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ABSTRACT 

Investigation of cascade transitions in Rubidium for all-optical  

modulators, switches and polarization controllers 
 

All-optical modulation and switching are important for optical communication and 

quantum information processing. Conventional techniques of non-linear optics typically 

require relatively high power, and are not well suited for these applications. Using a 

tapered nano fiber (TNF) embedded in Rb vapor, we observed non-linear optical 

interactions at few nW of power. Design and experimental issues related to the 

fabrication and deployment of TNF are discussed. High-speed operation in another 

requirement of all-optical networks. It is well-known that the presence of buffer gas (such 

as Helium or Ethane) in atomic vapor causes rapid spin-relaxation between the J=3/2 and 

J=1/2 states and increased absorption cross-section. In this work, we employ cascade 

transitions in Rubidium to take advantage of this to develop high-speed all-optical 

modulators. Under similar conditions, a 100-fold increase in the bandwidth was observed 

with the possibility of increasing it further by using a higher optical field strength. 

Together, with the TNF technology, it has the potential to be used for developing ultra-

low power high-speed all-optical modulators and switches. 

Polarimetric or Stokesmetric Imaging (SI) technique allows us to distinguish 

objects with similar reflectivity but different polarimetric features. A conventional SI 
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system consists of a quarter wave plate (QWP) and a linear polarizer (LP), and requires 

the QWP to be inserted and removed between various readings. Consequently, the speed 

of the system is greatly limited, which hinders it from being integrated into a real-time 

system. In this work, we investigated the suitability of a cascade transitions in Rubidium 

(Rb) for developing optically controlled waveplates and polarizers, which would be 

capable of functioning at much higher speeds, for use in an SI system. These effects are 

based on selection rules and quantum interference phenomenon between various Zeeman 

sub-levels in Rb. Both theoretical and experimental results are presented.  

 

Finally, we also introduce a novel algorithm for numerical evaluation of the steady-

state solution and the time-dependent evolution of an arbitrarily large quantum system, 

where symbolic computations may be too slow or memory intensive and consequently 

impractical. Use of parallel computing techniques enables extremely efficient and high-

speed computation. The algorithm was used extensively employed in simulations of the 

systems investigated in this work. 
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CHAPTER 1 BACKGROUND 

 

An all-optical switch is one that allows one beam of light, typically called the probe, to be 

controlled by another, typically called the switching beam. For some types of switches, 

the presence of this switching beam may control whether or not the probe is present at the 

output. All-optical switches have far reaching applications in both quantum and classical 

information processing1, 2,3,4 

All-optical switches may be used in classical communication. For long distance 

communication most signals may be carried in the form of light guided by optical fiber. 

This method is more efficient than sending signals electronically over long distances 

since the signal experiences less attenuation over long distances than electronic signals 

over standard transmission lines. Currently, however, switching within the network must 

take place electronically. Typically light brought by fibers needs to be converted to an 

electronic signal by optical to electronic transducers, processed electronically, and then 

converted back to an optical signal. An efficient all-optical switch, however, could 

eliminate the need for fiber to copper connections by being able to process the signal 

while in optical form.  

In principle, such a switch could work at a single photon level, allowing direct control of 

one single photon pulse by another. This could be useful to the field of quantum 

information processing. This switch could serve as a way of producing entangled states, 

achieving non-demolition measurements, or implementing an optical logic gate, which in 

turn may have direct uses in the field of quantum computation. More immediately, a low 
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light level switch could play an important role in the field of classical information 

processing by allowing the switching of different individual channels in a many channel 

system, at a fraction of the input optical power required by current all-optical switches.  

Most current all-optical switches depend on intense interactions between light and 

nonlinear media which may be extremely inefficient. The need for high switching beam 

powers has prevented all-optical switching from being very useful in most applications. 

Our research has been primarily aimed at increasing the strength of interactions between 

light and matter to produce more efficient switches using Tapered Nano Fibers. We have 

also investigated a high speed modulator by employing buffer gas induced spin relaxation 

in a cascade system in Rubidium. 

 

It is well documented that in many situations of interest, features indiscernible via 

conventional imaging become highly resolved under Stokesmetric Imaging (SI)5,6,7. In a 

typical SI scenario, a target is illuminated by fully or partially polarized light. The light 

scattered or reflected by the target is then analyzed using a Stokesmeter, which 

determines the magnitude of each of the four Stokes parameter components. 

Stokesmeters, in their simplest form, are comprised of a combination of polarizers and 

wave-plates with different orientations. A key problem with the existing SI systems is 

that the polarizers and waveplates cannot be turned on or off or reoriented rapidly. The 

free space versions of the optically controlled polarizers and waveplates that are 

described in this work have the potential to operate at speeds of few MHz (limited by the 
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decay rate of the intermediate level) and thus hold the promise of making very high 

speed SI practical. 

 

This thesis will be divided up in the following way. First I will review the theory of relevant 

atom-field interactions, including two level systems and pump probe theory. In chapter 2, I 

will talk about the design of the TNF system and work done using the TNF. In Chapter 3, I 

will then present some details about the cascade system and the modulator implemented. 

Chapter 4 talks about the high-speed modulator schematic and experimental results will be 

presented. Chapter 5 and 6 are dedicated to optically controlled polarizer and waveplate 

respectively. They will also talk in some detail about the computational model that was 

adopted for modeling the system. In chapter 7, we present details about a novel 

computational algorithm that allows us to perform numerical computations of arbitrarily 

large quantum systems in a highly efficient manner. Finally, in chapter 8, I will present a 

summary of the thesis. 

 

Two Level Systems 

 We review briefly, here, the quantum mechanical models of absorption and index 

of refraction for two and three level atomic systems. First we will discuss two level 

interactions. We will assume that, if the atom has any other energy levels, they are not 

coupled, and are unavailable to the system. We are assuming, in other words, that the 

electric field which drives the transition between the two levels we will be treating here is 

far off resonance for the other transitions, and that no other fields are present. We first 

solve the Schrödinger equation to illustrate the behavior of this kind of system, and then 
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show how the index of refraction and absorption of the material may be calculated 

from the atomic wavefunctions. Finally we will generalize the approach to derive the 

index profiles for multi-level systems, in particular three level cascade systems. Consider, 

then, an electron in the energy well of an atom, initially in its ground state. 

Equation 1.1:    1, 0x t x    

 

It interacts with an electromagnetic field of the form 

Equation 1.2:      0
ˆ, cos cosE x t E x kz t    

 

 

Figure 1.1: Energy level diagram for a two level system 

 

In the presence of the field, the electron will have energy 

Equation 1.3:  
2

0 1 0 1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ,
2

p
H H H where H V r H p E

m
       

The dipole moment of the electron is given by its charge times its distance from the 

nucleus. This expression of the energy assumes that the wavelength of the light is long 

1

2
2

1




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enough that the field is, at any time, approximately constant over the region of the 

wavefunction for the electron. Now we plug in: 

Equation 1.4:      0 1 0 0electron lies along x axis so that ˆˆ ˆ ˆ, cos cosp x H E x kz t      

(Note that the carets are intended to indicate operators, not unit vectors.) Since we have 

assumed that only two levels are available, we can write the wavefunction of the electron 

at any time as a superposition of those two levels. 

