x and y directions,

and constant in the z direction. At t = 0, the position of the i-th atom is given by r̃ =

xix̂+yiŷ+ziẑ. Due to the thermal motion of the atoms, each atom experiences a different

Doppler shift and therefore, a different effective laser frequency, ω0i. The net consequence

of this is that the i-th atom picks up a detuning of δi = kviz, where viz denotes the

atom’s velocity in the z-direction. Furthermore, each atom sees a different electric field,

Ei = x̂E0 exp(−(x2
i + y2

i )/2/σ2
L) cos(ω0it − kzi), due to the finite extent of the ensemble.

Here σL represents the width of the laser beam in the transverse directions. Therefore,

the Rabi frequency experienced by the i-th atom is given by Ωi = Ω0 exp[−(x2 +y2)/2σ2
L],

where Ω0 ≡ ⟨gi| (x ·ρi) |ei⟩E0/ℏ = ⟨ei| (x ·ρi) |gi⟩E0/ℏ and ρi is the position of the electron

with respect to the nucleus.

In the electric dipole approximation, the Hamiltonian for the i-th atom can be written

as Hi = |pi|2/2m + H0i + qρi.Ei, where H0i is the internal energy of the atom, q is the
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electronic charge, m is the mass of the atom, and pi is the momentum of the i-th atom.

The COM motion kinetic energy term be expressed as |pi|2/2m = |piz|2/2m + |pi⊥|2/

2m, where piz is the momentum in the z direction, and pi⊥ is the momentum in a

direction perpendicular to z. Consider first the effect of the second term: |pi⊥|2/2m.

In a typical experimental scenario, this accounts for the motion of the atom, typically

at a large velocity, in the x-direction (see Fig. 4.1), acquired, for example by the initial

push imparted to the trapped atoms before they enter the first interaction zone. Thus,

any variation in this due to a velocity spread within the ensemble can be ignored, and

this term can be treated as an overall constant energy which can be subtracted from the

Hamiltonian. Consider next the first term: |piz|2/2m. This term shows that the state

|g,piz⟩ coupled to |e,piz + ℏk⟩ by the laser differ in energy by (ℏkviz+ℏ2k2/2m), where the

first term is the Doppler shift and the second term is the recoil energy which is a constant

for all atoms, and can be subtracted from the Hamiltonian. Thus, after subtraction of

constant terms, the net effect of the kinetic energy term is to account for the Doppler shift.

Finally, as we have shown in detail in ref. [39], a fully quantum mechanical description

of the COM motion (e.g., by keeping track explicitly of the momentum of the atoms in

the |g⟩ and |e⟩ states) is not essential in describing the collective states in the limit where

the Rabi frequency of the i-th atom, Ωi, is large compared to the Doppler shift due to

the COM motion. This regime is valid for the COSAIN, and, therefore, a semiclassical

description of the COM motion of each atom suffices for the case at hand. Upon making

the rotating-wave approximation, Hi can then be expressed in the bases of |gi⟩ and |ei⟩ as

Hi/ℏ = ωg |gi⟩ ⟨gi| +ωe |ei⟩ ⟨ei| + Ωi(exp(i(ω0it− kzi)) |gi⟩ ⟨ei| + h.c.)/2, where ωe includes

the Doppler shift. Performing the rotating-wave transformation and removing any phase
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factors causes the transformation Hi → H ′
i, such that H ′

i/ℏ = −δi |e′
i⟩ ⟨e′

i| + Ωi(|g′
i⟩ ⟨e′

i| +

h.c.)/2. The new basis vectors, |g′
i⟩ and |e′

i⟩, are related to the original basis vectors as

exp(−iωgt) |gi⟩ and exp(−i((ωe + δi)t − kzi)) |ei⟩, respectively. Assuming that the i-th

atom is initially in the state cgi(0) |g′
i⟩ + cei(0) |e′

i⟩, its quantum state can be written as

|ψ′
i⟩ =eiδit/2((cgi(0) cos

(
Ω′

it

2

)

− i
cgi(0)δi + cei(0)Ωi

Ω′
i

sin
(

Ω′
it

2

)
) |g′

i⟩

+ (−icgi(0)Ωi − cei(0)δi

Ω′
i

sin
(

Ω′
it

2

)

+ cei(0) cos
(

Ω′
it

2

)
) |e′

i⟩),(4.10)

where Ω′
i =

√
Ω2

i + δ2
i is the effective coupling frequency of this atom. The relative

separation of the atoms along the direction of propagation of the laser beam has no effect

on the fidelity of the collective states that can be attained by the ensemble [39]. For the

purpose of the present discussion, we stay in the bases of |g′
i⟩ and |e′

i⟩.

At t = 0, the first pulse of duration τ is applied to the atoms so that Ω0τ = π/2. The

state of the i-th atom following this interaction can be written as |ψ′
i(τ)⟩ = cgi(τ) |g′

i⟩A +

cei(τ) |e′
i⟩B, where cgi(τ) = exp(iδiτ/2)((cos (Ω′

iτ/2) − iδi sin (Ω′
iτ/2) /Ω′

i) and cei(τ) =

exp(iδiτ/2)(−iΩi sin (Ω′
iτ/2) /Ω′

i). The subscripts A and B denote the lower and upper

arm of the interferometer trajectory. The ensuing dark zone lasts for a duration Td wherein

the atoms are left to drift freely so that at t = τ + Td, the COM of state |e′
i⟩ is separated

from that of state |gi⟩ by d = ℏkTd/m. During this dark zone where no atom-light

interaction is taking place, the portion of the atom in state |e′
i⟩ picks up a phase due to
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detuning, making the state of the atom at the end of this pulse |ψ′
i(τ + Td)⟩ = cgi(τ +

Td) |g′
i⟩A+cei(τ+Td) |e′

i⟩B, where cgi(τ+Td) = cgi(τ) and cei(τ+Td) = exp(iδiTd)cei(τ). At

this point a second pulse of duration 2τ (π-pulse) is applied to atoms, and each trajectory

undergoes further splitting, as shown in Fig. 4.1. The π-pulse can, in principle, be perfect

only for one group of atoms, such as those with δ = 0. For all other atoms, the pulse

duration will differ slightly from π. As a result, for example, the |e′
i⟩ state will not fully

evolve into the |g′
i⟩ state, and a residual amount will stay in the |e′

i⟩ state. In the regime

where Ωi ≫ δi for all i, the effect of these residual components can be safely ignored.

Under this approximation, the state of the atom is given by |ψ′
i(3τ + Td)⟩ = cei(3τ +

Td) |e′
i⟩A + cgi(3τ + Td) |g′

i⟩B, where cei(3τ + Td) = exp(iδiτ)cgi(τ + Td)(−iΩi sin(Ω′
iτ)/Ω′

i)

and cgi(3τ + Td) = exp(iδiτ)cei(τ + Td)(−iΩi sin(Ω′
iτ)/Ω′

i). Following the π-pulse, the

atoms are further set adrift in another dark zone of duration Td, where the component of

the atom following trajectory A picks up a phase due to detuning. The net effect of this

is that

|ψ′
i(3τ + 2Td)⟩ = cei(3τ + 2Td) |e′

i⟩A + cgi(3τ + 2Td) |g′
i⟩B ,(4.11)

where cei(3τ + 2Td) = exp(iδiTd)cei(3τ +Td) and cgi(3τ + 2Td) = cei(3τ + Td). By the end

of this dark zone, the two trajectories converge and a third pulse of duration τ is applied

to the atoms. Therefore, the state of the atom at t = 4τ + 2Td is

|ψ′
i(4τ + 2Td)⟩ = (cgi(4τ + 2Td)A |g′

i⟩ + cei(4τ + 2Td)A |e′
i⟩)

+ (cgi(4τ + 2Td)B |g′
i⟩ + cei(4τ + 2Td)B |e′

i⟩),(4.12)
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where

cgi(4τ + 2Td)A = exp(iδiτ/2)cei(3τ + 2Td)(−iΩi sin(Ω′
iτ/2)/Ω′

i),

cei(4τ + 2Td)A = exp(iδiτ/2)cei(3τ + 2Td)(cos(Ω′
iτ/2) + iδi sin(Ω′

iτ/2)/Ω′
i),

cgi(4τ + 2Td)B = exp(iδiτ/2)cgi(3τ + 2Td)(cos(Ω′
iτ/2) − iδi sin(Ω′

iτ/2)/Ω′
i),

cei(4τ + 2Td)B = exp(iδiτ/2)cgi(3τ + 2Td)(−iΩi sin(Ω′
iτ/2)/Ω′

i).(4.13)

The signal of the CRAIN formed by the i-th atom is the measurement of the amplitude

of state |g′
i⟩ at the end of the π/2-dark-π-dark-π/2 sequence due to the interference of the

components from the two paths. Since the two arms yield identical proportions of both

|g′
i⟩ and |e′

i⟩, i.e. cgi(4τ + 2Td)A = cgi(4τ + 2Td)B and cei(4τ + 2Td)A = −cei(4τ + 2Td)B,

the signal of the CRAIN formed is SCRAIN,i = αi, where αi = |2cgi(4τ + 2Td)A|2 ≤ 1.

Since the signal of a COSAIN is the product of the signals of the individual CRAIN’s

formed by the constituent atoms in the ensemble [39], the signal of the resulting COSAIN

is, consequently, SCOSAIN = ∏N
i SCRAIN,i = ∏N

i αi. However, if a phase difference is

introduced between the two paths, the signal of the CRAIN’s and thus, the COSAIN

will depend on it additionally. Assuming that an external phase, ϕ is introduced to

the path A of the interferometer, the quantum state of the atom at t = 4τ + 2Td is

given by |ψ′
i(4τ + 2Td)⟩ = exp(iϕ)(cgi(4τ + 2Td)A |g′

i⟩ + cei(4τ + 2Td)A |e′
i⟩) + (cgi(4τ +

2Td)B |g′
i⟩ + cei(4τ + 2Td)B |e′

i⟩). The amplitude of |g′
i⟩ will, thus, be SCRAIN,i = |1 +

exp(−iϕ)|2αi = 4αi cos2(ϕ/2). In the case where Ωi ≫ δi, αi = 1/4 and the signal

shows the well known cos2(ϕ/2) dependence. The resulting COSAIN signal is, therefore,

SCOSAIN = ∏N
i 4αi cos2(ϕ/2). In the ideal situation where each atom sees the same Rabi
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frequency due to a uniform beam profile and there is no effective detuning experienced

by the atoms, αi = 1/4 and the signal at the end of the interferometer sequence is given

by SCOSAIN = cos2N(ϕ/2). This corresponds to the narrowing of the signal fringe by a

factor proportional to
√
N as compared to the signal in a CRAIN.

In the more practical situation relevant for experimental conditions, Ωi and δi for each

atom are determined by the laser beam intensity profile, and atom trap size and temper-

ature, as described above. To illustrate the effect of these parameters, we assume that

the atoms are first cooled down using a magneto-optic trap arrangement. The trapped

atoms are then held in a cigar-shaped dipole trap to further cool them down via evapo-

rative cooling. The density of atoms in the trap is assumed to follow a Gaussian spatial

distribution so that its length is in the longitudinal direction is ξL, and its width in the

transverse direction is ξT .

4.3.1. Effect of Velocity Distribution

The Maxwell-Boltzmann velocity distribution of the ensemble is

fMB(v, TMB) =
√
m/2πkBTMB × exp

(
−mv2

2πkBTMB

)
,(4.14)

where TMB is the temperature of the trap and kB is the Boltzmann constant. Since

the ensemble undergoes interaction with a pair of counter-propagating laser beams, the

Doppler shift observed by the i-th atom, δi = (k1 +k2)vi cannot be neglected compared to

the Raman-Rabi frequency experienced by it. Thus, at non-zero ensemble temperatures,

the signal contribution from each atom is significantly lower than the maximum amplitude

possible. The signal peak value falls sharply with increasing N as illustrated in Fig 4.8(a).
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It is also evident from Fig. 4.8(b) that the signal of a COSAIN varies significantly as a

function of the temperature.
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Figure 4.8. (a) Variation of signal peak value with N at 0.5µK average
temperature and rectangular intensity profile beams at Ω = 1.9 × 107s−1.
(b) Variation of signal peak value with trap temperature for N ≃ 1.9 × 104.

4.3.2. Effect of Intensity Profile of Laser Beams

Next, we consider the effect of the Gaussian spatial distribution of the Raman beams

on the COSAIN. Assuming that the beam waist size is w, the Raman Rabi frequency

experienced by the i-th atom of the ensemble is Ωi = Ω0 exp(−2r2/w2). Here Ω0 is the

peak value of the Raman Rabi frequency and r is the radial distance of the i-th atom

from the center of the beam. We consider that the average temperature of the trapped

atoms is TMB = 0.5µK and the peak value of the beam intensity is 15 mW/mm2 so that

Ω0 = 1.9 × 107 rad/s. Figure 4.9 shows the variation of the peak value of the SCOSAIN

with increasing value of ς = w/ξT .
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Figure 4.9. Variation of the peak value of the SCOSAIN with increasing
MOT size to beam waist ratio at TMB = 0.5µK for different values of N .

4.3.3. Effect of spontaneous emission

In our analysis of the COSAIN, we have employed a model of a three-level atom where

the intermediate state (|a, ℏk1⟩) is adiabtically eliminated to reduce the system to an

equivalent two-level model. However, the actual population of this state is approximately

Ω2/δ2, with Ω = Ω1 = Ω2. In the time that it takes for a 2π pulse (π/2−π−π/2 sequence

sans the dark zones), we can estimate that the number of spontaneous emissions that occur

per atom is 2(Ω2/δ2)τΓ ≃ 4πΓ/δ. For δ = 200Γ, this number is about 6.3 × 10−2 and

increases by a factor of N for an ensemble of N atoms. Note that there is no enhancement

in the rate of spontaneous emission due to superradiant effects, since we are considering

a dilute ensemble. Consequently, the signal for both the CRAIN and the COSAIN would

deviate from the ideal one. The effect of spontaneous emission on the CRAIN can be taken

into account by using the density matrix equation for a three level system. However, in

this case, it is not possible to ascribe a well defined quantum state for each atom. This,
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in turn, makes it difficult to figure out the response of the COSAIN, since our analysis

for the COSAIN is based on using the direct product of the quantum state of each atom.

For a large value of N , it is virtually impossible to develop a manageable density matrix

description of the system directly in terms of the collective states. However, it should be

possible to evaluate the results of such a density matrix based model for a small value of

N (< 10, for example). This calculation is a subject of our future work.

For the general case of large N , one must rely on an experiment (which, in this context,

can be viewed as an analog computer for simulating this problem) to determine the degree

of degradation expected from residual spontaneous emission. It should be noted that the

detrimental effect of spontaneous emission, for both the CRAIN and the COSAIN, can be

suppressed to a large degree by simply increasing the optical detuning while also increasing

the laser power. This is the approach used, for example, in reducing the effect of radiation

loss of atoms in a far off resonant trap (FORT).

4.3.4. Effect of fluctuation in number of atoms

In both the CRAIN and the COSAIN, the signal is collected multiple times and averaged

to increase the signal to noise ratio (SNR). The number of atoms in the ensemble can vary

in each run. In the CRAIN, a fluctuation of ∆N in N is reflected in the signal amplitude

by the same amount while the linewidth does not change. This can be easily deduced

from the fact that SCRAIN = N cos2(ϕ/2). Replacing N by ∆N will change the signal.

However, the FWHM which occurs at SCRAIN = N/2, will not change. More details on

the classical and quantum noise in the CRAIN and the COSAIN are given in Sec.4.6.1.
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In this section, we discuss how the fluctuation in the number of atoms in every run of the

experiment affects the signal of the COSAIN.
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Figure 4.10. (a) SCOSAIN for N = 2 × 105. (b) Plot of ∆ϱ/ϱ as a function
of ∆N/N .

The signal of the COSAIN due to a fluctuation of ∆N in N is given by SCOSAIN =

cos(ϕ/2)2(N±∆N). Fig. 4.10(a) shows plot of a COSAIN signal with N = 2 × 105. The

broken lines represent the case where ∆N/N = 0.1. As is evident from the above dis-

cussion, the linewidth increases (decreases) with decreasing (increasing) ∆N . However,

the peak of the signal remains at unity, as opposed to the effect of inhomegneity of

field and velocity distribution. The signal linewidth of the COSAIN is approximately

ϱ(N) = ϱ(1)/
√
N . A fluctuation of ∆N in N is reflected in the linewidth uncertainty as

∆ϱ(N) = ϱ(1)((N − ∆N)−1/2 − (N + ∆N)−1/2). The fractional fluctuation is, therefore,

∆ϱ(N)/ϱ(N) ≃ (1 − ∆N/N+)−1/2 − (1 + ∆N/N+)−1/2 = ∆N/N + 0.625(∆N/N)3 +

0.492(∆N/N)5 + O[(∆N/N)6]. This relation is depicted in Fig.9(b) by the broken line.

For small ∆N/N , the fractional change in FWHM is ∆ϱ(N)/ϱ(N) ≃ ∆N/N to a good

approximation, as shown by the solid line in Fig. 4.10(b).
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4.4. Details of Proposed Experiment

In order to illustrate the complete picture of the proposed experiment, we consider
87Rb as the atomic species as an example. We assume a scenario where the atoms will be

evaporatively cooled to a temperature of about 2µK, in a dipole force trap [46] and then

released. The Raman pulses will be applied while these atoms are falling under gravity.

Each Raman pulse will consist of a pair of counterpropagating, right circularly polarized

(σ+) beams. One of these beams is red detuned from the F = 1 → F ′ = 1 transition in

the D1 manifold by ∼ 1.5GHz, and the other one is red detuned by the same amount

from F = 2 → F ′ = 1 transition, also in the D1 manifold. The second Raman beam is

generated from the first one by a modulator which is driven by an ultrastable frequency

synthesizer (FS) tuned to 6.8346826109 GHz. We assume that the atoms are initially in

the F =1,mF =0 state.

Thus, the states |g⟩ and |e⟩ in Fig. 4.1(a) would correspond to the hyperfine ground

states F = 1,mF = 0 and F = 2,mF = 0, respectively. The Raman transitions occur

via the excited states F ′ = 1,mF ′ = 1 and F ′ = 2,mF ′ = 1. The resulting four level

system can be reduced to a two level system in the same way as that for the Λ system by

adiabatically eliminating the excited states together. The resulting system has a coupling

rate that is the sum of the two Raman Rabi frequencies. The laser intensities are adjusted

to ensure that the light shifts of |g⟩ and |e⟩ are matched.

At the end of the π/2 − π − π/2 sequence, a probe beam is applied to measure the

amplitude of one of the collective states, via the method of zero photon detection. To

explain this, we revert to the three-level model of the atom, and first consider a situation

where the atomic ensemble is contained in a single mode cavity with volume mode V ,
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cavity decay rate γc, resonant at ω1. The cavity is coupled to the transition |a⟩ → |g⟩

with coupling rate gc = |e.⟨r⟩|E/ℏ, where |e.⟨r⟩| is the dipole moment of the atom and

E =
√

2ℏω1/ϵ0V . If an off-resonant classical laser pulse of frequency ω2 is applied, the

cavity causes Raman transitions to occur between the collective states |En⟩ and |En−1⟩

with the coupling rates Ω′
n =

√
N − n+ 1

√
nΩ′, where Ω′ = Ω2gc/2∆. This is illustrated

in Fig. 4.11(a).

In the bad cavity limit (γc ≫
√
NΩ′), the Raman transitions will still occur. However,

the system will not reabsorb the emitted photon, i.e. the transition from |En⟩ to |En−1⟩

will occur, but not vice versa. The field of such a photon is E =
√

2ℏω1/ϵ0A cT , where

A is the cross-sectional area of the ensemble and T the interaction time [47]. This

limit applies here since there is no cavity, so that the stimulated Raman scattering is an

irreversible process that can be modeled as a decay with an effective decay rate that is

unique to each |En⟩. The decay rate from |EN⟩ is γN = 4NL|gcΩ2|2/∆2c=Nγsa, where

γsa =16LΩ′2/c [48], and that for |En⟩ is γn =n(N + 1 − n)γsa.

The read beam is extracted from the source and is passed through a 99 : 1 (R/T :

the ratio of the intensity reflectivity, R to the intensity transmittivity, T ) non-polarizing

beam splitter, B1 before hitting the ensemble. The probability of counter-propagating

photons emitted from this interaction is determined by the resonant optical density of the

ensemble. The direction of signal emission and the role of optical density are discussed

further in Sec. 4.4.1. The emitted photons pass through B1 and, subsequently, through

a half-wave plate. The emitted photons and the probe beam are recombined by another

99 : 1 beam splitter, B2 and sent to a high speed detector, which generates a DC voltage

along with a signal at the beat frequency ∼ 6.834 GHz with an unknown phase. This signal
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Figure 4.11. (Color online) (a) Interaction between the collective states in
the bad cavity limit. (b) Atomic Interferometer experiment for an ensemble
of Λ-type atoms for detecting state |E0⟩.
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is bifurcated and one part is multiplied by the FS signal, while the other is multiplied by

the FS signal phase shifted by 90◦. The signals are then squared before being combined

and sent through a low pass filter (LPF) to derive the DC voltage. This DC voltage

is proportional to the number of scattered photons. A lower limit is set for the voltage

reading and any values recorded above it will indicate the presence of emitted photons.

The duration of the probe beam is set at γNT =10, where γN =Nγsa is the slowest decay

rate, to ensure that even the longest lived state is allowed to decay almost completely. If

no photon is emitted, the voltage will read below the limit, indicating that the ensemble

is in state |E0⟩. If the ensemble is in any other collective state, at least one photon will

be emitted. This process is repeated M times for a given value of ϕ. The fraction of

events where no photons are detected will correspond to the signal for this value of ϕ.

This process is then repeated for several values of ϕ, producing the signal fringe for a

COSAIN. The experimental scheme is illustrated in Fig. 4.11(b).

4.4.1. Role of Optical Density

In this paper, we have assumed that the ensemble is cigar shaped. This particular choice

of configuration is made to achieve the optimum optical density required for realizing the

detection scheme discussed above. Consider a four-wave mixing process where three laser

beams with wavevectors k⃗1, k⃗2, and k⃗3 interact with a non-linear medium. The process

can be viewed as the scattering of the k⃗3 beam, for example, off the grating formed by

the interference between the k⃗1 and k⃗2 beams. Efficient phase matching (which is akin to

Bragg matching) then requires that the generated beam with a wavevector k⃗4 will satisfy

the condition that k⃗1 + k⃗2 = k⃗3 + k⃗4. The detection process for the COSAIN can be viewed
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as a time-delayed four wave mixing process. The coherence induced in the ensemble has

a spatial variation (i.e. a phase grating) proportional to exp(i(k⃗1 + k⃗2)). In the detection

zone, we apply a readout field with a wavevector k⃗3 = k⃗2. Thus, the scattering field

will have a wavevector k⃗4 = k⃗1. This implied that the photon would be scattered in the

direction opposite to that of the probe.

In such a scattering process the fraction of photon that would be scattered in directions

other than the direction dictated by exact phase matching is determined by the resonant

optical density of the ensemble, which is given by ρ = σnξL [47]. Here, σ ≃ (λ/2)2 is the

resonant scattering cross-section, n is the density, and ξL is the interaction length. The

fraction of the signal captured by the detector would then be (ρ − 1)/ρ. This effect can

be incorporated in the detector quantum efficiency by writing it as η = η0(ρ− 1)ρ, where

η0 is the ideal quantum efficiency of the detector.

The proposed detection scheme demands that ρ ≥ 75, so that at least 98% of the

emitted photons are captured, assuming an ideal detector. As discussed in Sec. 4.3.1,

the signal amplitude falls exponentially with increasing ensemble temperature, and N .

However, the ensemble must not reach the vicinity of critical density at low temperatures.

Considering these factors, we choose N = 2.6 × 104, ξL = 1mm, and ξT = 10µm, deriving

ρ = 78.45 for the D1 manifold of 87Rb.

4.5. Alternate Experimental Scheme

The limitation on cooling the ensemble to reduce the effects of Doppler shift restricts

the number of atoms. In turn, this restricts the optical density that can be achieved for an

ensemble undergoing the COSAIN sequence. Here, we discuss an alternate experimental



114

scheme that raises the effective optical density of the ensemble. In this scheme, each atom

is modeled as a four-level system, as shown in Fig 4.12(a). The metastable states, |g⟩, and

|e⟩, are coupled via two intermediate states, |a⟩, and |b⟩. This four-level system can be

reduced to an effective three-level system in the Λ-configuration. Each Raman pulse will

consist of a pair of an s-polarized and a p-polarized beams, applied in counterpropagating

directions. We assume that the s-polarized beam is moving in the +z-direction, and thus,

can be represented as Es = (σ̂+Ẽs0+σ̂−Ẽs0) cos(ωst−ksz) = ŝEs0 cos(ωst−ksz). Similarly,

the p-polarized beam is moving in the −z-direction, and thus, can be represented as

Ep = (σ̂+Ẽp0 −σ̂−Ẽp0) cos(ωpt+kpz) = p̂Ep0 exp(iπ/2) cos(ωpt−kpz). Here, ωs and ωp are

the laser frequencies, and Es0 and Ep0 are the amplitudes of the electric field of each laser

beam. After making the rotating wave approximation and rotating wave transformation,

the atom-laser interaction Hamiltonian elements are ⟨g| ρ⃗ · σ̂+Ẽs0 |a⟩, ⟨g| ρ⃗ · σ̂−Ẽs0 |b⟩,

⟨e| ρ⃗ · σ̂+Ẽp0 |a⟩, ⟨e| − ρ⃗ · σ̂−Ẽp0 |b⟩, and the corresponding complex conjugates. Here

ρ⃗ = xx̂ + yŷ + zẑ = ρσ+ σ̂+ + ρσ− σ̂− + zẑ. The Hamiltonian can be further simplified to

H = ρgaẼs0 |g⟩ ⟨a| + ρgbẼs0 |g⟩ ⟨b| + ρeaẼp0 |e⟩ ⟨a| − ρebẼp0 |e⟩ ⟨b| + c.c.

For concreteness, we use the D1 line of 87Rb to illustrate the mechanism behind this

scheme. Thus, the states |g⟩ and |e⟩ in the left part of Fig. 4.12(a) would correspond to

the hyperfine ground states F = 1,mF = 0 and F = 2,mF = 0, respectively. The Raman

transitions occur via the excited states |a ≡ F ′ = 1,mF ′ = −1⟩ and |b ≡ F ′ = 1,mF ′ = 1⟩.

For this particular choice of levels, ρga = −ρgb = ρea = ρeb = |ρ0|, |ρ0Ẽs0| = ℏΩg/2,

and |ρ0Ẽp0| = ℏΩe/2. The atom-laser interaction Hamiltonian in this case is, therefore,

H = ℏ(Ωg |g⟩ ⟨a| − Ωg |g⟩ ⟨b| + Ωe |e⟩ ⟨a| − Ωe |e⟩ ⟨b|)/2 + c.c. This four level system can be

reduced to an equivalent three-level model by rotating the {|a⟩ , |b⟩} Hilbert sub-space by
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Figure 4.12. (a) Raman transitions between |g ≡ F = 1,mF = 0⟩ and
|e ≡ F = 2,mF = 0⟩ via |a ≡ F ′ = 1,mF ′ = −1⟩ and |b ≡ F ′ = 1,mF ′ = 1⟩,
(b) Raman transitions between |g ≡ F = 1,mF = 0⟩ and
|e ≡ F = 2,mF = 0⟩ via |ã ≡ F ′ = 2,mF ′ = −1⟩ and |b̃ ≡ F ′ = 2,mF ′ = 1⟩.