Equation 1.5:          1 1 2 2 1 1 2 2, ,x t c t c t where c t c t           

The Schrödinger equation for the system is then: 

Equation 1.6: 
 
 

 
 

1 1 2 1
1 1

2 2
1 2 2 2

ˆ ˆ

ˆ ˆ

H Hc t c td
i

c t c tdt H H

   

   

 
   

    
 

   
 

 

We know that 

Equation 1.7: 0
ˆ

m n m mnH E    

where mE is the energy of the mth level. We then write 

Equation 1.8:         ( )0 0
1 0 0

ˆ ˆ ˆ ˆcos cos
2

i ti tp E
H p E x kz t x e e f t x

   
 

       

Where we have made use of our assumption that the field is approximately constant over 

the spatial extent of the wavefunction, at any given time. Thus: 

Equation 1.9:  1
ˆ ˆ

m n m mH f t x     
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Since 1  and 2  are eigenfunctions of the unperturbed, spherically symmetric 

Hamiltonian, we know from symmetry that 

Equation 1.10: 
1 1 2 2

ˆ ˆ 0x x      

We will define 

Equation 1.11: 
12 1 2 2 1

ˆ ˆ *x x x      

We assume this quantity to be real and non-zero. We further define the “Rabi frequency” 

as 

Equation 1.12: 0 0 12
0

d E x
   

We now have 

Equation 1.13: 

    
    

1 0

0 2

ˆ

i t i t

i t i t

e e
H

e e

   

   





  

  

  
 
 
   

 

 

We now make the “rotating wave approximation” 8, ignoring the complex conjugate 

terms since they do not strongly couple the levels. 

Equation 1.14: 

 

 

0
1

0
2

2

2

i t

i t

e

H

e

 

 





 



 
 

  
 

  

 

 

It is this expression for the Hamiltonian that we plug into the Schrödinger equation given 

as Equation 1.6. In order to solve this equation, we will make some changes of variable. 
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The goal here is find an effective Hamiltonian which is time independent. First, we 

introduce a “Q” matrix, where 

Equation 1.15: 
 

 

1 1

2 2

1
0ˆ ˆ ˆ *

0

i t

i t

e
Q such that Q Q

e

 

 







 
  

  

 

We note that  

Equation 1.16: ˆ ˆˆQ iMQ  

We now act on both sides of Equation 1.6 with this Q matrix.  

Equation 1.17: ˆ ˆ ˆ
d i

Q QH
dt


   

We take the derivative and insert an identity operator 1ˆ ˆÎ Q Q : 

Equation 1.18: 
 

1

ˆ
ˆ ˆ ˆ ˆˆ

d Q i
Q QHQ Q

dt


     

We now define two more new variables: 

Equation 1.19: 
 

 
1 1

2

ˆ ˆ ˆˆ ˆ
c t

Q and H QHQ
c t

  
 

   
 

 

Equation 1.18 now becomes: 

Equation 1.20: ˆ ˆ ˆ ˆ
d i i

H iM H M
dt


  

 
     
 

 

We can now write a new equation that strongly resembles the original Schrödinger 

equation: 

Equation 1.21: 
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      

     

1 1 2 2

1 1 2 2

0
1 1

0
2 2

2ˆ ˆ

2

i t ti t i

i t ti t i

d
i H

dt

e e

where H H M

e e

    

    




 

 

      

        



 
 

    
 

  

 

However, if we now choose: 

Equation 1.22: 1 2     

We eliminate the time dependence. We can further choose, arbitrarily 

Equation 1.23: 1 1 1 2, 0,        

This simplifies our effective Hamiltonian to 

Equation 1.24:  
0

1 2

0

0
2

2

H where    



 
 

   
 

  

 

We also have 

Equation 1.25: 
 

   

 
 

1

1

1 1

22

ˆ
i t

i t i

c t e c t
Q

c tc t e



  
 

 

   
     

    

 

Our Schrödinger equation now requires that we take the time derivative of  . 

Equation 1.26: 1

2

d c
i i

dt c

  
  

 
 

We can set this equal to the result of acting upon this wavefunction with the effective 

Hamiltonian: 



 15 

Equation 1.27: 

0
2

0
1 2

0
2

2

c

H

c c





 
 

  
 

  

 

Setting Equation 1.26 and Equation 1.27 equal, we find  

Equation 1.28: 0 0
1 2 2 1 2,

2 2
c i c c i c i c

 
      

Taking the derivative of the 1c equation gives us 

Equation 1.29: 

2

0 0 0 0 0 0
1 2 1 2 1 1 1 1

0

2

2 2 2 2 2 4

i
c i c i i c i c i i c i c c i c  

         
                

    
 

This has the form of a simple harmonic oscillator equation, with the general solution: 

Equation 1.30:  1

1

2

A Bi t i tc t Ae Be       

Below, we plug this into the equation and solve for the undetermined constants. 

Equation 1.31: 

 

   

 

2 2

0 0
1 1

2 2

1

2 2
2 20 0

;
4 4 2 2

1

2

&
4 4

A B A B

A B

i t i t i t i t

A B

i t i t

A B

A A B B

c t Ae Be i c t Ae Be

c t Ae Be




 

     

  

 
             

     

 
          

 

The result is 



 16 

Equation 1.32:    2 2 2 2

0 02, 2A B               

If we plug these in and assume the atom is initially in the ground state so that 

Equation 1.33:             0 0 2, 0 0 0, 0 0 1/ 2A B A B A B        

We get the following time evolution for the system: 

Equation 1.34:  
     

2 2 2 2
0 02 2

2 2

1 0

1
cos 2

2

i t i t
i tc t e e e t

   
 

      
     

 
 

The excited state amplitude obeys the same equation (as we see by taking the derivative 

of the 2c expression in Equation 1.1): 

Equation 1.35:  0 0
2 2 2

2 2
c i i c i c

  
    

 
 

The initial conditions tell us, then, that 

Equation 1.36:  
     

2 2 2 2
0 02 2

2 2

2 0

1
sin 2

2

i t i t
i tc t e e i e t

   
 

      
     

 
 

Equation 1.34 and Equation 1.36 give the solution for the behavior of a two level system 

under resonant excitation in the absence of decay. They apply in a frame of reference that 

is said to “rotate with the field” 8 so that the Hamiltonian is time independent. We can 

recover the behavior in the non-rotating frame by solving Equation 1.25 for  . 

Inverting the transformation gives us 
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Equation 1.37: 
 

   

 
 

1

1

1 11

22

ˆ
i t

i t i

c t e c t
Q

c tc t e



  
 





  

   
     

    

 

 We have solved the system. The phase of the ground and excited state coefficients 

oscillate rapidly, but the magnitude of those coefficients changes sinusoidally with a 

frequency 2 2

0 2   . This is known as the effective Rabi frequency. It is the rate at 

which the population of the ground state oscillates in the presence of a driving field. 