π/4. The reduced Hamiltonian, Hred is given by Hred = ℏ(Ωg |g⟩ ⟨−|+Ωe |e⟩ ⟨−|)/
√

2+c.c.,

where |−⟩ = (|a⟩ − |b⟩)/
√

2, as illustrated in the right part of Fig. 4.12(a). The D1 line

of 87Rb are also coupled via |ã ≡ F ′ = 2,mF ′ = −1⟩ and |b̃ ≡ F ′ = 2,mF ′ = 1⟩. In this

case, −ρgã = −ρgb̃ = −ρeã = ρeb̃ = |ρ̃0|, |ρ̃0Ẽs0| = ℏΩ̃g/2, and |ρ̃0Ẽp0| = ℏΩ̃e/2. Thus,

the Hamiltonian is H̃ = −ℏ(Ω̃g |g⟩ ⟨ã| + Ω̃g |g⟩ ⟨b̃| + Ω̃e |e⟩ ⟨ã| + Ω̃e |e⟩ ⟨b̃|)/2 + c.c. The
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reduced equivalent three-level Hamiltonian is H̃red = ℏ(Ω̃g |g⟩ ⟨+̃| + Ω̃e |e⟩ ⟨+̃|)/
√

2 + c.c.,

where |+̃⟩ = (|ã⟩ + |b̃⟩)/
√

2. These transitions are shown in the Fig. 4.12(b). Thus, the

system is equivalent to two Λ-systems, each with a different common mode detuning.

Adiabatic elimination of the |−⟩ and the |+̃⟩ states would produce the effective two level

transition between |g⟩ and |e⟩, just as in the case of excitations with circularly polarized

fields described earlier.

Figure 4.13. Alternate experimental scheme to increase the resonant optical
density of the ensemble by introducing a ring cavity in the detection zone.
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At the end of the π/2-dark-π-dark-π/2 sequence, the ensemble is introduced into a ring

cavity of finesse F . The read beam is extracted from the p-polarized beam and enters

the cavity through port P1, as illustrated in Fig. 4.13. The scattered photons, which

will be s-polarized, are extracted with a polarizing beam splitter, B2. Note that this

type of extraction is not possible if the interferometer were to be realized with circularly

polarized beams. The repeated interaction of the ensemble with the read beam increases

the effective resonant optical density of the ensemble to Fρ/π. Since the ensemble is

falling under gravity through the course of the experiment, the cavity mode size must

be reasonably large to accommodate this motion. We assume that the length of the first

dark zone is 1cm, and that the distance between the last π/2 pulse and the read beam

is also 1cm. The duration of the read beam, T is set at γNT = 10, where γN = Nγsa

is the slowest decay rate, to ensure that even the longest lived state is allowed to decay

completely. It can be shown that for N = 2.6 × 104, T ≃ 3.3ms, so that the distance

traveled by the ensemble during the interrogation period is ≃ 3.3mm. The cavity mode

size must be at least twice as much as this distance.

4.6. Performance of the COSAIN Compared to that of the CRAIN

In order to compare the performance of the COSAIN to that of the CRAIN, we analyze

the stability of the phase-difference measured by them by investigating the fluctuation

that has both quantum mechanical and classical components, i.e. ϕ|total = (∆SQM +

∆Sclassical)/|∂S/∂ϕ|, where S(ϕ) is the signal. Since the signal depends on the phase, the

fluctuation is not necessarily constant. Therefore, there is no unique value of signal to

noise ratio (SNR) to compare unless the COSAIN and the CRAIN are compared at a
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particular value of the phase-difference. Thus, the fluctuations must be compared as a

function of ϕ. In Sec. 4.6.1, we discuss in detail, the quantum fluctuation due to quantum

projection noise, ∆P =
√
P (1 − P ) [49], where P is the population of the state being

measured, and the classical noise in the long term regime. Since the measure of the

signal depends on counting zero photon events, the efficiency of the high speed detector

affects the signal amplitude and width. In Sec. 4.6.2, we discuss the effect of the detector

efficiency on the COSAIN signal. In Sec. 4.6.3, we discuss the collection efficiency of

the COSAIN as a measure of its performance as compared to the CRAIN. The CRAIN

suffers from imperfect collection efficiency due to the latter’s dependence on experimental

geometry. On the other hand, the collection efficiency of the COSAIN is close to unity

owing to the fact that the fluorescence of photons is collected through coherent Raman

scattering. As a result, for the same number of atoms detected per unit time, the COSAIN

is expected to outperform the CRAIN by as much as a factor of 10.

4.6.1. Effect of Quantum and Classical Noise

For the COSAIN to be a useful device for practical metrology, it must outperform the

CRAIN. To explore this, we compare their stability in the short term and the long term

regimes. The stability of an interferometer is determined by the fluctuations in ϕ that has

both quantum mechanical and classical components. The phase difference, ϕ (expressed

in radians) is proportional to the rate of rotation of the gyroscope, ΩG (see Sec. 4.2.1).

Thus, ϕ = µΩG, where µ depends on the area of the interferometer and mass of the single

atom.
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In the CRAIN described above, the signal is a measure of the probability of finding the

atom in state |g⟩, Pg = cos2(µΩG/2). The signal is detected by probing the desired state

for a duration of time. If Ñ is the number of atoms per unit time and T is the interroga-

tion period, then the net signal is SCRAIN = ÑTPg. For comparison, we set the number

of atoms per trial in the COSAIN, N , multiplied by the number of trials, M , to equal

ÑT . Therefore, SCRAIN = MN cos2(µΩG/2). Since the fluctuation in MN is
√
MN , the

quantum mechanical variance of the signal is ∆(SCRAIN,QM) =
√
MN sin(µΩG)/2, since

the projection noise in a single two level atomic system is ∆SCRAIN =
√
Pg(1 − Pg) [49].

In the case where the probability of finding the atom in |g⟩ is 0 or 1, the projection noise

vanishes. On the other hand, the projection noise is at its peak value when Pg = 1/2.

The slope of the signal is, therefore, ∂SCRAIN/∂ΩG = −MN sin(µΩG)/(2γsa), where

γsa = 1/2µ is the linewidth. Assuming ideal quantum efficiency of the detection pro-

cess, the fluctuation in the rate of rotation can be written as δΩG|total = |(∆SQM +

∆Sclassical)/(∂SCRAIN/∂ΩG)|, which maybe be considered as noise (∆S), over the Ro-

tational Variation of Signal (RVS) which is (∂SCRAIN/∂ΩG). In the following text, we

consider first the effect of quantum noise. The quantum rotation-rate fluctuation (QRF)

for a CRAIN maybe written as

δΩG|QM,CRAIN =
∣∣∣∣∣ ∆SQM

(∂SCRAIN/∂ΩG)

∣∣∣∣∣ = γsa√
MN

.(4.15)

It is, thus, merely a coincidence that the QRF turns out to be constant in a CRAIN. Con-

trary to popular perception, the QRF of an interferometer is, therefore, not fundamentally

the linewidth divided by the SNR. It should be evident from the above discussion that
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the signal is not given by MN , and the noise is not given by
√
MN . Instead, they both

depend on ΩG.

In devices where the QRF is not a constant, as we will show for a COSAIN, it is thus,

imperative that we carry out an analysis of the QRF in a manner analogous to the analysis

for the CRAIN shown above. Thus, we will adopt the approach that the net rotation-rate

fluctuation, δΩG should be thought of as the ratio of the noise to the RVS. This approach

should be adopted universally for all metrological devices. Of course, for devices where the

relevant quantity is not the rotation rate, the definition should be adapted accordingly.

For example, in a clock that measures frequency, the relevant quantity can be expressed

as follows: net frequency fluctuation is the ratio of the noise to the Spectral Variation of

Signal (SVS).

Following this approach, we calculate the net rotation-rate fluctuation of the COSAIN

and compare it to that of the CRAIN. We will first calculate the quantum fluctuation

which is relevant in the short term regime, and then the classical fluctuation, which

dominates in the long term regime. The signal of a COSAIN for M trials is SCOSAIN =

MPE0 = M cos2N(µΩG/2), and the projection noise is ∆PE0 =
√
PE0(1 − PE0) for a

single trial, so that ∆PE0 =
√
M
√
PE0(1 − PE0) for M trials. Thus, the total quantum

mechanical noise in the signal is

∆PE0 =
√
M cosN(µΩG/2)

√
1 − cos2N(µΩG/2),(4.16)
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and the RVS is

∂SCOSAIN/∂ΩG = −MN cos2N−1(µΩG/2)

× sin(µΩG/2)/γsa.(4.17)

Therefore, the QRF in the COSAIN is given by

δΩG(QM,COSAIN) = γsa

N
√
M

√
sec2N(µΩG/2) − 1

tan(µΩG/2)
.(4.18)

Thus, unlike the CRAIN, the phase fluctuation in a COSAIN is not constant and depends

on ΩG and thus, on ϕ. We consider first the limiting case of ΩG → 0. Using Taylor

expansion, it is evident that δΩG(QM,COSAIN) = γsa/
√
MN , which is the same as that

of a CRAIN. This can be understood physically by noting that while the fringe width

becomes much narrower for the COSAIN, the SNR also decreases due to the fact that a

single observation is made for all N atoms in a given trial. The QRF for the COSAIN,

given in Eq. 4.18, is smallest as ΩG → 0 and increases as ΩG moves away from zero. The

ratio of the QRF for the CRAIN to that of the COSAIN is plotted as a function of ΩG in

the left side of Fig. 4.14 for M = 1000 and N = 104. Here, the vertical bars indicate the

FWHM of the COSAIN signal. It is clear from this plot that the QRF for the COSAIN

increases significantly as we move away from resonance. However, since a servo will keep

the value of ΩG confined to be close to zero, the phase stability of the COSAIN, under

quantum noise limited operation, should be very close to that of the CRAIN, assuming

that all the other factors remain the same.
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Figure 4.14. (left) Ratio of the QRF in the CRAIN to the QRF in the CO-
SAIN, for M = 1000 and N = 104. It should be noted that the fluctuation
in the CRAIN is independent of ΩG while that of the COSAIN varies signif-
icantly with it. (right) Ratio of the RVS of the COSAIN to the RVS of the
CRAIN for M = 1000 and N = 104. The vertical lines in the plots show
where the FWHM of SCRAIN are.

The classical rotation-rate fluctuation (CRF), δΩG|classical = ∆Sclassical/(∂S/∂ΩG), is

the limiting factor in the long term stability. While the quantum fluctuation is dominated

by quantum projection noise, the classical noise is dominated by noise in the electronic

and the mechanical components employed to generate the interferometer signal. Since the

pieces of equipment used in the development of both the COSAIN and CRAIN suffer from

similar noise issues, the variance ∆S is expected to be of the same order of magnitude for

both interferometers. On the other hand, the RVS, (∂S/∂ΩG), is not the same, as was

shown previously. The ratio of the RVS of the COSAIN to the RVS of the CRAIN is

∂SCOSAIN/∂ΩG

∂SCRAIN/∂ΩG

= cos2N(µΩG/2)
cos2(µΩG/2)

= PE0

Pg

,(4.19)
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and is plotted in Fig. 4.8(right). With ∆Sclassical,COSAIN ∼ ∆Sclassical,CRAIN , the ratio of

the CRF of the COSAIN to that of the CRAIN can be written as

δΩG(classical,COSAIN)

δΩG(classical,CRAIN)
≃ cos2(µΩG/2)

cos2N(µΩG/2)
.(4.20)

Similar to the ratio of the two interferometers in QRF, Eq. 4.20 is smallest as ϕ → 0

and increases as ϕ moves away from resonance. Thus, with respect to both quantum

and classical sources of noise, the COSAIN must be operated near ϕ ≃ 0 for optimal

performance.

4.6.2. Effect of Detector Efficiency

The key aspect of the COSAIN is the measurement of the amplitude of |E0⟩, which

indicates that each of the atoms in the ensemble is individually in |g⟩. The probe beam

is applied to the ensemble, which is in the quantum state |Ψ⟩ = c0 |E0⟩ + ∑N
n=1 |En⟩.

Interaction between the probe beam, the ensemble, and the free space vacuum modes on

the other leg would lead to production of photons unless c0 = 1, and cn = 0 for all n.

These photons are detected using a heterodyning technique, as described in Sec 4.2. The

voltage output of the heterodyning system is proportional to the amplitude of the electric

field corresponding to the photons.

In general, one or more photons are produced as |En⟩ decays to |En−1⟩ and subsequent

states. The time needed for these photons to be produced depends in the vacuum and

probe field induced Raman transition rates between |En⟩ and |En−1⟩. If we assume perfect

efficiency for detecting each of these photons, and wait for a time long compared to the

inverse of the weakest of these transition rates, then the detection of no photons implies
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that the system is in state |E0⟩. In practical experimental conditions, we can choose

a small threshold voltage at the output of the heterodyning system as an indicator of

null detection. Thus, any signal below this threshold would be viewed as detection of

the quantum system in the |E0⟩ state, and all signals above this threshold would be

discarded. The number of events below this threshold for M trials carried out with all

the parameters of the experiment unchanged, is the derived signal for the COSAIN. After

collecting data for all the values of ϕ that is of interest, the result would ideally yield the

plot of the COSAIN signal SCOSAIN = |c0|2, averaged over M trials. However, with a

fractional detector efficiency and finite detection period, the signal would deviate from

the ideal result.