  This solution is, however, physically unrealistic for optical excitation. This model 

treats the field classically, and does not include the coupling of the atom to the vacuum 

fluctuations in the electromagnetic field which cause spontaneous decay in real atoms. 

The decay rate is proportional to the cube of the field energy difference between two 

states, and is on the scale of tens of nanoseconds for optically coupled transitions9. 

Strictly, the best way to include this effect is to quantize the field and analyze the system 

in a fully quantum, rather than semi-classical, way. However, it is possible to include the 

effect in our semi-classical calculations using an empirical “decay matrix,” and that is the 

approach we will take here. 

 In order to include decay empirically, however, we need to re-write the problem in 

the density matrix formalism. This formalism is described in greater detail in reference 

8.and 9. It allows us to consider the behavior of a statistical sample of atoms, rather than 

calculating the behavior of each individually, and to include random, spontaneous decay 

statistically. The density matrix is defined by 
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Equation 1.38: ˆ
m m m

m

W      

 The sum is over all atomic states populated by atoms in the sample, and the weight 

factor indicates what fraction of the atoms in the collection are in each state.   

 The diagonal elements of this matrix 
2

jj m j

m

W c   represent the average 

populations of the energy levels. The off diagonal elements *

jk m j k

m

W c c   represent the 

average phase of superpositions of the two states labeled by the indices. Those off 

diagonal elements will be zero if all atoms in the collection are in an eigenstate, or if they 

are all in superpositions but all with different phases.  

 In this formalism, the equation of motion is written: 

Equation 1.39:      
  decay
ˆˆ ˆ ˆ,

i
H  

 The first term is simply the Schrödinger equation restated in the new notation8. 

The second term is empirical, and accounts for the statistical nature of decay. 

 To solve this equation of motion it is useful to work again in the rotated frame, in 

which the Hamiltonian is time-independent. To find the density matrix in the rotated 

frame, we must simply performing the averaging over the   instead of   and we find 

Equation 1.40:   
11 12 1

21 22

ˆ ˆ ˆˆ ,m m m m m

m

W Q Q where Q
 

     
 

 
    

 
  

So that 
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Equation 1.41:    

It can be shown8 that the equation of motion (the Optical Bloch Equation) is now 

 

Equation 1.42:        decay,
i

H  

 

The decay matrix is determined phenomenologically to be8: 

Equation 1.43: 
22 21

12 22

2

2

decay

 



 

 
  

  
  

  

 

 The presence of decay means the system now eventually settles into a steady state 

motion which does not depend on its initial condition. The system indeed resembles the 

damped, driven harmonic oscillator we used for our classical model, with the decay 

playing the role of the damping force. All motions which are not caused by the driving 

force will eventually be damped out. So the oscillation that we found at 2 2

0 2    

represents only a transient behavior. These oscillations are damped by the interaction 

with vacuum fluctuations, and on a timescale determined by the inverse of  , the 

amplitude of the oscillations decays. The steady state is time dependent in that the motion 

of the electron follows that of the driving field, but it is time-independent in the rotating 

frame in which the field is constant. 

 The steady state is that which satisfies the condition: 

Equation 1.44:         decay, 0
i

H  
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In general,  it is more convenient to solve this numerically (or using a symbolic 

equation solver such as Wolfram’s Mathematica) than by hand. The solution in this case 

is: 

Equation 1.45:  

2

11 122 2 2 2 2 2

2

21 222 2 2 2 2 2

( 2 )
1 , ,

2 4 2 4

( 2 )
,

2 4 2 4

i i

i i


 

 


 

 

   
  

       

    
 

       

 

 

As we mentioned above, the off diagonal elements tell us about the average number of 

atoms in superposition states, and whether or not those superpositions are generally in 

phase. The relevance of this phase for dispersion calculations is well illustrated by the 

solutions to, for example, the infinite square well: 

 
 

Figure 1.1: A) Probability distributions for particles in ground state and first excited state 

of infinite square well. B) Probability distributions for superpositions of ground and first 

excited states: two different phases. 

 

 The position of the electron, and thus the dipole moment of the atom, changes with 

the phase of the superpositions. Eigenstates of the unperturbed Hamiltonian are 

symmetric and thus atoms in these have zero dipole moment. If the sample includes 

A 

B 
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atoms in superposition states, but the phase of the superposition states is random, the 

average dipole moment, which gives the polarization of the material, will again be zero. 

 If, on the other hand, the atoms, following the field, are all stretched into the same 

superposition state, these off diagonal components will not be zero, and their values will 

tell us about the phase difference between the motion of the atomic dipole and that of the 

field. Recall that the index of refraction is determined by the difference in phase between 

the field radiated by the atomic dipoles in the medium and the driving field. The phase of 

the radiated field is, in general, 90 degrees out of phase with the motion of the dipoles 

themselvesError! Bookmark not defined.. To calculate the index of refraction and the absorption 

coefficient explicitly, we must make use of a theorem provable from the density matrix 

formalism:  

Equation 1.46: 0 21 12
ˆ ˆ( ) ( )x Tr x x      

 This applies to any operator, not the just the position operator. However, it is the 

average position of the electron with which we are primarily concerned. We have already 

seen, in the previous chapter, how knowing the average position of the electrons relative 

to their nuclei, and hence the average dipole moment, allows us to calculate the 

polarization response of the material, and how this response function can be plugged into 

the wave equation to allow us to calculate the index of refraction and the absorption 

coefficient. 

 We expect this value for the average position to be a real number with a sinusoidal 

time dependence, matching the time dependence of the driving field. However, because it 
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will be out of phase with the driving field, we cannot express this number as a scalar 

multiple of the driving field unless we use phasor notation. We “complexify” x by 

dropping the complex conjugate, so that: 

Equation 1.47: 0 21
ˆ ( )

C
x x   

 The phase of this complex number tells us the relative phase between the motion 

of the field and that of the electron. 

 The dipole moment of an individual atom in the rotating frame is then 0 21ex  . If  

this is simply a positive scalar multiple of  i  (keeping in mind that e , the charge on the 

electron, is negative), it means the phasor is of the form  0 21 / 2ex Exp i  , and the dipole 

motion is / 2  radians (90 degrees) out of phase with the driving field. The radiated field 

is thus 180 degrees out of phase with the driving field. That this is the case when 0 

can be seen from Equation 1.45. On resonance, then, the radiated field adds destructively 

with the driving field.  This shows qualitatively that an imaginary 0 21ex   is associated 

with absorption. If 0 21ex   were proportional to i , the radiated field would then add in 

phase with the driving field, and the result would be gain, which is mathematically 

equivalent to negative absorption.  If 0 21ex   is real, then the dipole motion will itself be in 

phase with the driving field, meaning the radiated field is 90 degrees out of phase with it.  

The net field produced lags behind the original driving field by an amount that depends 

on the relative strengths of the original field and the reradiated field.  This shows 

qualitatively that the real part of 21   is associated with index of refraction.  
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 To demonstrate these effects mathematically, we need only calculate the 

polarization:  

Equation 1.48: 0 21 0 0( ) i t

C C C CC
P Np Ne x Nex E where E E e         

The subscript “C” is intended to indicate that these are complex phasors and not real 

quantities. (In the previous chapter we used a tilde for this purpose, however since we 

have used that same notation already in this chapter to indicate quantities which are 

expressed in the rotating frame, we must change our convention slightly.) The real 

quantities are given by the sum of the phasor with its complex conjugate. 