Consider first the effect of the detection period. Given the decay rate of the off-

resonant Raman process, γn = n(N + 1 − n)γsa, the probability that |En⟩ will produce

zero photons during the measurement period T is P0,n = e−γnT . Thus, the total probability

of zero photon emission (which should vanish ideally for any cn ̸= 0) is given by P0 =∑N
n=1 |cn|2e−γnT . The COSAIN signal, SCOSAIN , is the total probability of finding zero

photons during T , and can be expressed as SCOSAIN = |c0|2+∑N
n=1 |cn|2e−γnT . Noting that

γ0 = 0, we can rewrite this as SCOSAIN = ∑N
n=0 |cn|2e−γnT . The lower and upper bounds of

SCOSAIN can be established by considering the strongest and the weakest effective decay

rates. The strongest decay rate occurs for the middle state, γN/2 = (N/2)(N/2 + 1)γsa ≈

(N2/4)γsa, where N ≫ 1 approximation has been made. With the substitution of the

largest decay rate for each |En⟩ into the equation for SCOSAIN , the lower bound is set by

PL = |c0|2 + (1 − |c0|2) exp(−N2γsaT/4).(4.21)
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On the other hand, the weakest decay rate is exhibited when n = N , making the upper

bound on the signal,

(4.22) PU = |c0|2 + (1 − |c0|2) exp(−NγsaT ).

The signal of the COSAIN, SCOSAIN produced in time T will lie somewhere between PL

and PU .

Consider next the effect of the non-ideal detection efficiency of the heterodyning

scheme. For concreteness, we define η as the efficiency of detecting a single photon. In

practice, this parameter will depend on a combination of factors, including the quantum

efficiency of the high-speed photon detector and the overlap between the probe laser mode

and the mode of the emitted photon. For the present experiment, we are only interested

in knowing whether at least one photon is detected, and not in the actual number of pho-

tons. When more photons are emitted, the detector will have a better chance of observing

a non-zero signal, and hence distinguish dark counts from the rest with more certainty.

For example, if three photons are emitted in time T , then four different outcomes are

possible:

• All three photons are detected, with probability η3;

• Two of the photons are detected with probability η2(1 − η); this can occur for

any two of the photons, so the multiplicity is 3;

• One photon is detected, with probability η(1 − η)2 and multiplicity of 3;

• No photons are detected, with probability ϵ3 ≡ (1 − η)3.
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The sum of these probabilities is 1. The probability that at least 1 photon is detected

is thus (1 − ϵ3). For any state n ̸= 0, the probability of detecting at least 1 photon is,

therefore, (1 − ϵn).

Moreover, we must also consider how the effective detection efficiency is influenced

by the fact that the collective states decay at different rates. Specifically, the n level for

n > 0 might produce N−n photons, N−n−1 photons, down to zero photons, depending

on the length of the measurement time and the effective decay rate. If the system is in

|E3⟩, for example, it can produce up to 3 photons but with probabilities that change over

T . For a given time T , |E3⟩ evolves into a sum of the states |E3⟩ → ∑3
k=0 an,k(T ) |Ek⟩,

where the coefficient an,k(T ) depends on the effective decay rate that is specific to each

state, and changes as the states evolve in time. Thus the probability of detecting at least

one photon is

P =
N−1∑
n=1

|cn|2
N∑

k=n

(1 − ϵk−n)|an,k(T )|2.(4.23)

Therefore, the probability of detecting no photon is

SCOSAIN = 1 − P = 1 −
N−1∑
n=1

|cn|2

×
N∑

k=n

(1 − ϵk−n)|an,k(T )|2.(4.24)

The numerical analysis for a large number of atoms is tedious and scales as at least

(N − 1)! for the COSAIN. However, we can take the worst case scenario to serve as the

upper bound for the signal. The worst case occurs when only a single photon is produced

as a result of |En⟩ decaying to only the |En−1⟩ state, so that the index of the second



127

summation stops at k = n − 1. In this case, we can write |an,n−1(T )| = (1 − e−γnT ) and

the signal becomes

SCOSAIN = |c0|2 + ϵ(1 − |c0|2) + η
N∑

n=1
|cn|2e−γnT .(4.25)

Using the approach we employed in arriving at Eq. 4.21 and Eq. 4.22, we now consider

the strongest and the weakest decay rates for single photon production to arrive at the

lower and upper bounds of the zero photon count signal:

PL = 1 − η(1 − |c0|2)(1 − e−N2γsaT/4),(4.26)

PU = 1 − η(1 − |c0|2)(1 − e−NγsaT ).(4.27)

Figure 4.15 shows the plot of the ideal SCOSAIN , PL and PU over a variation in ϕ for

different values of detector efficiencies and detection times for N = 10, 000. It can be

seen from the plots that the upper and lower bounds on the signal coincide with the ideal

signal in the vicinity of ϕ → 0. For a larger size of the ensemble, a longer detection time

ensures that the gap between the bounds decreases and that they are closer to the ideal

signal.

If we set γsaT = 1, the signal depends on η as

SCOSAIN ≃ 1 − η(1 − cos2N(ϕ/2))(4.28)

for large N and M = 1. Hence, we can calculate the QRF for the COSAIN to see

how it depends on the detector efficiency, and how it compares to the CRAIN. For
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Figure 4.15. Plot of ideal signal (solid line), the upper bound (broken line),
the lower bound (dotted line) for different detection times, T and detector
efficiencies, η for N = 10, 000.

the CRAIN, it is straightforward to show that with SCRAIN = ηN cos2(ϕ/2), the quan-

tum mechanical noise in the signal is ∆SCRAIN =
√
ηN cos(ϕ/2) sin(ϕ/2) and the RVS

is |∂SCRAIN/∂ΩG| = (ηN/γsa) cos(ϕ/2) sin(ϕ/2), so that the QRF is δΩG(QM,CRAIN) =

γsa/
√
ηN . It is also straightforward to calculate the QRF of the COSAIN. the total

quantum mechanical noise in the COSAIN signal in Eq. 4.28 is:

∆SQM,COSAIN = η cosN(ϕ/2)
√

1 − cos2N(ϕ/2),(4.29)
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and the RVS is

∂SCOSAIN/∂ΩG = −(ηN/γsa) sin(ϕ/2) cos2N−1(ϕ/2).(4.30)

Thus, the QRF of the COSAIN is

δΩG(QM,COSAIN) =

∣∣∣∣∣∣ γsa

N
√
η

√
1 − cos2N(µΩG/2)

cosN−1(µΩG/2) sin(µΩG/2)

∣∣∣∣∣∣(4.31)

which approaches γsa/
√
ηN as ΩG → 0. Assuming that the detector efficiencies of the

COSAIN and the CRAIN can be essentially the same, they do not affect the ratio of the

two QRF’s.

4.6.3. Effect of Collection Efficiency

We consider next the effect of collection efficiency, β on the COSAIN and compare it

to that of the CRAIN. The signal for both the COSAIN and the CRAIN, is directly

proportional to β. From Eq. 4.15 and Eq. 4.18, it is easy to show that

ζ ≡
δΩG(QM,COSAIN)

δΩG(QM,CRAIN)

=

√
sec2N(µΩG

2 ) − 1
√
N tan(µΩG

2 )

√
βCRAIN

βCOSAIN

,(4.32)

where βCRAIN(βCOSAIN) is the collection efficiency of the CRAIN (COSAIN).

As ΩG → 0, the quantity in the square bracket in Eq. (4.32) approaches unity. There-

fore, in this limit, ζ, the ratio of the QRF of the COSAIN to that of the CRAIN, would

depend on the ratio of of the collection efficiencies of the detection process. The coherent

stimulated Raman scattering based detection method used for the COSAIN process has
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a collection efficiency that is close to unity, i.e. βCOSAIN ≃ 1. In the case of the CRAIN,

the fluorescence is collected from the spontaneous emission process, which emits photons

in a dipolar radiation pattern. The βCRAIN can be quantified by analyzing the detection

method, for example, of a CRAIN that makes use of cold atoms released from a MOT. For

a lens placed at a distance of r = 5 cm, with a diameter of d = 2.5 cm, ignoring the dipolar

pattern of radiation for simplicity, and assuming it to be uniform in all directions, this

system yields a value of βCRAIN ≃ d2/4r2 = 1/16 corresponding to ζ ∼ 0.25. In a typical

CRAIN, various geometric constraints make it difficult to achieve a value of βCRAIN much

larger than this. In practice, in cases where the total volume occupied by the CRAIN has

to be constrained in order to meet the user requirements, the value of βCRAIN is typically

1%, which would correspond to ζ ∼ 0.1. Thus, the near unity collection efficiency of

the COSAIN can lead to an improvement of the interferometer stability by as much as a

factor of 10.

Another method of detecting signal in a CRAIN is absorption. However, the use of

absorption warrants the consideration of many practical issues. The fluctuation in ϕ is

affected by additional noise contributed by the laser used in absorption. Let us assume

that the observation time is T , and the number of photon in the probe beam before

absorption is NP , and that the probe is in a Coherent state. Furthermore, we assume

that the number of atoms passing through the detection process within this time is NA,

and the linewidth of resonance is Γ. If the detection process produces an absorption by a

fraction of κ (i.e. κ = 1 represents perfect absorption of the laser beam), and the detector
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has a quantum efficiency of η, then the resulting fluctuation in ϕ can be expressed as

(4.33) δϕabs = Γ
(

1√
ηκNA

+ 1√
ηκNP

)
,

where, the first term inside the parenthesis represents the quantum projection noise of

the atoms, and the second term represents the shot noise of the photons (which can be

regarded as the quantum projection noise of photons). The validity of this expression

can be easily verified by considering various limits. Consider first the ideal case where

ε ≡ ηκ = 1. For NP ≫ NA, the additional noise from the laser can be neglected, and we

get the fundamental noise limit due to the quantum projection noise of the atoms. On the

other hand, if NP ≪ NA, the quantum projection noise from the atoms can be neglected,

and the process is limited by the shot-noise of the laser. In general, the parameter ε

represents the overall quantum efficiency of the detection process. The corresponding

expression for detection via fluorescence is δϕF = γ/
√
ηρNA, where ρ is the fraction of

fluorescence hitting the detector.

The contribution from the second term in Eq. (4.33) shows that the intensity of the

laser beam used in absorption must be made strong enough in order to make the effect

of this term negligible compared to the first term. However, since the absorption process

is nonlinear and saturates for a strong laser beam, increasing the laser intensity often

decreases the effective value of κ. For example, consider an ensemble of 2 × 106 atoms

with a linear optical density of 300, which can be realized (as we have shown above) for an

ensemble confined to a cigar shaped ensemble. For a weak probe, the value of κ is unity.

However, as the probe power is increased, the value of κ decreases dramatically. This

can be seen by considering a situation where the value of NP is 109, for example. Since
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the atomic transition used for absorption is not closed (i.e., not cyclic), the ensemble can

only absorb a number of photons that is of the order of 2 × 106. Thus, the maximum

value of κ would be only about 0.002. Furthermore, if the area of the laser beam (πw2)

is much larger than the area of the atomic ensemble (πξ2
T ), then the value of κ can never

exceed the value of ξ2
T/w

2 . We are not aware of any publication reporting a cold atom

interferometer that makes use of absorption for detecting the atoms, possibly because of

these constraints and considerations. Nonetheless, as a matter of principle, an absorption

process can certainly be used to reduce the quantum frequency fluctuation below what is

observed in fluorescence detection systems, under proper choice of parameters.

4.7. Summary

In this paper, we have described a collective state atomic interferometer (COSAIN)

with N non-interacting, independent atoms in an ensemble. We have shown that the

signal fringes are narrowed by
√
N compared to a conventional interferometer, without

entanglement. This effect is a result of the interference among collective states, and

is a manifestation of interference at a Compton frequency of ten nonillion Hz, or a de

Broglie wavelength of 4.5 femtometer, for N = 106 and v = 1m/s. The essence of

the COSAIN is the detection of a collective state, rather than individual atomic states.

For a suitably chosen collective state, this is accomplished via a null detection scheme,

wherein the detection of zero photons corresponds to the system being in this collective

state. We have presented a heterodyne detection scheme for measuring this signal. In

this scheme, the signal is detected by collecting fluorescence through stimulated Raman

scattering of Stokes photons, which are emitted predominantly against the direction of the
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probe beam, for a high enough resonant optical density. We have shown that the fringe

width reduction occurs due to the interference of the multiple paths among the collective

states, and does not violate the fundamental quantum limit. We have also proposed a

new excitation scheme, applicable to both a conventional Raman atomic interferometer

(CRAIN) as well to the COSAIN, wherein the counter-propagating beams are cross-

linearly polarized. For the COSAIN, this scheme enables an enhancement of the effective

resonant optical density by placing a cavity around the atoms in the detection zone.

We have analyzed in detail the effect of various inhomegeneities, arising from the non-

uniformity in experimental parameters, on the COSAIN signal, and used this analysis to

identify a suitable choice of parameters for realizing a COSAIN. The performance of the

COSAIN has been compared to that of the conventional Raman atomic interferometer

(CRAIN) by analyzing quantum and classical fluctuations in frequency. When the effects

of detector efficiency and collection efficiency are considered, it can be seen that the

COSAIN may perform 10 times better than a CRAIN employing fluorescence detection.
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CHAPTER 5

Spin Squeezing: Overview

This chapter presents a review of the concepts of spin squeezing. We lay down the

mathematical framework of spin-1/2 systems necessary for understanding atom interfer-

ometry with spin ensembles. We establish the notation of the rotation operator, more

details of which can be found in [40]. The conventional Raman atomic interferometer

(CRAIN) is discussed in the light of the rotation operator. The concept of coherent

spin states (CSS) is laid out in detail, and its correspondence in the angular momentum

space in shown. The projection noise of unentangled atoms in a CSS is derived, yielding

the standard quantum limit (SQL). A deliberation on exceeding the SQL with squeezed

spin states (SSS) follows. A comprehensive review of the theoretical and experimental

advancements in spin squeezing is given in [50].

5.1. Spin Representation of Atomic Ensembles

5.1.1. Spin-1
2 Systems

Any two-level quantum system, regardless of its physical manifestations, can be modeled

as a collection of spin-1/2 particles, with states {|↓⟩ , |↑⟩}. This allows for an elegant

visualization of experiments that are based on Ramsey spectroscopy. Any operator acting

on this system can be expanded in the set of angular momentum operators such that,

jx = ℏ(|↓⟩ ⟨↑| + |↑⟩ ⟨↓|)/2, jy = iℏ(|↓⟩ ⟨↑| − |↑⟩ ⟨↓|)/2, jz = ℏ(|↑⟩ ⟨↑| − |↓⟩ ⟨↓|)/2, and

the identity matrix I2, associated with the atom, where ĵi = 1
2(σ̂xi, σ̂yi, σ̂zi), {σ̂x, σ̂y, σ̂z}
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being Pauli matrices. The spin-up and spin-down operators of this spin-1/2 system are,

therefore, given by j± = (jx ± ijy). The states, |↓⟩ and |↑⟩ are eigenstates of the operator

jz. This choice of basis is driven purely by convenience, and is not unique.

In this picture, the Hamiltonian of the interaction of the atom with a semiclassical

laser, ignoring the center of mass motion of the atom, is given by

H = Ωjx + δjz.(5.1)

Here, Ω is the Rabi frequency, and δ is the detuning of the atom-laser system. The state

of the atom at time t, due to the interaction with the laser is |ψ(t)⟩ = exp(−iHt/ℏ) |ψ(0)⟩.

It is assumed that at t = 0, the atom is in state |↓⟩. Consider first, the case where δ = 0,

so that the state of the atom after a pulse of duration t is

|ψ(t)⟩ = exp(−iΩtjx) |↓⟩ .(5.2)

From the Taylor series expansion of the exponential:

|ψ(t)⟩ = (cos(Ωtjx) − i sin(Ωtjx)) |↓⟩

=
((

I2 − (Ωtjx)2

2!
+ (Ωtjx)4

4!
+ . . .

)
− i

(
jx − (Ωtjx)3

3!
+ (Ωtjx)5

5!
+ . . .

))
|↓⟩

=
(
I2
(
1 − 1

2!
(Ωt

2
)2

+ 1
4!
(Ωt

2
)4

+ . . .
)

− 2ijx

(
1 − 1

3!
(Ωt

2
)3

+ 1
5!
(Ωt

2
)5

+ . . .
))

|↓⟩

=
(
I2 cos

(Ωt
2
)

− 2ijx sin
(Ωt

2
))

|↓⟩

= cos
(

Ωt
2

)
|↓⟩ − i sin

(
Ωt
2

)
|↑⟩ .(5.3)
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This expression is identical to that derived by substituting cg(0) = 1 and ce(0) = 0 in

Eq. 2.20. Thus, the interaction of a spin-1/2 particle with any operator can be visualized

as a rotation in the momentum space.

5.1.2. Collective Spins

The discussion in Sec. 5.1.1 can be generalized for anN -particle system where each particle

has two states. The collective spin of the ensemble is the sum of the individual spins,

Ĵ =
N∑

i=1
ĵi.(5.4)

The collective atomic population operators for spin up and spin down are N̂↓ = ∑
i |↓i⟩ ⟨↓i|,

and N̂↑ = ∑
i |↑i⟩ ⟨↑i|, respectively. Therefore, the population difference between the states

can be expressed as

Ĵz = N̂↑ − N̂↓

2
,(5.5)

where Ĵz is the component of Ĵ along the z-direction. Thus, unlike Ĵx and Ĵy, Ĵz can be

easily measured via conventional fluorescence detection techniques.

The collective spin operators are governed by the cyclic commutation relations,

[Ĵi, Ĵj] = iϵijkĴk,(5.6)
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where ϵijk is the Levi-Civita symbol. These commutation relations give rise to the Heisen-

berg uncertainty relation

⟨∆J2
i ⟩⟨∆J2

j ⟩ ≥ 1
4

|⟨Jk⟩|2 ,(5.7)

where ∆J2
i = ⟨Ĵ2

i ⟩ − ⟨Ĵi⟩2 is the variance of the measurement of the spin projection Ji for

numerous iterations of identical preparations and measurements.

5.1.3. Coherent Spin States

Coherent Spin States (CSS) are the quantum states of a symmetric ensemble of N spin-

1/2 particles, with no entanglement or quantum correlation between them. They are

formed by placing each particle of the N -particle system in the same quantum state

|θ, ϕ⟩ =
N∏

i=1

(
cos θ

2
|↓i⟩ + e−iϕ sin θ

2
|↑i⟩

)
.(5.8)

The angles θ and ϕ describe the direction (θ, ϕ) along which the mean spin vector

J = ⟨Ĵ⟩ = ⟨θ, ϕ| Ĵ |θ, ϕ⟩ is pointed, as illustrated in Fig. 5.1. The tip of the Bloch

vector is situated on the surface of the sphere of radius J = N/2. The Bloch vector

behaves classically if fluctuations in the spin projections are not considered. In the spin

representation, the Dicke collective states described in Sec. 3.1 are simply the usual an-

gular momentum states, defined as the eigenstates of Ĵz = (Ĵ+Ĵ−Ĵ−Ĵ+)/2. These states

are derived as a result of the rotation operator, Rθ,ϕ acting on an eigenstate of Ĵz. Using

the generating functions given in [40], the expression for Rθ,ϕ is

Rθ,ϕ = exp
(
τ Ĵ+

)
exp

(
ln(1 + |τ |2)Ĵz

)
exp

(
−τ ∗Ĵ−

)
,(5.9)
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where τ = exp(−iϕ) tan(θ/2).

For clarity, we consider an example of the CSS |π
2 ,

π
2 ⟩ = ∏N

i=1 (|↓i⟩ − i |↑i⟩) /
√

2, which

corresponds to the state of the ensemble after the first π/2−pulse in Ramsey spectroscopy,

discussed in its manifestation as a CRAIN in Sec. 2.3. Essentially, this state is a result

of rotating |−J⟩ = |0, 0⟩ = ∏N
i=1 |↓i⟩ about the x̂-axis. Substituting θ = π/2, ϕ = π/2 in

Eq. 5.9 we get:

|π
2
,
π

2
⟩ = exp

(
−iĴ+

)
exp

(
ln(2)Ĵz

)
exp

(
−iĴ−

)
|−J⟩

= 2−J
2J∑

k=0
(−i)k

√√√√(2J
k

)
|−J + k⟩ .(5.10)

Each individual spin in the CSS is aligned along the ŷ axis. The mean collective spin

that represents this CSS is, therefore, J = N
2 ŷ. Due to quantum mechanics, an uncertainty

is introduced in the spin projections, governed by the Heisenberg uncertainty relationships

given in Eq. 5.7. Therefore, the quantum projection noise in |π
2 ,

π
2 ⟩ is ∆Jz = ∆Jx =

√
N/2.

The quantum fluctuations in a CSS is, therefore, isotropic in the plane orthogonal to the

direction of the mean spin.

5.2. Spin Squeezed States

Since the elementary spins of a CSS are uncorrelated, the variance of the components

normal to the mean direction is the sum of the variance of the individual elementary spins

which gives the SQL. One way to exceed the SQL of an uncorrelated atomic ensemble is

to use quantum entanglement to either increase the slope ∂Jz/∂δ, lower the shot noise

⟨∆Jz⟩, or a combination of both. Spin squeezing utilizes the latter method to yield a

decreased noise in Jz (quantity of interest) at the expense of increased noise in Jx (which
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Figure 5.1. (a) Bloch sphere representation of a CSS. In this illustration
the CSS is prepared along the x̂-axis. The quasiprobability distribution
(QPD) for the CSS noise in Jx and Jz (coordinate system defined in (b))
is shown as a noise blob (purple disc) at the tip of the collective spin Ĵ
(red arrow). (b) Coordinate system defining the collective spin polar angle
θ and azimuthal angle ϕ. The Cartesian components of the collective spin
Ĵ in the x, y and z directions are Jx, Jy and Jz.

is not measured). A linear Hamiltonian merely rotates the individual spins and does not

establish quantum correlations among them. For this reason, a nonlinear interaction is the

key to correlate the atoms. A single atom cannot be squeezed since it has no partner to

be correlated with. In this segment, we will primarily focus on two methods of achieving

spin squeezed states - One Axis Twist (OAT), and Two Axes Counter-Twist (TACT) Spin

Squeezing.

5.2.1. One Axis Twist Spin Squeezing

In this section, we consider the CSS, |π/2, π/2⟩ to demonstrate the process for generating

an OAT spin squeezed state. The pertinent nonlinear Hamiltonian for achieving an OAT
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state, HOAT , is

HOAT = ℏχ
2
J2

z .(5.11)

This acts on a CSS to produce a squeezed spin state (SSS)

|SSS⟩ = exp
(

−iµ
2
J2

z

)
|CSS⟩ ,(5.12)

where µ = 2χτ is the squeezing parameter, and τ is the duration of the squeezing interac-

tion. The uncertainties in the CSS are distorted as µ increases. For example, the action

of the OAT Hamiltonian on the CSS |π/2, π/2⟩ is as follows

|π
2
,
π

2
⟩

OAT
= exp

(
−iµ

2
J2

z

)
|π
2
,
π

2
⟩

= 2−J
2J∑

k=0
ik
(

2J
k

)
exp(−iµ

2
(−J + k)2) |−J + k⟩(5.13)

As µ increases, the Husimi quasiprobability distribution (QPD) of |π
2 ,

π
2 ⟩

OAT
is de-

formed due to the rearrangement of the uncertainties in the x − z plane, as shown in

Fig.5.2a. The maximum value of the QPD decreases with an increase in µ. To access the

decreased uncertainty along Jz, |π/2, π/2⟩OAT is rotated by an angle ν about the y-axis so

that the resulting ⟨∆J2
z ⟩ is minimized (Fig.5.2b). For every J value, there is an optimal

value of µ beyond which the QPD deviates from a geodesic, and exhibits swirliness. This

optimal value of the coefficient of twist, µOAT is found from the minima of the Kitagawa-

Ueda criterion, ξKU = 2 ⟨∆J2
z ⟩ /| ⟨Jz⟩ | ≤ 1, and decreases with increasing J , as shown

in Fig.5.3(a). The angle of corrective rotation, ν approaches zero as the spin number
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(a)

(b)

Figure 5.2. (a) QPD of the state evolution due to the action of HOAT on
|1

2 ,
1
2⟩, for J = 20. As the value of µ increases, the QPD continues to get

distorted, and begins to exhibit swirliness. (b) For a given J , the angle of
corrective rotation ν decreases with an increase in µ.

increases, as depicted in Fig.5.3(b). We note here that there exists another criterion for

obtaining the limits on spin squeezing given by Wineland, et. al [51,52].

5.2.2. Two Axes Counter-Twist Spin Squeezing

Another method of surpassing the SQL is the TACT. If the QPD is simultaneously twisted

clockwise and counterclockwise about two orthogonal axes, both normal to the mean spin

vector of the CSS, the swirliness cancels out. In this section, we will consider the twisting

of |π/2, π/2⟩ along Jx+iJz and Jx−iJz. The pertinent nonlinear Hamiltonian for achieving
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Figure 5.3. (a) Variation of the optimal value of the squeezing parameter
with J . (b) Variation of the angle of corrective rotation with J .

a TACT state, HT ACT is given by the following expression

HT ACT = ℏµ
4i

(Jx − iJz√
2

)2

−
(
Jx + iJz√

2

)2
 .(5.14)

Figure 5.4. State evolutions by TACT spin squeezing represented in terms
of the QPD for J = 20. The QPD begins to split into two parts as a result
of oversqueezing.

Unlike the HOAT , the action of HT ACT on |π/2, π/2⟩ does not have an analytical

solution. The MATLAB code for generating the QPD due to this given in Appendix.

B. As is the case with the OAT spin squeezed states, there exists an optimal value of µ

beyond which the QPD distorts and eventually splits into two. This optimal µ, denoted in
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this thesis as µT ACT is obtained in a similar way as µOAT , by applying the Kitagwa-Udea

criterion. Figure5.4 shows the resulting QPD, for J = 20 due to various µ.

5.3. Spin Representation of Atom Interferometry

The discussion of the atom interferometric sequence in the spin representation is cen-

tral to the analyses presented in Chapter 6. In this section, we will first review the CRAIN

assuming an ensemble of N two-level atoms with a collective spin Ĵ (Eq. 5.4). We will

establish the standard quantum limit that restricts the phase sensitivity. We will then

extend this knowledge to the COSAIN.

5.3.1. CRAIN in Spin Representation

The ensemble is initially prepared in a CSS, |−ẑ⟩ ≡ |E0⟩ = ∏N
i=1 |↓i⟩. The first π/2-pulse

rotates the CSS about the x̂ axis, producing the state

|ŷ⟩ = e−i(π/2)Jx |−ẑ⟩

=
N∏

i=1

(|↓i⟩ − i |↑i⟩)√
2

.(5.15)

Owing to the difference in linear momenta between |↓⟩ and |↑⟩, the trajectory of the

atoms splits into two. The CSS is then left to evolve through a dark zone, during which it

may pick up a phase due to metrological process of interest. As an example, we consider

the case of rotation. Rigorously, the effect of the overall phase shiftϕ due to rotation

is uniformly spread throughout the interferometric sequence. However, for theoretical

convenience, we introduce it in two equal parts during each of the dark zones. Thus, at
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the end of the first dark zone, the CSS picks up an additional phase ϕ/2 yielding the state

eiϕJz/2 |ŷ⟩ =
N∏

i=1

(|↓i⟩ − ieiϕ/2 |↑i⟩)√
2

.(5.16)

At this point, a π-pulse is applied to the ensemble, causing the spins to flip, yielding

e−πJzeiϕJz/2 |ŷ⟩ =
N∏

i=1
−(eiϕ/2 |↓i⟩ + i |↑i⟩)√

2
.(5.17)

A second dark zone ensues, lending another phase factor to the ensemble, so that the CSS

is now

e−iϕJz/2e−iπJxeiϕJz/2 |ŷ⟩ =
N∏

i=1
−eiϕ/2(|↓i⟩ + ie−iϕ |↑i⟩)√

2
.(5.18)

The final π/2-pulse causes another rotation about the x̂ axis which establishes the final

state,

|ψ⟩ = e−i(π/2)Jxe−i(ϕ/2)Jze−iπJxei(ϕ/2)Jz |ŷ⟩

=
N∏

i=1
−1

2
e−iϕ/2((1 + eiϕ) |↓i⟩ + i(1 − eiϕ) |↑i⟩).(5.19)

Essentially, this pulse catalyzes interference between the two trajectories of the interferom-

eter. The goal of an AI is to measure ϕ and, therefore, ΩG as accurately as possible. In a

CRAIN, ϕ is measured by mapping it onto the collective spin projection Ĵz = (N̂↑−N̂↓)/2.