 We have already determined 21 , so Equation 1.48 allows us to calculate the 

average dipole moment of the ensemble, which tells us the polarization and thus, the 

susceptibility of the medium as 

Equation 1.49:  0 12
0

0

( ) i t

C

C

Nex
where E E e

E





   

 From this point on, the calculation of the index is exactly the same as it is in the 

classical case. Therefore, we conclude that: 

Equation 1.50:   0 21

0

( )
Re 1 Re 1R

p C

Nexcc
n

v E




 

 
        

 
 

Therefore: 

Equation 1.51: 
0 2 2 2

0

( 2 )
Re

1 2 4
1

2 C

i i
Nex

n
E







    
        
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We need only specify our driving field strength and frequency (which determine 

, ,CE and  ) and the decay rate and resonant frequency of our atomic energy levels in 

order to completely determine the index for a two level system. 

Similarly, the absorption is given by: 

Equation 1.52:    0 21
0 0 0 0

0

( )
2 2Im 1 2Im 1L I

C

Nex

E


        



  
                

 

Therefore:  

Equation 1.53: 
0 2 2 2

0 0

0

( 2 )
( )

1 2 42 1 Im
2

L

C

i i
Nex

E



   


      
         
   

  

 

Plotting the expression for the index gives us:  

 

 

Figure 1.2: Lineshape of index of refraction vs. frequency 

 derived using two-level quantum mechanical  model. 

 

For the absorption coefficient, we get: 

 

n=c/v 

 

 
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Figure 1.3: Lineshape of absorption vs. frequency 

 derived using two-level quantum mechanical model. 

 

These lineshapes clearly agree with the results derived using the classical model. This is 

the same approach we will now use (with less derivation) to model the behavior of three 

level systems. 

 

             

PUMP PROBE THEORY 

 

In the following section I will discuss several different types of systems which consist of 

two beams (a pump and a probe), and either two or three atomic levels. Within pump-

probe systems, the pump beam is used to affect the interaction of the probe with an 

atomic medium. We will investigate how to use a pump to induce probe transparency 

within the medium, and discuss the switching applications of these systems. 

The systems we will consider are the following. First we will look at a two level co- and 

counter-propagating pump-probe system with the pump and probe having the same 

polarization. Next we will investigate three level counter- propagting pump-probe 

systems, also of the same polarization, and see how these systems lead to V-type EIT. We 

will then see how linearly cross polarized co- and counter-propagating pump and probe 

behave in a two level atom. Lastly we will explore how the cross polarized co- and 

counter-propagating pump and probe behave in a three level atom. 

  

λ 
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 Co-propagating Saturated Absorption 

One method for inducing transparency in a system is by saturation. The simplest example 

of this is that of an overlapped co-propagating pump and probe traveling through an 

atomic vapor. Consider this for a two level system in the following way. First note that if 

a resonant weak probe (Ωprobe <<Γ) is sent through a collection of two level atoms, the 

output probe intensity would decrease as photons from the field are absorbed and 

fluoresced in random directions. 

 

 

 

 

Figure 1.4 Absorption of a probe in a two level system 

Next, assume a resonant strong pump is overlapped and co-propagating with the weak 

probe and sent through the system. If the pump is sufficiently strong (Ωpump>>Γ), the 

system will be come saturated, having equal number of atoms in the ground state and 

excited state. At this point, atoms in the system can no longer absorb photons, and the 

medium will be transparent to the weak probe. 
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Figure 1.5 Saturation induced transparency of probe in two level system 

Counter-propagating Saturated Absorption 

Doppler free spectroscopy, otherwise known as counter-propagating saturated absorption, 

allows one to resolve hyperfine levels in a Doppler broadened atomic medium. In an 

atomic vapor atoms have a velocity spread corresponding to the Boltzmann energy 

distribution. If a scanning beam is sent an atomic vapor to probe atomic resonance, a 

broad resonance profile on the order of a GHz would be measured even though the actual 

linewidth of Rubidium is on the order of MHz. The profile measured can be thought of as 

a convolution or a weighted averaged of the Doppler free absorption profile with the 

Boltzman distribution as shown in the diagram below. 

 

Figure 1.6 Illustration of Doppler Broadening of Linear Absorption 
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This linear absorption profile is shown below for the F=3, D2 transitions in Rb85. 

 

 

Figure 1.7 Intensity vs frequency trace of Doppler Broadened  

linear absorption for Rb 85, 5S1/ 2 F = 3 transtions 

 

In order to resolve the hyper fine energy levels, we can send a counter- propagating pump 

of the same frequency, derived from the same laser, through the atomic vapor. Note that 

with a counter-propagating pump and probe, the zero velocity atoms are the only velocity 

group which will see the probe and pump at the same frequency. For example, if, as the 

probe frequency is scanned, a velocity group other than the zero velocity group 

experiences a resonant probe, the pump will either be red or blue shifted from resonance 

depending on the direction of motion. If the pump is strong enough to saturate the atomic 

transition at resonance condition, these zero velocity atoms will be transparent to the 

probe field, even though other atoms within the Doppler profile will still absorb the 
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probe, as it is scanned through their Doppler-shifted resonances. 

We note that for a co-propagating pump and probe as discussed above, all velocity 

groups see the two fields at the same frequency. Therefore the behavior is identical to that 

of the counter-propagating saturated absorption at the zero velocity group. 

The result for counter-propagating beams in a multilevel system is shown below for the 

F=3, D2 transition in Rb85, having three hyperfine transitions, and three cross-over 

peaks, which will be discussed below. 

 

 

Figure 1.8 Intensity vs frequency trace of saturated absorption in Rb85, 5S1/ 2 F = 3 

showing zero velocity peaks and V-type EIT cross over peaks (see below for details) 

 

Three Level Counter-Propagating Pump-Probe System of the same Polarization (V-type 

EIT) 

   Note that even though there are only three hyperfine transitions, six peaks are present. 

These extra peaks are known as cross-over peaks. This induced transparency is caused by 
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a different mechanism than saturation discussed above. When the laser is scanned to a 

frequency half way between two resonant frequencies, the velocity group at Δω/2k 

experiences a probe Doppler shifted towards resonance for one transition and the pump 

oppositely Doppler shifted towards resonance for the other transition. This is shown in 

the diagram below for a cross-over peak located half way between F = 3→ F=' 2 and F = 

3→ F=' 3. 