The signal, which is a measure of the population of |↓⟩ is, therefore,

SCRAIN = J + ⟨−Ĵz⟩ = N cos2(ϕ
2

).(5.20)
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5.3.2. Standard Quantum Limit

The measurement process causes wavefunction collapse of the individual spins from the

superposition state to |↓⟩, resulting in quantum projection noise in the measure of the

signal,

∆SCRAIN = ∆(−Ĵz) =
√
N/4 sin(ϕ).(5.21)

The pertinent gauge of the stability of measurement of rotation ΩG is the quantum fluctu-

ation in rotation (QFR), which is given by the ratio of the projection noise in measurement

of ΩG and the angular variation in signal (AVS). Assuming ideal quantum efficiency, the

QFR is given by

∆ΩG

∣∣∣
CRAIN

= ∆(−Ĵz)
∂ΩG

⟨−Ĵz⟩

= c2

2ωCΘ
√
N
,(5.22)

where ∂ΩG
≡ ∂/∂ΩG. This is the standard quantum limit. The SQL can be surpassed by

introducing entanglement in the collective spin via spin squeezing.

5.3.3. COSAIN in Spin Representation

The COSAIN differs from a CRAIN in that the measurement of the signal is done on

a Dicke collective state of the ensemble, instead of a single atomic state. The first π/2-

pulse couples the initial state |E0, pz = 0⟩ to |E1, pz = ℏk⟩, which in turn is coupled to

|E2, pz = 2ℏk⟩, etc. This causes the ensemble to split into N + 1 trajectories. The dark

zone that immediately follows imparts a phase einϕ/2 to |En⟩. At this point, the π-pulse
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generates a spin flip in the individual spins in the CSS, causing |En⟩ to become |EN−n⟩,

and vice versa. The second dark-zone lends a phase ei(0.5N−n)ϕ to |En⟩. The mathematical

derivation of this mechanism is discussed in detail in Chapter 4. The last π/2-pulse causes

each of the collective states to interfere with the rest of the states. The COSAIN can,

thus, be viewed as an aggregation of interference patterns due
(

N+1
2

)
CRAIN’s working

simultaneously. The narrowest constituent signal fringes are derived from interferences

between states with the largest difference in phase, i.e. |E0⟩ and |EN⟩. The full width

at half maximum (FWHM) of this fringe is ϱ/N . The FWHM of the rest of the signal

components lie between ϱ and ϱ/(N − 1). The signal, which is the measure of population

of |E0⟩ is the result of the weighted sum of all the pairwise interferences. This is detected

by projecting the final state of the ensemble, |ψ⟩ on |E0⟩. Thus, SCOSAIN = ⟨Ĝ⟩ =

cos2N(ϕ/2), where Ĝ ≡ |E0⟩ ⟨E0|. The quantum projection noise is the standard deviation

of Ĝ, given by ∆SCOSAIN = cosN(ϕ/2)
√

1 − cos2N(ϕ/2). The rotation sensitivity, QFR

of the COSAIN is thus,

∆ΩG

∣∣∣
COSAIN

=
∣∣∣∣∣ ∆Ĝ
∂ΩG

⟨Ĝ⟩

∣∣∣∣∣(5.23a)

=
∆ΩG

∣∣∣
CRAIN√
N

∣∣∣∣∣∣
√

sec4J(ϕ/2) − 1
tan(ϕ/2)

∣∣∣∣∣∣ .(5.23b)

Therefore, for ΩG → 0, the rotation sensitivity of the COSAIN, under quantum noise

limited operation, is same as that of a CRAIN, assuming that all the other factors remain

the same.
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5.4. Spin Squeezed CRAIN and COSAIN

After the first π/2-pulse, the CSS in Eq. 5.15 is squeezed to produce an entangled

state of the ensemble. The angle of corrective rotation is determined by ensuring that the

fluctuations in Ĵz is minimum at ϕ = π/2. This corresponds to aligning the direction of

minimum fluctuations along the x̂ axis, so that the ν in Sec. 5.2.1 is shifted by π/2.

Figure 5.5. Variation of (a) Signal, (b) standard deviation, (c) angular vari-
ation of signal (AVS), (d) QRF−1 in a CRAIN with N = 100 due to spin
squeezing. Blue lines indicate no squeezing, yellow lines indicate OAT, and
Red lines indicate TACT.

The application of spin squeezing causes the signal amplitude to drop in a CRAIN,

as shown in Fig. 5.7(a). However, at ϕ = π/2, the signal amplitude remains unaltered,

while the quantum projection noise dips to a minimum (Fig. 5.7(b)), leading to a net rise

in phase sensitivity. The dependence of phase sensitivity on OAT and TACT squeezing
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as a function of N is illustrated in Fig 5.6. Theoretically, the conventional application

of two axis counter-twisting (TACT) spin squeezing to a CRAIN yields phase sensitivity

approaching the Heisenberg limit [31]. However, despite several proposals, the TACT has

not been experimentally realized so far [53–56]. In contrast, the conventional application

of OAT in a CRAIN yields a phase sensitivity ∼ π/N5/6 but can be easily realized in a

cavity [57–60].

Figure 5.6. (a) As N increases, the peak value of CRAIN signal amplitude
decreases due to squeezing. (b)

In a COSAIN, spin squeezing lowers the signal amplitude to an extent that the phase

sensitivity worsens due it, as illustrated in Fig. 5.7.

In the next chapter, we describe the Schrödinger cat atomic interferometer (SCAIN),

where we seek to undo the effect of squeezing in order to restore the maximum signal

amplitude of a COSAIN to unity. We employ the experimentally achievable OAT spin

squeezing in combination with unsqueezing which results in the generation of Schrödinger

cat states corresponding to an equal superposition of the extremal Dicke collective states.
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Figure 5.7. Variation of (a) Signal, (b) standard deviation, (c) angular vari-
ation of signal (AVS), (d) QRF−1 in a COSAIN with N = 100 due to spin
squeezing. Blue lines indicate no squeezing, yellow lines indicate OAT, and
Red lines indicate TACT.

This method exceed the phase sensitivity achieved by the conventional application of

TACT spin squeezing discussed above.
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CHAPTER 6

Schrödinger Cat Atomic Interferometer

6.1. Introduction

The phase sensitivity of an atomic interferometer (AI) depends on the Compton fre-

quency, ωC = mc2/ℏ of the individual particles interfering at non-relativistic velocities,

where m is the mass of the particle, and c is the velocity of light in vacuum [2,4,23,61].

Matter wave interferometry with large molecules have successfully demonstrated the su-

perposition of quantum states with large mass [37]. However, these interferometers, based

on the Talbot effect, are not suited for rotation sensing, owing to constraints in fabricating

gratings of small enough spacing, and associated effects of van der Waals interaction. An

alternative approach is to treat a large number of particles, each with a mass m, as a

single object with a mass of M ≡ Nm, and thus a Compton frequency of Mc2/ℏ. In this

chapter, we describe a protocol that enables the realization of an atomic interferometer

where two distinct quantum states of this mesoscopic single object, each with this Comp-

ton frequency, are spatially separated and then recombined, leading to fringes that are

a factor of N narrower than what is achieved with a conventional atomic interferometer.

We also show that the net metrological sensitivity of this interferometer is equivalent to

the Heisenberg limited (HL) sensitivity of a conventional atomic interferometer. Aside

from application to metrology, such a mesoscopic Schrödinger cat interferometer may
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serve as a test-bed for various aspects of fundamental physics, such as the effect of grav-

itational red-shift on macroscopic decoherence [38] and the transition between quantum

physics and classical realism [62]. It also opens up a new regime for atom-interferometric

measurement of gravitational red-shift [15] and for exploring performance of matter-wave

clocks [11] in a regime with a much higher Compton frequency. We also show how such

a mesoscopic single object can be used to increase the effective base frequency of an

atomic clock by a factor of N , with a metrological sensitivity that is equivalent to the HL

sensitivity of a conventional atomic clock.

In Chapter 4, we showed that the effect of large Compton frequency can be observed

indirectly by detecting one of the collective state. These states, {|E0⟩ , |E1⟩ , . . . , |EN⟩},

arise as a result of interaction of an ensemble of identical independent atoms with a

semiclassical field [35,39,40]. The interferences between each of the collective states lead

to a reduction in signal linewidth by a factor of
√
N as compared to a CRAIN. A direct

transition |E0⟩ ↔ |EN⟩, bypassing all the intermediate collective states, would result in

a signal linewidth narrowed by a factor of N , thereby achieving HL phase sensitivity.

However, since the electric dipole coupling rate between |E0⟩ and |EN⟩ is zero for non-

interacting atoms, it is impossible to achieve this goal with conventional excitation.

In this chapter, we describe the application of squeezing and unsqueezing [63–66]

in a COSAIN to attain HL of phase sensitivity. Explicitly, we employ what is known as

the one axis twisting (OAT) spin squeezing [31] immediately following the first π/2-pulse.

Prior to the application of the squeezing interaction, the population of the collective states

follow a binomial distribution, corresponding to the Coherent Spin State (CSS) [40]. As

the strength of squeezing is increased, the distribution begins to flatten out, eventually
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generating Schrödinger cat states corresponding to an equal superposition of |E0⟩ and

|EN⟩ [67]. The usual dark-π-dark sequence follows, at the end of which we undo the

squeezing by applying a reverse OAT interaction. Finally, the last π/2 effectuates inter-

ference between the collective states that are detected by measuring the population of one

of the collective states.

This technique critically depends on whether N is even or odd [67,68], a priori knowl-

edge of which is virtually impossible for large ensembles. We circumvent this by detecting

the state |E0⟩ using the null detection protocol described in Ref. [30]. When N is even,

the interference between the two extremal states produce signal fringes narrowed by a

factor of N . For odd N , the signal is zero, if the protocol is kept unchanged from the

one used for even values of N . Thus, over repeated measurements (for example, using

atoms released from a magneto-optic trap) under which the probability of N being even

or odd is equal, this process produces a fringe amplitude that is reduced by a factor of 2.

Thus, the sensitivity is 1/
√

2 times the HL for N atoms. Alternatively, one can view the

process as one that filters out the signal from the odd N cases, so that for N/2 atoms cor-

responding to even N cases, the sensitivity achieves the HL. We also show that a degree

of sensitivity enhancement very close to this value can also be achieved for a much lower

degree of squeezing than what is required for reaching the Schrödinger cat states. Since

the system is highly entangled, and mesoscopic, we name this a Schrödinger Cat Atomic

Interferometer (SCAIN). Finally, we also show how the proposed scheme can be used

to realize a HL Schrödinger cat atomic clock, for which the base frequency is effectively

enhanced by a factor of N .
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6.2. Signal Fringewidth, SNR, Quantum Rotation Fluctuation

To appreciate the utility of a quantum metrological device, it is essential to consider

the stability of its measurements. For example, an AI gyroscope rotating at a rate ΩG

about an axis normal to the area Θ accrues a phase difference ϕ = 2ωCΘΩG/c
2 between

its trajectories [24]. One indicator of its performance is the quantum fluctuation in

rotation (QFR), ascribed to the stability of the measurement of ΩG. To recall, the fringe

linewidth of a CRAIN is ϱ = c2/2ωCΘ, and the effective signal-to-noise ratio (SNR)

is
√
N . Thus, the QFR, which is the ratio of noise to the angular variation in signal is

ϱ/SNR=c2/2
√
NωCΘ, as shown in Fig. 6.1. The precision of a CRAIN is thus constrained

by standard quantum limit (SQL). On the other hand, the COSAIN treats the ensemble

of independent atoms as a single particle so that the effective SNR is unity. Therefore,

even though the signal linewidth is ∼ ϱ/
√
N , the QFR turns out to be the same as that

of a CRAIN. Similarly, the SCAIN essentially treats the ensemble as a single particle so

that the effective SNR is unity. However, owing to the linewidth narrowing by a factor

∼ N , the QFR attained approaches the HL, c2/2NωCΘ. Theoretically, the conventional

application of two axis counter-twisting (TACT) spin squeezing to a CRAIN yields phase

sensitivity approaching the HL [31]. However, despite several proposals, the TACT has

not been experimentally realized so far [53–56]. In contrast, the conventional application

of OAT in a CRAIN yields a phase sensitivity ∼ π/N5/6 but can be easily realized in

a cavity [57–60]. Thus, the SCAIN is in some ways equivalent to the TACT CRAIN,

but realizable experimentally using OAT. Of course, as mentioned earlier, the SCAIN

may have many applications in fundamental physics studies beyond conventional use in

metrology.
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Figure 6.1. (a) Measurement of the interferometer signal (amplitude of
|E0⟩) shows a narrowing of the fringe by a factor 0.35N in an excessively
squeezed SCAIN (yellow line), as compared to an ideal COSAIN. (b) The
rise in quantum projection noise in the vicinity of ΩG = 0 increases with
squeezing. (c) Angular variation in signal as a measure of the slope of the
signal. (d) The inverse of quantum phase fluctuation (QPF−1) in a CO-
SAIN. Black lines indicates the HL case of a GHZ state clock. Blue lines
indicate the ideal COSAIN. For ΩG → 0, the phase sensitivity of a COSAIN
is very close to the SQL.
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6.3. Squeezing and Unsqueezing Protocol

In order to illustrate clearly the mechanism for realizing the SCAIN, and the char-

acteristics thereof, it is useful to recall briefly the operation of a CRAIN and a CO-

SAIN, detailed discussions on which care given in Sec. 5.3.1 and Sec. 5.3.3, respectively.

Briefly, these devices make use of N non-interacting identical three-level atoms with

metastable hyperfine states |↓, pz = 0⟩ and |↑, pz = ℏk⟩, and an excited state |e⟩, in the

Λ-configuration is reduced to an equivalent two-level model. The ensemble is initially

prepared in a Coherent Spin State (CSS), |−ẑ⟩ ≡ |E0⟩ = ∏N
i=1 |↓i⟩. The first π/2-pulse

rotates the CSS about the x̂ axis, producing the state

|ŷ⟩ = e−i(π/2)Jx |−ẑ⟩

=
N∏

i=1

(|↓i⟩ − i |↑i⟩)√
2

.(6.1)

Following the dark-π-dark-π/2 sequence, the rotation sensitivity of both the CRAIN

and the COSAIN is constrained by the SQL. One way of surpassing the SQL is to suppress

the contribution of the constituent signal fringes broader than ϱ/N . This is accomplished

by introducing entanglement in the CSS via the OAT spin squeezing Hamiltonian, HOAT =

χJ2
z . This produces a squeezed spin state (SSS) of the ensemble

|ψe⟩ = e−iµJ2
z /2 |ŷ⟩ ,(6.2)

where µ = 2χτ is the squeezing parameter, and τ is the duration of the squeezing inter-

action. The uncertainties in the CSS are distorted as µ increases. The direction along

which the uncertainty in the collective spin dips below the classical limit is dictated by µ
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and N , as shown by the quasiprobability distribution (QPD) in Fig. 6.4(b). To this end,

the SSS must be rotated by an angle ν about an appropriate axis, the choices of which

depend on the degree of squeezing.

6.3.1. µ → π

For even N , HOAT transforms |ŷ⟩ to |ψe⟩ = (|ŷ⟩ + |−ŷ⟩)/
√

2. Rotating |ψe⟩ by ν = π/2

about the x̂ axis yields the Schrödinger cat states |ψGHZ⟩ = ((1+ i) |E0⟩+(1− i) |EN⟩)/2.

At the end of the intermediate dark−π−dark sequence, the state of the ensemble is

e−iϕJz/2e−iπJxeiϕJz/2 |ψGHZ⟩ = eiNϕ/2((1−i)(−i)N |E0⟩+(1+i)e−iNϕ |EN⟩)/2. As discussed

above, the interference between states with a phase difference Nϕ produces signal fringes

narrowed by a factor of N . To measure ϕ, we seek to undo the effect of squeezing on

the system. This is accomplished in two steps − first, by undoing the effect of corrective

rotation ν, followed by untwisting the action of HOAT . Since the π-pulse induces a phase

π in the spins, the effect of ν is undone by applying another rotation ν about the same

axis as before. Thereafter, the untwisting Hamiltonian, −HOAT is applied to unfurl the

hitherto entangled states. Finally, the last π/2 pulse is applied to catalyze interference

between the resulting states. The signal arising from this interference depends on ϕ as

SGHZ = cos2(Nϕ/2).

When N is odd, initial squeezing produces |x̂⟩ and |−x̂⟩. Rotating these about the x̂

axis does not alter the states, and therefore, the sequence

e−iν′Jxe−iϕJz/2e−iπJx/2eiϕJz/2e−iν′Jx(6.3)
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Figure 6.2. For even N (a→b) QPD of |ψe⟩ rotated by π/2 about x̂ axis to
yield Schrödinger cat states. (c) Distribution of states of the rotates SSS,
showing an equal proportion of states |E0⟩ and |EN⟩. For odd N , (d→e)
Rotation about x̂ axis does not transform the SSS. (f) Distribution of states
of the rotates SSS.

only causes an identical phase change in each of these states. Finally, unsqueezing restores

the original CSS, which is not altered by the final π/2 pulse. The whole sequence thus

generates a null signal. Over repeated measurements, the probability of N being even or

odd is equal. Thus, for M trials, the average signal of the SCAIN in this regime is SGHZ =

M cos2(Nϕ/2)/2. The associated quantum projection noise is ∆SGHZ =
√
M/2 sin(Nϕ).

The QFR is thus, ∆ΩG = c2/
√

2MNωCΘ.
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6.3.2. µ < π

The rotation axis and ν are chosen so as to minimize the fluctuations along ẑ. This is

achieved by rotating the SSS about the direction of the mean spin vector, ŷ. Prior to

rotation, the SSS has the same binomial distribution as the original CSS, as depicted in

Fig 6.3(a). The rotation causes a reshuffle in the population of states, and the distribution

begins to flatten out (Fig 6.3(b)). For a given value of N , ν increases with µ, reaching

maximum value of π/2 at µ = µ0. For a large ensemble, µ0 can be achieved for a very

short evolution time. When squeezed beyond µ0, the distribution begins to invert, and

the relative proportion of the extremal states increases. The exact state distribution is

determined by whether N is even or odd (Fig 6.3(c)). At µ = π/2, the QPD splits

into four identical parts. For even N , the state of the ensemble is |ψrot⟩ = e−iνĴy |ψe⟩ =

(|−ẑ⟩+|ŷ⟩+|−ŷ⟩+|ẑ⟩)/2, and the distribution becomes trimodal, as depicted by the blue

line in Fig. 6.3(d). On the other hand, for odd N , e−iνĴy |ψe⟩ = ((|ŷ⟩ + |ẑ⟩)/
√

2 + (|ŷ⟩ +

|−ẑ⟩)/
√

2 + (− |ŷ⟩ + |ẑ⟩)/
√

2 + (|−ŷ⟩ + |−ẑ⟩)/
√

2)/2
√

2. In this case, the distribution is

bimodal, as shown in Fig. 6.3(d) (red line).

Once the SSS is optimally aligned, the usual dark−π−dark sequence follows. Similar

to the case of µ = π, the squeezing is undone by applying another rotation ν about

ŷ axis, and untwisting the hitherto entangled states via −HOAT . Finally, the last π/2

pulse is applied to catalyze interference between each of the resulting states. For ϕ = 0,

the original CSS is restored. However, for ϕ ̸= 0, the final state develops a bias along Jx

proportional to ϕ, and entanglement remains in the system. The central fringe is identical

for both N odd and even, so for M trials, the average signal is independent of the parity of

N . Due to interferences at higher phase contrast, the resulting signal fringes are narrower
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Figure 6.3. Variation of population of states distribution with µ. Both even
(blue line) and odd (red line) values of N are considered.

than that in an identical COSAIN. The fringe width first decreases sharply with longer

evolution times, and then saturates at µ = µopt. Consequently, the fluctuations in rotation

sensitivity plummets, attaining the minimum value δΩG|SCAIN = e1/3c2/2
√
MNωCΘ, at

µ = µopt.

Thus, the SCAIN can attain phase sensitivity that is very close to the HL, for an

evolution time that is much shorter than that required to attain Schrödinger cat states.

A similar treatment of the Collective State Atomic Clock [42] also produces similar results.

Such a clock can be called a SCAC (Schrödinger Cat Atomic Clock). In this case, the

Schrödinger Cat state for ν = π corresponds to a situation where the effective base
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Figure 6.4. Signal fringes for various µ. N = 200 is indicated by blue lines,
N = 201 by red lines. The broken black lines indicate the average signal.

frequency of the clock is increased by a factor of N . In the following section, we present

a description of the SCAC, in the same vein as the SCAIN.
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Figure 6.5. The Husimi quasiprobability distribution of state evolution
through the SCAIN protocol. The initial CSS |ŷ⟩ (a) evolves under HOAT

to (b) which is then rotated (b→c)so as to maximize the fluctuations along
ẑ. (f) The first dark zone imparts a phase ϕ/2. (e) The Bloch sphere is
rotated to show the other face where the SSS is situated after the π pulse.
(d) The second dark zone imparts the rest of the ϕ/2 phase, and biases the
spin precession. (d→g) The spins are effectively unrotated to restore the
original orientation of the SSS, which are then unsqueezed to (h). (i) The
final π/2 pulse that causes interference between the near-unsqueezed states.

6.4. Schrödinger Cat Atomic Clock

The ground states |↓⟩ and |↑⟩ of a three-level atom interact with an excited state |e⟩

via two copropagating laser beams. One of the beams, detuned from resonance by δ1 and

with Rabi frequency Ω1, couples |↓⟩ to |e⟩. The other beam, with Rabi frequency Ω2 and
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Figure 6.6. QFR−1 of SCAIN vs µ for N = 100, scaled with respect to
the Heisenberg limit. Horizontal lines indicate the Heisenberg limit (black
solid), and the SQL (black dashed). The red line indicates the rotation
sensitivity achieved in a SCAIN considering the average of contributions
form even and odd parity ensembles.

detuning δ2, couples |e⟩ to |↑⟩. For ∆ ≫ Ω1,Ω2, where ∆ = (δ1 + δ2)/2, the interaction

can be described as an effective two level system excited by an effective traveling wave

with a Rabi frequency Ω = Ω1Ω2/2∆, and detuning δ = δ1 − δ2.

In a conventional Ramsey fringe atomic clock (RFAC), an ensemble of N effective

two-level atoms is first prepared in the CSS, |−ẑ⟩ ≡ |E0⟩ = ∏N
i=1 |↓i⟩. The initial π/2-

pulse rotates the CSS about the x̂-axis and brings it to the ŷ-axis, producing the state

e−i(π/2)Jxt0 |−ẑ⟩ = |ŷ⟩ = ∏N
i=1(|↓i⟩ − i |↑i⟩)/

√
2. The collective spin is then left to evolve

without any interaction for time TD, during which each constituent spin acquires a phase

ϕ = 2πfTD, where f = δ/2π is the frequency of the clock in hertz. This is equivalent

to a rotation by ϕ along the z-axis. At this point, a second π/2-pulse is applied which

establishes the final state, |ψ⟩ = ∏N
i=1((1 − eiϕ) |↓⟩ − i(1 + eiϕ) |↑⟩)/2. The aim of the

RFAC is to measure ϕ, and therefore, f as precisely as possible.
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In an ideal RFAC, ϕ is measured by mapping it onto the collective spin projection Jz.

The signal, which a measure of the population of |↑⟩ is, therefore, SRF AC = J + ⟨Jz⟩ =

N cos2(ϕ/2). The associated quantum projection noise is ∆SRF AC = ∆Jz =
√
N/4 sin(ϕ).

The stability of the measurement of f is an indicator of the performance of an atomic

clock. The stability of the clock is attributed to the quantum fluctuation in frequency

(QFF), analogous to the QRF described in the main body of this paper. The QFF can

be written as

QFF = ∆f =
∣∣∣∣∣ ∆Jz

∂⟨Jz⟩/∂f

∣∣∣∣∣
=
(
2πTD

√
N
)−1

.(6.4)

which maybe be considered as quantum noise over the spectral variation of signal (SVS).

As is the case in a COSAIN, the COSAC differs from a conventional RFAC in that

the measurement of the signal is done on a collective state of the ensemble, instead of

single atom measurements [42]. The first π/2-pulse couples the initial state |E0⟩ to |E1⟩,

which in turn is coupled to |E2⟩, etc., effectively causing the ensemble to split into N + 1

states. During the dark zone, the n-th collective state |En⟩ picks up a phase e−inϕ. When

the ensemble interacts with the last π/2-pulse, each of the collective states interfere with

the rest of the states. The COSAC can, thus, be viewed as the aggregation of interference

patterns due
(

N+1
2

)
RFAC’s working simultaneously. The mathematical derivation of this

mechanism is discussed in detail in Ref [42]. The narrowest constituent signal fringes are

derived from interferences between states with the largest difference in phase, i.e. |E0⟩

and |EN⟩, The full width at half maximum (FWHM) of this fringe is π/N . The FWHM
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of the rest of the signal components lie between π and π/(N − 1). The signal, which is

the measure of population of |EN⟩ is the result of the weighted sum of all the pairwise

interferences. This is detected by projecting the final state of the ensemble, |ψ⟩ on |EN⟩.

Thus, SCOSAC = ⟨Ĝ⟩ = cos2N(ϕ/2), where Ĝ ≡ |EN⟩ ⟨EN |. The quantum projection noise

is the standard deviation of Ĝ, given by ∆SCOSAC = cosN(ϕ/2)
√

1 − cos2N(ϕ/2). The

QFF of the COSAC is thus,

∆f
∣∣∣
COSAC

=
∣∣∣∆Ĝ/∂f⟨Ĝ⟩

∣∣∣
= (∆f

∣∣∣
CRAIN

/
√
N)|

√
sec4J(ϕ/2) − 1/ tan(ϕ/2)|(6.5)

Therefore, for f → 0, the frequency sensitivity of the COSAC is same as that of an RFAC,

assuming that all the other factors remain the same.

The Schrödinger cat atomic clock (SCAC) is based on the same principles of squeezing

followed by perturbation and subsequent unsqueezing as the SCAIN. The CSS after the

first π/2-pulse is squeezed via the OAT spin squeezing Hamiltonian, HOAT = χJ2
z , yielding

the squeezed spin state (SSS) of the ensemble |ψe⟩ = e−iµJ2
z /2 |ŷ⟩, where µ = 2χτ is the

squeezing parameter, and τ is the duration of the squeezing interaction. This SSS must

be rotated by an angle ν about an appropriate axis, the choices of which depend on the

degree of squeezing, and follows the same rules as described Sec 6.3.

6.4.1. µ → π

For even N , HOAT transforms |ŷ⟩ to |ψe⟩ = (|ŷ⟩ + |−ŷ⟩)/
√

2. Rotating |ψe⟩ by ν = π/2

about the x̂ axis yields the Schrödinger cat states |ψGHZ⟩ = ((1+ i) |E0⟩+(1− i) |EN⟩)/2.