 

 

Figure 1.9 This figure describes the idea behind cross over peaks 

 

We see that when the frequency is, in the lab frame, half way between the two atomic 

transitions, the velocity group located at v = ± Δω/2k
 
experiences the pump and probe 

beams as resonant on two different transitions. In the frame of the atom, this can be 
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viewed as a three level V-type EIT system.10 

   The stronger pump field imparts a light shift on the ground state, causing the system to 

be transparent to the probe. This behavior can be understood in the frame of the atom by 

noting that when a strong field is applied to the effective pump leg, the atom-field 

interaction energy shifts the ground state eigen-energy to that of the dressed state. This 

results in the beam which was once resonant for the probe leg becoming off resonant by 

an amount equal to the light shift. If the value of the light shift is larger than Γ, the probe 

will be transmitted. We find that when a strong pump is applied, a cross-over peak is 

always present in the saturated absorption profile between two resonance peaks. This 

light shift induced transparency may be found in any multi-level atom. 

 

Figure 1.10 Illustration of how light shifts can induce probe transparency 

 

Three Level Linearly Crossed Polarized Co- and Counter- Propagating Pump-Probe 

System 

   If we consider the interaction of the linearly cross polarized light with a multilevel 

system, however, we find that another mechanism for inducing transparency is present. 

We find that in a multilevel atom the behavior of the density matrix elements is not 

affected by the relative phases of the fields. This may be seen in the following way. For 
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the three level V-type system below, the m =→0 +m= 1 transition interacts with σ 
+ 

light, whereas the m =→0 −m= 1 transition interacts with σ 
− 

light. 

 

Figure 1.11 Three level system coupled by σ 
+ 

and σ 
– 

light 

 

If we make a transformation to another 3 level basis for which 

 

We get the three level system shown below, where now, the states are coupled by linearly 

polarized light. This is comparable to the V-type EIT situation discussed above, however, 

in this case the excited states are degenerate in energy. 
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Figure 1.12 Three level system coupled by || and ⊥ light 

 

Note that this system is not affected by the relative phase differences between the two 

beams. If a weak ⊥ - polarized probe is present in this multilevel scheme, it will be 

absorbed by the |+> state. If a || - polarized pump is also present, regardless of the relative 

phase between the two, it will induce a light shift on the ground state, as shown below. 

Similar to the V-type EIT case discussed above, this will cause the medium to be 

transparent to the probe. 
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Figure 1.13 This illustration shows probe absorption when the pump field is off, and light 

shift induced probe transition when the pump field is switched on 

 

   Since this process is unaffected by phase differences in the pump and probe it can be 

the dominant cause for induced probe transparency regardless of such factors such as 

mirror vibrations, and variations in optical path differences between the two beams. 

   Note that this is identical to the behavior we would observe for zero velocity group 

atoms in a counter-propagating saturated absorption experiment where the beams were 

cross-polarized. 

   Counter-propagating saturated absorption experiments also have cross- over peaks, as 

discussed above for the case of matching polarization. For the velocity group which 

experiences a cross-polarized pump and probe as resonant for two different non-

degenerate levels, we can use a three level model similar to the cross-polarized model 

above. The energy diagram for this is shown below. 
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Figure 1.14 Illustration of three level system corresponding to linearly cross polarized V-

type system 

Again the ground state can be light-shifted by the stronger pump beam, creating the 

transparency for the weaker probe beam. 
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CHAPTER 2  TAPERED NANO FIBER – THOERY AND EXPERIMENTS 

 

   To minimize the energy cost per switching event we would like the switching beam and 

probe to be efficient at low optical powers. To improve switching efficiency we must 

increase the interaction strength between the atoms and our beams. One way to 

accomplish this is to increase the number of atoms that interact with our beams. The other 

way to increase interaction strength is to increase the electric field strength per photon by 

the use of tapered nano- fibers (TNF), for example. An advantage of using TNF over 

optical resonators is that switching may be implemented directly in optical fiber 

 TNF Theory 

The TNF consists of standard single mode silica optical fiber for which a small section, 

approximately 3 cm, is heated and pulled so that the diameter in this region is reduced to 

approximately 500 nm. The mode guided by the fiber will adiabatically decrease in mode 

area as it travels down the tapered region, increasing in intensity to as much as 60,000 

times the original intensity. (With this type of enhancement, saturation of a stationary Rb 

atom can be achieved at approximately 20 pW.) The fiber will also convert the original 

mode from one which is guided by the core/cladding interface to one which is guided by 

the cladding/environment interface. This results in an evanescent mode which leaks into 

the environment. When inserted into either atomic vapor or cold atoms, this evanescent 

field can interact directly with the atoms. This is illustrated below 
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Figure 2.1 This figure illustrates a tapered nano-fiber (TNF). 

 

   Numerical simulations of the TNF yield the data shown below and are also reported in 

other works. 11,12,13 The first plot shows the fraction of energy located in the evanescent 

field and mode volume as a function of fiber diameter. We find that the minimum mode 

area, 0.2 μm2, is obtained for a fiber diameter of approximately 0.45 μm. As the diameter 

is reduced further, the mode quickly delocalizes causing a rise in mode area. At this 

diameter, we find that that fraction of energy outside the fiber corresponds to 

approximately 10%. 
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Figure 2.2 fraction of mode energy outside fiber (black) and Mode are (blue) versus the 

fiber diameter 

Atoms with velocities typically found in hot vapor can pass through the small mode area 

of the TNF in a few nanoseconds. This is much shorter than the natural decay time of the 

atom (approximately 25 ns) and leads to an effect known as transit time broadening. We 

can understand transit time broadening by picturing the field from the reference frame of 

the moving atom. As the atom moves through the field, it experiences a temporally 

varying field with a shape dependent on the transverse optical mode field. This pulse has 

a spread of frequency components determined by its Fourier transform. To observe the 

broadening of atomic linewidth, one may scan the laser supplying the TNF field. As the 

laser scans through frequencies which are nonresonant in the lab frame, the pulse seen by 

the atom may still have a component at the resonant frequency and consequently still be 

partially absorbed. Furthermore, due to energy conservation, the total power of the pulse 

must be distributed among the frequency components dictated by its Fourier transform. 

For this reason, when the laser is tuned to resonance, the power contained in the 

component of the field at the resonant frequency will be less for an atom moving through 
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the field than for a stationary atom. This results in higher saturation powers for atomic 

vapor. Note that effects due to transit time broadening are negligible in cold atoms. The 

figure below shows calculated transit time linewidth and saturation powers as a function 

of taper diameter. 

 

Figure 2.3 Transit time linewidth (black) and Saturation power (blue) versus fiber diameter 

 

Taper Fabrication 

The tapered fibers are fabricated from Thorlabs 780HP single mode (at 780 nm) fiber. 

The first step is to strip a small section of acrylic coating off of the center of a fiber. The 

fiber is then place into two Newport magnetic fiber clips, which are firmly attached to 

two motor driven pulling stages. The stripped section is centered between the two pulling 

stages, directly over a hydrogen oxygen torch which is also fixed to a motion control 

stage. Using a program in MATLAB, the motion of the torch and pulling stages can be 
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controlled directly by the computer. Once the torch is lit and the program is initiated, 

the two pulling stages move apart from one another as the torch moves back and forth 

under the stripped section. As the pulling stages move further apart from one another, the 

glass of the heated fiber melts and the fiber adiabatically reduces in diameter. This 

pulling continues until the diameter at the center of the fiber is approximately 500 nm. 

During the tapering process, laser light may be coupled into the fiber, and a photo 

detector can be used to measure the transmission efficiency as the fiber is pulled. Several 

factors can influence the optical transmission such as flame size, pulling speed, and torch 

speed. Also, since the evanescent mode is guided in air outside the fiber, any dust that 

falls on the tapered section will dramatically reduce transmission. A high magnification 

camera is also used to watch the pulling process. When the fiber diameter is comparable 

to the wavelength of light, bands of color may be seen on the fiber due to interference 

effects, similar to those seen on oil droplets. The variation of color over the length of the 

tapered section corresponds to variation in fiber diameter. 

 

Figure 2.4 TNF fabrication apparatus 

   Below is a picture from a Scanning Electron Microscope of the tapered section of a 

TNF. Since there was no vibration isolation, the picture shows oscillations in the 
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suspended fiber due to the mechanical pump used to evacuate the SEM. Nevertheless, 

we see that the diameter is approximately 400 nm. 

 

Figure 2.5 Image of tapered fiber taken from an SEM 

 

Installation in Vapor Cell 

Switching in TNF has been proposed in atomic vapor as well as cold atoms. A separate 

apparatus was necessary for each method. The system for switching in vapor is illustrated 

below. 
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Figure 2.6 Rubidium vapor cell for TNF experiment 

   The vapor cell consists of two sections, one that houses the fiber and one that contains a 

Rb source. These sections are separated by a valve, and are continuously pumped by a 

mechanical pump to a pressure of 10 mT. The fiber is first attached to a custom made 

copper chuck using UV curable epoxy. The chuck is then inserted into the vapor cell 

from the top. Custom made Teflon ferrules 14 mounted into Swagelok connectors are 

drilled through the center with a number 80 drill bit so that the fiber slips through. When 

the Swagelok connector is tightened, the ferrules are forced down and compressed to 

form a tight seal around the input and output of the fiber in order to keep air out of the 

system.  

To vaporize the Rb, the reservoir holding the Rb is heated to a temperature of 150 °C . In 

order to minimize the amount of Rb condensing on the cell and the fiber both are heated 

to about 100 °C. If Rb condenses on the fiber, transmission through the fiber will 

decrease. Light may be coupled into the fiber, and monitored at the output with an APD. 
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One experiment, discussed later, employs cross-polarized counter- propagating beams 

in the fiber achieved by coupling a probe into one end of the fiber, and a pump into the 

other end. A polarizing beam splitter is used to separate the beams, and send the probe 

beam to the APD. 

Saturated Absorption in a Tapered Nanofiber 

A diagram of the experiment is shown below. 

 

Figure 2.7 Apparatus for observing V-type EIT in a TNF embedded in an Rb vapor cell 

 

   In our experimental setup [illustrated above], a TNF was inserted into a chamber 

containing hot rubidium vapor, which contained a natural mixture of Rb85 and Rb87 

isotopes. A Newport single-mode fiber at 780 nm was drawn adiabatically into a TNF 

with a waist diameter of approximately 400 nm using the ‘‘flame-brush’’ technique 

15with a hydrogen-air torch. The resulting taper profile is nearly exponential with a 1/e 

length of ~3 mm. During the adiabatic tapering process, monitoring of fiber transmission 

showed negligible loss (ranging from 1%–10%) for final taper waist diameters of 

approximately 400 nm. 
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   The TNF is mounted to a copper chuck using UV-curable epoxy and inserted into the 

vacuum chamber using a set of Teflon fiber feedthroughs, which maintain fiber 

continuity into and out of the vacuum chamber. A gate valve isolates the optical fiber 

during loading or unloading from a rubidium metal source. During experiments, the 

vacuum chamber was heated to 100 °C (to minimize Rb condensation), and Rb vapor was 

created by heating the source region to 200 °C, with the chamber pressure maintained at 5 

mTorr by a roughing pump. For these measurements, we made no attempt to prevent 

dephasing for atoms which struck the TNF. Assuming the vapor inside the chamber is at 

an average temperature of 100 °C, the atomic density is estimated to be 6×1012 atoms 

/cm3. 

   For the first set of experiments, a weak probe beam (approximately 10 nW) obtained 

from a Ti: sapphire laser was transmitted through the TNF, and the optical transmission 

was monitored with an avalanche photodiode. The frequency of the probe was scanned 

over the Doppler broadened spectrum of the D2 manifold. The graph below shows the 

transmission spectrum through the TNF (lower spectrum), and a reference Rb vapor cell 

kept at 100 °C (upper spectrum). 
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Figure 2.8 Linear absorption measured in a vapor embedded TNF (blue) and reference 

cell (black) 

 

   The dip on the left corresponds to the F =2 transitions in the D2 manifold of Rb87, 

while the dip on the right corresponds to the F =3 transitions in the same manifold of 

Rb85. Far away from resonance, the probe was found to be attenuated by about 20% due 

to a combination of losses at the input couplers and by TNF absorption. The data clearly 

show transmission dips representative of rubidium vapor absorption, with peak locations 

similar to that of the reference cell. However, the shape of the transmission dips for the 

Rb-TNF system is slightly different than that for the reference cell, which is due to both 

differences in Doppler broadening and transit time dephasing present in this experimental 

measurement.  

   A pump-probe measurement was performed, with the strong counter-propagating pump 

beam cross-polarized with respect to the probe. This measurement was performed on the 

D1 manifold in order to delineate more clearly the spectral features in the presence of 

large transit-time broadening. The figure below illustrates the probe transmission 
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spectrum (power ~1 nW) for counter- propagating pump powers of 10 nW (middle, 

green) and 30 nW (lower, red), for a TNF with a waist diameter of approximately 400 

nm. For comparison, a reference trace is also shown for a conventional vapor cell (upper, 

blue). 

 

Figure 2.9 Saturated absorption observed in TNF with a probe power of 1 nW and a 

pump power of 10 nW (green) and 30 nW (red). Also plotted is saturated absorption in a 

reference cell (blue). 

   The peaks on the left and the right correspond to self-induced transparency (SIT) for 

Rb85 atoms with zero axial velocities, corresponding to the F =3 to F’= 2 and the F= 3 

to F’= 3 hyperfine transitions, respectively. This measurement is similar to that of 

conventional saturated absorption spectroscopy, with a V-type three level EIT peak (with 

orthogonally polarized pump and probe) located at the crossover resonance location. 

   This peak is composed of V-type EIT measurements of two groups of atoms: one with 
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an axial velocity such that the probe excites the F = 3 to F’=3 transition and the pump 

excites the F= 3 to F’=2 transition, and the other with an equal but opposite axial 

velocity so that the probe excites the F = 2 to F’ =3 transition and the pump excites the F 

=3 to F’= 2 transition. The EIT signal for the TNF is readily apparent for the lower pump 

power measurement, where the peak is clearly separated from the SIT peaks. The 

amplitude of this peak is measurably greater than the background signal for both the low 

and high power spectra, even though the high power spectrum is less resolvable due to 

power broadening. 