At the end of the dark zone, the state of the ensemble is e−iϕJz |ψGHZ⟩ = ((1 + i) |E0⟩ +
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(1− i)e−iNϕ |EN⟩)/2. To undo the effect of squeezing, we first undo the effect of corrective

rotation ν by by applying another rotation ν about the x̂ axis. Thereafter, the untwisting

Hamiltonian, −HOAT is applied to unfurl the hitherto entangled states. Finally, the last

π/2 pulse is applied to catalyze interference between the resulting states. The signal

arising from this interference depends on ϕ as SGHZ = cos2(Nϕ/2).

When N is odd, initial squeezing produces |x̂⟩ and |−x̂⟩. Rotating these about the x̂

axis does not alter the states, and therefore, the sequence e−iν′Jxe−iϕJze−iν′Jx only causes

an identical phase change in each of these states. Finally, unsqueezing restores the original

CSS, which is not altered by the final π/2 pulse. The whole sequence thus generates a

null signal. Over repeated measurements, the probability of N being even or odd is

equal. Thus, for M trials, the average signal of the SCAC in this regime is SGHZ =

M cos2(Nϕ/2)/2. The associated quantum projection noise is ∆SGHZ =
√
M/2 sin(Nϕ).

The QFF is thus, ∆f = 1/
√

2MπNTD.

6.4.2. µ < π

The rotation axis and ν are chosen so as to maximize the fluctuations along ẑ. This is

achieved by rotating the SSS about the direction of the mean spin vector, ŷ. Prior to

rotation, the SSS has the same binomial distribution as the original CSS. The rotation

causes a reshuffle in the population of states, and the distribution begins to flatten out.

For a given value of N , ν increases with µ, reaching maximum value of π/2 at µ = µ0.

For a large ensemble, µ0 can be achieved for a very short evolution time. When squeezed

beyond µ0, the distribution begins to invert, and the relative proportion of the extremal

states increases. The exact state distribution is determined by whether N is even or
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odd. At µ = π/2, the QPD splits into four identical parts. For even N , the state of

the ensemble is |ψrot⟩ = e−iνĴy |ψe⟩ = (|−ẑ⟩ + |ŷ⟩ + |−ŷ⟩ + |ẑ⟩)/2, and the distribution

becomes trimodal. On the other hand, for odd N , e−iνĴy |ψe⟩ = ((|ŷ⟩ + |ẑ⟩)/
√

2 + (|ŷ⟩ +

|−ẑ⟩)/
√

2 + (− |ŷ⟩ + |ẑ⟩)/
√

2 + (|−ŷ⟩ + |−ẑ⟩)/
√

2)/2
√

2. In this case, the distribution

is bimodal. The population of states at each stage follows the same distribution as in a

corresponding SCAIN.

Once the SSS is optimally aligned, the usual dark zone follows. The squeezing is

undone by applying another rotation −ν about ŷ axis, and untwisting the hitherto en-

tangled states via −HOAT . Finally, the last π/2 pulse is applied to catalyze interference

between each of the resulting states. For ϕ = 0, the original CSS is restored. However,

for ϕ ̸= 0, the final state develops a bias along Jx proportional to ϕ, and entanglement

remains in the system. The central fringe is identical for both N odd and even, so for

M trials, the average signal is independent of the parity of N . Due to interferences at

higher phase contrast, the resulting signal fringes are narrower than that in an identical

COSAC. The fringe width first decreases sharply with longer evolution times, and then

saturates at µ = µopt. Consequently, the fluctuations in rotation sensitivity plummets,

attaining the minimum value ∆f |SCAIN = e1/3/
√
M2πNTD, at µ = µopt.
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APPENDIX A

Matlab codes for COSAIN Analyses

A.1. Effect of Gaussian Beam Profile and Doppler Effect Induced Detuning

clc

close all;

clear all;

format long;

hbar = 1.054571726e-34;

c = 299792458;

lambda = 780.241368e-09;

k_l = 2*pi/lambda;

m = 85*1.66e-27; %%Rb-85

k_B = 1.3806488e-23;

delta = 2*pi*1.5179e9/3;

Gamma = 38.117e6; %%in rad/s
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I_sat = 2*hbar*(pi^2)*c*Gamma/3/lambda^3;

g_0_sat = Gamma/sqrt(2);

I_max = 5e3; %%variable parameter in W/m^2

g_0_max = (sqrt(I_max/I_sat))*g_0_sat;

g_0_adiabatic = 0.1*(2*delta);

om_0 = g_0_max^2/2/delta;

T = pi/2/om_0;

MOT_radius = 0.1e-3;

dr = 1e-6; %%shell width

j = 0;

density_0 = 2.5e3/(4*pi*dr^3/3);

j = j+1;

r = 0:dr:MOT_radius;

density_dist = density_0*exp(-r.^2/2/(MOT_radius/3)^2);

Vol_n = (4*pi/3)*((r+dr).^3-r.^3);

x = dr/2:dr:MOT_radius;
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rho_n = density_0*exp(-x.^2/2/(MOT_radius/3)^2);

XYZ = Vol_n(1:size(x));

atom_shell_n = round(rho_n.*XYZ);

% subplot(2,1,1)

% plot(x,atom_shell_n)

% hold on;

Temp_ar = [];

Signal_Final_ar = [];

waist_size = 500*MOT_radius

Temp = 1e-6;

sigma_v = sqrt(k_B*Temp/m);

% subplot(2,1,2)

%for waist_size = 100*MOT_radius:5*MOT_radius:1000*MOT_radius;

phi_ar = [];
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Signal_Final_ar = [];

for phi = (-1e-2:1e-5:1e-2)*pi

atom_ar = [];

Signal_ar = [];

for i = 1:1:100

val = 11;

div = 2*3*sigma_v/val;

vel_i = -3*sigma_v:div:3*sigma_v;

f = atom_shell_n(i)*sqrt(m/(2*pi*k_B*Temp))

*exp(-m*vel_i.^2/(2*k_B*Temp));

del_i = 2*k_l*vel_i;

atoms_shell_div = round(div.*f);

% subplot(2,1,2)

% plot(del_i,round(div.*f))

% hold on;

om_i = om_0*exp(-2*(x(i)-dr/2).^2/waist_size^2);

OM = sqrt(om_i^2+del_i.^2);
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A_1 = cos(OM*T/2)-1i*(del_i./OM).*sin(OM*T/2);

A_2 = -1i*(om_i./OM).*sin(OM*T);

A_3 = -1i*(om_i./OM).*sin(OM*T/2);

c_g = ((abs(A_1.*A_2.*A_3)).^2).*4.*(cos(phi/2)).^2;

dummy = c_g.^atoms_shell_div;

Signal_shell = prod(dummy);

Signal_ar = [Signal_ar Signal_shell];

atom_ar = [atom_ar round(div.*f)];

end

Signal_Final = prod(Signal_ar);

% plot(waist_size/(2*MOT_radius),Signal_Final)

% hold on

%end

% Temp_ar = [Temp_ar Temp];

% Signal_Final_ar = [Signal_Final_ar Signal_Final];

% end

Total_atoms = sum(atom_ar);

%subplot(2,2,j)

% plot(Temp_ar, Signal_Final_ar)
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% hold all

Signal_Final_ar = [Signal_Final_ar Signal_Final];

phi_ar = [phi_ar phi];

end

plot(phi_ar,(cos(phi_ar/2)).^(2*Total_atoms))

hold on

plot(phi_ar,Signal_Final_ar,'r')

hold all
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APPENDIX B

Matlab Codes for Spin Squeezing Analyses

B.1. SCAIN Signal

This is a sample code for generating signal, variance, and QRF of an SCAIN with

N = 100 atoms. The squeezing function can be modified to accommodate a TACT

squeezing scheme. The values of mu and ν for a given J are derived in a separate

program, and so are the spin matrices.

J = 50; % (N atoms)/2

%Spin-J particle matrices functions

J_z = Spin_Sz(J);

J_x = Spin_Sx(J);

J_y = Spin_Sy(J);

%OAT Spin squeezing function

func = 1i*(J_z)^2/2;

%squeezing parameter and corrective rotation angle

mu = [0, pi/2];

nu = [0, pi/2];
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CSS_ini_vec = zeros(2*J+1,1); %define initial CSS vector

CSS_ini_vec(2*J + 1) = 1;

%first pi/2 pulse

CSS_first_pulse_vec = expm(-1i*(pi/2)*J_x)*CSS_ini_vec;

%phase imparted in one dark zone

delta_T = 0:pi/1000:pi/2;

omega = 30e-6;

freq = delta_T/omega/(2*pi);

for q = 1:1:length(mu)

%Squeezing

SSS_OAT_pulse_vec = expm(-mu(q)*func)*CSS_first_pulse_vec;

%Corrective rotation

rotated_vec = expm(-1i*(nu(q))*J_y)*SSS_OAT_pulse_vec;

Sig = zeros(length(delta_T),1);

for k = 1:1:length(delta_T)
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%first dark zone

detuning1_vec = expm(-1i*(delta_T(k)/2)*J_z)*rotated_vec;

%pi pulse

pi_pulse_vec = expm(-1i*(pi)*J_x)*detuning1_vec;

%second dark zone

detuning2_vec = expm(1i*(delta_T(k)/2)*J_z)*pi_pulse_vec;

%un-rotate

unrotated_vec = expm(-1i*(nu(q))*J_y)*detuning2_vec;

%unsqueeze

unsqueeze_pulse_vec = expm(mu(q)*func)*unrotated_vec;

%last pi/2 pulse

last_pulse_vec = expm(-1i*(pi/2)*J_x)*unsqueeze_pulse_vec;

Sig(k) = (abs(last_pulse_vec(2*J+1))).^2;

end

subplot(2,2,1)

plot(freq, Sig,'linewidth', 2)
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hold on

max(Sig)

Var = Sig.*(1-Sig);

Var_sqrt = abs(sqrt(Var));

subplot(2,2,2)

plot(freq, Var_sqrt,'linewidth', 2)

hold on;

partial_Sig = diff(Sig)/(freq(2)-freq(1));

subplot(2,2,3)

plot(freq(:,1:length(partial_Sig)),abs(partial_Sig),'linewidth', 2)

hold on;

QFF_Inverse = abs(partial_Sig./Var_sqrt(1:length(partial_Sig)));

subplot(2,2,4)

plot(freq(:,1:length(partial_Sig)), QFF_Inverse,'linewidth', 2)

hold on;

end
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B.2. Pauli matrix definitions

Jx

function f = Spin_Sx(J)

Sx_ini = zeros(2*J+1,2*J+1);

for a = 1:1:2*J+1

for b = 1:1:2*J+1

if(a==b+1 || a+1==b)

Sx_ini(a,b) = sqrt((J+1).*(a+b-1)-a*b)/2;

end

end

end

f = Sx_ini;

Jy

function f = Spin_Sy(J)

Sy_ini = zeros(2*J+1,2*J+1);

for a = 1:1:2*J+1

for b = 1:1:2*J+1

if(a==b+1 || a+1==b && b>a)

Sy_ini(a,b) = sqrt((J+1).*(a+b-1)-a*b)/(2*i);

end
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if(a==b+1 || a+1==b && b<a)

Sy_ini(a,b) = -sqrt((J+1).*(a+b-1)-a*b)/(2*i);

end

end

end

f = Sy_ini;

Jz

function f = Spin_Sz(J)

Sz_ini = zeros(2*J+1,2*J+1);

for a = 1:1:2*J+1

for b = 1:1:2*J+1

if(a==b)

Sz_ini(a,b) = (J+1-a);

end

end

end

f = Sz_ini;

B.3. Husimi Quasiprobability Distribution

data_matrix = csvread('J50_Squeezing parameters3.csv', 1, 0);
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mu_derived = data_matrix(:,1);

alpha_derived = pi*data_matrix(:,2);

J = 50;

delta_T = pi/20; %value of phase

omega = 30e-6;

freq = delta_T/omega/(2*pi);

J_z = Spin_Sz(J);

J_x = Spin_Sx(J);

J_y = Spin_Sy(J);

func = 1i*(J_z)^2/2;

CSS_ini_vec = zeros(2*J+1,1); %define initial CSS vector

CSS_ini_vec(2*J + 1) = 1;

CSS_first_pulse_vec = expm(-1i*(pi/2)*J_x)*CSS_ini_vec;

mu_opt = mu_derived(198);

alpha_opt = alpha_derived(198);

Squeezing_pulse_vec = expm(-mu_opt*func)*CSS_first_pulse_vec;
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rotation_pulse_vec = expm(-1i*(alpha_opt)*J_y)*Squeezing_pulse_vec;

darkzone1_vec = expm(-1i*(delta_T/2)*J_z)*rotation_pulse_vec;

pi_pulse_vec = expm(-1i*(pi)*J_x)*darkzone1_vec;

darkzone2_vec = expm(-1i*(-delta_T/2)*J_z)*pi_pulse_vec;

unrotation_pulse_vec = expm(-1i*(alpha_opt)*J_y)*darkzone2_vec;

Unsqueezing_pulse_vec = expm(mu_opt*func)*unrotation_pulse_vec;

last_pulse_vec = expm(-1i*(pi/2)*J_x)*Unsqueezing_pulse_vec;

[theta_prime,phi_prime] = meshgrid(0:pi/300:pi, 0:2*pi/300:2*pi);

x = sin(theta_prime).*cos(phi_prime);

y = sin(theta_prime).*sin(phi_prime);

z = cos(theta_prime);

tau_prime = tan(theta_prime/2).*exp(-1i*phi_prime);

dummy = 0;

test_vec = last_pulse_vec; % Vector whose QPD we want to plot

State_ar = zeros(2*J+1,1);

for ctr_ini = -J:1:J

var_prime = sqrt(nchoosek(2*J,ctr_ini+J))

.*(tau_prime).^(ctr_ini+J)./(1+(abs(tau_prime)).^2).^J;

dummy = dummy+(test_vec(ctr_ini+J+1).*var_prime);
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State_ar(ctr_ini+J+1) = ctr_ini;

end

% figure(2)

s = surf(x,y,z,(abs(dummy)).^2);

shading interp; axis off;

hold on

ax = gca;

colormap(jet)

view(180, 0)

xlabel('X')

ylabel('Y')

zlabel('Z')
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