   For the conventional vapor cell, the transparency seen at the EIT resonance is larger 

than that at the SIT peaks due to the larger number of atoms in the combined 180 MHz 

Doppler-shifted groups (there is approximately 1.5 times the number of atoms in an 

isotropic vapor cell, which arises from the width of the Doppler distribution) than the 

individual zero axial velocity groups. Furthermore, the peak widths are the power-

broadened individual hyperfine transitions (~6 MHz power broadened to ~18 MHz). 

However, for the TNF signal, there is a noticeable difference between the linewidths and 

relative amplitudes of the SIT and EIT peaks. Here, the line broadening for the lower 

(middle) power curve is due primarily to the transit-time effect. The transit-time 

broadening is about 110 MHz, close to the theoretical prediction. The dramatically 

smaller amplitude of the V-system EIT peak in the TNF measurement is likely due to a 

nonisotropic atomic velocity distribution in the Rb-TNF cell, which leads to a smaller 

population of atoms with the correct longitudinal Doppler shifted velocity component for 

the EIT interaction. The relative magnitude of the three absorption peaks is consistent 

with a 210 MHz wide effective Doppler distribution. The effective reduction of the 

Doppler width may be attributable to the geometry of the cell and the relative position of 

the TNF and the vacuum pump. Further investigation will be carried out in the future to 

study this effect. 
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V-system modulator in TNF 

The experimental setup is summarized in Figure 2.10. The output of a Ti:Sapphire 

laser was split by a 50/50 non-polarizing beam splitter.  The beam reflected by the splitter 

was shifted up by 80 MHz with an acousto-optic modulator (AOM), to produce the S-

polarized probe beam. The beam passing through the splitter was up-shifted by a second 

AOM, also at 80 MHz, to produce the pump beam, which was P-polarized by passing 

through a half-wave plate.  Attenuators (not shown) were then used to reduce the power 

in both beams independently. The pump and probe were combined on a polarizing beam-

splitter (PBS), and coupled into the TNF. The output was passed through another PBS, 

separating out the pump and the probe. The probe was then detected with an avalanche 

photo-diode (APD). Using another non-polarizing beam splitter, 10% of the probe beam 

(before attenuation) was diverted to a vapor cell for saturated absorption spectroscopy.  

Signal from this cell was used to lock the laser to a hyperfine transition.  
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Figure 2.10 Experimental setup for demonstrating optical modulation. Both AOMs are 

operated at the same frequency (80 MHz).  The pump and the probe are each linearly 

polarized, orthogonal to each other. 

 

Figure 2.11 shows one set of data taken using this setup. The probe (pump) power 

was 100 pW (40 nW).  First, the red trace shows the probe transmission when the pump 

beam is turned off. As the probe frequency was scanned across the D1 manifold, three 

dips were observed.  The biggest dip corresponds to the transition from the 5S1/2, F=3 

ground-state in 85Rb to the 5P3/2 hyperfine levels, which are not resolved because of 

Doppler broadening.  The small dip on its left corresponds to a transition in 87Rb, from 

5S1/2, F=2 ground-state to the 5P3/2 hyperfine levels.  The dip on its right corresponds to 

the transition from the 5S1/2, F=2 ground-state in 85Rb to the 5P3/2 hyperfine levels.  The 
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scan range was not long enough to see the other transition in 87Rb: from 5S1/2, F=1 

ground-state to the 5P3/2 hyperfine levels. 

 

Next, the blue trace shows the probe absorption when the pump is turned on. 

There is a strong increase in the probe transmission at the center of the F=3 transition (the 

middle one in Fig. 2.11). The physical mechanism behind the strong modulation of the 

probe transmission caused by the pump can be explained as follows. Consider first the 

Zeeman sublevel of the mF = 0 in the F=3 ground-state, and how it is coupled to the 2F   

excited state. The probe, which is a superposition of left and right circularly polarized 

light, with a relative phase , would couple this state to mF = -1 and mF = 1 sublevels in 

the 2F   state. The pump is also a superposition of left and right circularly polarized 

light, with a relative phase , and would excite the same pair of transitions. 
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Figure 2.11 Absorption spectrum of the probe in the absence (red) and presence (blue) of 

the pump. 

 

However, the phases  and  differ by . As such, the net interaction can be 

represented as a V-system, with one leg excited by the probe and the other by the pump.  

This is illustrated in Figure 2.12.  Here, the in-phase superposition state (|p>) is coupled 

to the ground state |a> by the P-polarized pump beam only, and the out-of-phase 

superposition state (|n>) is coupled to the ground state |a> by the S-polarized probe beam 

only.  Thus, the net interaction is equivalent to the V-system.  Specifically, in the absence 

of the pump, the probe excites state |a> to state |n>, corresponding to strong absorption.  

However, when the pump is present, the effective continuous measurement process keeps 

the atoms locked in state |a>, thus reducing strongly the absorption of the probe beam. 

 

It should be noted that when the pump is turned on, the residual probe absorption 

develops some asymmetry, and the centroid of each dip appears to be slightly shifted.  



 52 

Further investigation is required to elucidate the origin of these effects, and will be 

carried out in the future.  However, for the purpose of modulation, these effects may not 

be very important.   

 

 

Figure 2.12 Schematic illustration of the process that produces the QZE when the atoms 

are excited by cross-linearly polarized pump and probe beams. 

 

   A more quantitative description of the process makes use of the concept of level 

splitting, as also described in the introduction.  Specifically, when the pump is turned on, 

the ground state gets split into two dressed states, each out of resonance for the probe if 

the pump intensity is greater than the saturation intensity of the isolated atom (i.e., >, 

where  is the pump Rabi frequency, and  is the natural linewidth). When the Doppler 

broadening is taken into account, the condition for probe transparency is that >(*D), 

where D is the half-width of the Doppler broadening. This condition is satisfied by the 

pump power (~40 nW) used. The same model applies to transitions to the F`=3 and F`=4 

excited states as well.   Of course, for some values of mF, only left (right) circular 

transition is allowed; in that case, the system behaves as a pure two level transition, 
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excited by identically polarized parts of the pump and the probe.  The reduction in 

probe transmission for these sublevels is due to the conventional self-induced 

transparency.     

 

Figure 2.13 shows results of pulsed modulation, with the laser locked at the center of the 

F=3 transition. The probe is kept constant at 100 pW, while the pump intensity is 

modulated by using the pump AOM. The top left panel shows the probe transmission 

when this modulation is at 10 Hz. The other three panels show the same for increasing 

modulation frequencies. At 10 KHz, the probe transmission deviates from the square 

profile, due to the limited bandwidth (~50 kHz) of the APD.  
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Figure 2.13  Low-frequency modulation results for a duty cycle of 70% (on-state), for 

four different frequencies.  At 10 kHz, the signal is limited by the APD bandwidth. 

       

A careful consideration of the physical mechanism behind this modulation reveals 

that the modulation speed is fundamentally limited by the time needed for the atoms to 

repopulate the ground state, |a>, after the pump is turned off, so that they can absorb the 

probe again.  This means that the modulation bandwidth cannot exceed the homogeneous 

linewidth (HL).  For the TNF system, the HL is dominated by the transit time broadening, 

which is about 100 MHz, as shown in ref. 5.   The HL can be increased very significantly 

by adding a buffer gas, such as 4He.  In a series of studies carried out in the context of the 

development of diode pumped alkali lasers (DPALs), it has been shown that the atoms 

excited to the 5P3/2 state relaxes very rapidly to the 5P1/2 state.  The rate of relaxation 

from the 5P1/2 state to the ground state can be augmented by adding an auxiliary, strong 
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beam that would be turned on and at the same time as the pump is turned off, and 

turned off before turning on the pump again.  For buffer gas pressure of 1 atm, the HL is 

about 10 GHz.  A HL linewidth as large as 500 GHz is possible in the presence of a 

buffer gas pressure of 25 atm.  Of course, the intensity needed to saturate a 500 GHz 

broadening would be too hard to realize in a TNF.  However, based on a typical DPAL 

laser in Rb, which requires a threshold pump intensity of about 15 W/m2 , a pump 

power of about 3 W should be enough the achieve the 10 GHz modulation bandwidth in 

the TNF, which has a mode area of only 0.2 m2.  The same level of power would be 

needed for the auxiliary pump beam for rapid depopulation of 5P1/2 state to the ground 

state.   

 

CHAPTER 3  LADDER SYSTEM & MODULATOR 

 

As shown in Figure 3.1 the system consists of three states: a ground state (|1>), a 

strongly-damped intermediate state (|2>), and a third state (|3>) which may or may not be 

strongly damped.  The control beam couples |1> to |2>, and the probe beam couples |2> 

to |3>.  For resonant excitation, the corresponding dressed states (defined as products of 

photon number states and atomic states) are degenerate, as shown in Fig. 3.1(b). When 

the coupling between |1> and |2> is strong, the resulting states, upon diagonalization (|+> 

and |->) are split by an amount equaling the Rabi frequency of the |1> to |2> transition, 

which is much larger than the natural linewidth of |3>, as illustrated in Fig. 3.1(c).     
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3  

Figure 3.1 AC-Stark effect in a Ladder Transition: (a) The control beam couples |1> to 

|2>, and the probe beam couples |2> to |3>; (b) For resonant excitation, the corresponding 

dressed states are degenerate; (c) When the strong control beam coupling is diagonalized, 

the resulting states are split by an amount much larger than the natural linewidth of |2>.  

 

There are several combinations of parameters that can be considered for controlling the 

probe absorption.  Consider first Case I, where the probe is resonant for the |2> to |3> 

transition, but the pump is relatively weak, so that the two diagonalized states (|+> and |-

>) are not resolved.  In this case, the probe is transparent when the pump is not present 

(since the atoms remain in state |1>), and is absorbed when the pump is turned on.   

Consider next Case II where the pump is strong so that the two diagonalized states are 

clearly resolved, but the probe is detuned from the |2> to |3> transition (positively or 

negatively) by half the separation between the two diagonalized states.  In this case, the 

probe is absorbed in the presence of the pump, but is transparent when the pump is not 

present. This is the same as what happens for Case I, but for different reasons.  Finally, 

consider Case III, where again the pump is strong so that the two diagonalized states are 

clearly resolved, but the probe is resonant for the |2> to |3> transition (as shown in Fig. 

3.1).  In this case, the probe is transparent both in the presence and in the absence of the 

pump.  Cases I and II can be considered to be QZE-based control of probe absorption, 
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since the mechanism in each case can be interpreted in terms of AC-Stark effects. We 

describe experimental results based on Case I, while the scheme we describe for high 

speed modulation in the presence of buffer gas is based on Case II.   

a. Experimental set-up 

In this section, we describe our experiment for realizing a Case I type QZE modulator in 

a conventional vapor cell of length ~7.5cm, under free space propagation of light.  The 

experimental configuration is illustrated schematically in Fig. 3.2.  Briefly, beams from 

two tunable lasers (Ti-Sapphire laser at 795 nm, and a fiber laser at 1323 nm) are 

combined with a dichroic mirror (DCM).  Both the control and the signal beams are co-

propagating, and linearly polarized in the same direction.  A part of the 795 light is sent 

to a reference vapor cell for saturated absorption spectroscopy and locking.  The 

co -

metal.  The cell is heated to temperatures of about 150 C using bifilarly wounded wires 

that do not add any magnetic fields. Experimentally, we estimated the optical depth for 

the strongest transition (5S1/2, F=2, mF=2 to 5P3/2, F=3, mF=3) on the D2 line to be ~220, 

corresponding to an atomic density of ~1010 cm-3.  After passing through the cell, another 

DCM is used to split the light into two parts, and the signal at each frequency is 

monitored with a separate detector.  
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Figure 3.2 Schematic illustration of the experimental setup for observing the ladder-

transition based QZE modulator. DCM: Dichroic mirror, AOM: Acousto-Optic 

modulator, EOM: Electro-Optic modulator, BS: Beam Splitter 

 

The acousto-optic modulator (AOM) and the electro-optic modulator (EOM) shown in 

Fig. 3.2 are used only while performing the actual modulation, and are removed while 

characterizing the absorption profile at 1323nm. While performing spectroscopic 

measurements and switching at low frequencies (up to ~5MHz), we used Thorlabs 

PDA55 and Thorlabs PDA400 for detecting light at 795nm and 1323nm respectively. For 

high frequency switching, (where the use of EOM necessitated low control beam power), 

an APD was used for detection of 1323nm light while the 795nm light was not monitored 

on a  detector-the switching input applied to the EOM was used as reference. 

 

b. Spectroscopic details 
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We chose to use the 5S1/2 1/2 1/2 ladder transition in Rb for our experiment, 

dictated in part by lasers readily available to us.  Using the reference saturated absorption 

cell, we locked the pump laser (795 nm) to one of the resonances of the 5S1/2 1/2 

manifold and the probe laser (at 1323nm) was then scanned across the 6S1/2 manifold 

over a few GHz. The modulator should work just as well if the ladder transition is of the 

type 5S1/2 →X→Y, where X is 5P1/2 or 5P3/2, and Y can be one of many states that are 

coupled to the X states via optical dipole transitions and has a higher energy than that of 

X.  For example Y can be 7S1/2, 4D3/2, 4D5/2, 5D3/2, 5D5/2, and so on.     

  

Figure 3.3(a) shows the spectroscopic details of the ladder transition for 85Rb. The 

probe beam was scanned over the 6S1/2 manifold while the control beam was locked to 

the F=2→F=2 transition on the lower leg. The separation between the hyperfine levels in 

the 5P1/2 manifold (~360 MHz) is less than the Doppler linewidth (~600 MHz). Hence, 

atoms are excited to both hyperfine levels of the 5P1/2 manifold even if the 795nm laser is 

locked to only the F=2 →F=2 transition. As a result, it is expected that 4 lines would be 

observed for the 1323nm absorption (upper leg) as this laser is scanned over a few GHz 

(Fig. 3(b)). However, it is to be noted that, due to Doppler shift, the atoms excited to the 

F=3 state of the intermediate level correspond to negative velocity (with respect to the 

direction of propagation of the 795 nm laser beam) atoms, and not zero velocity atoms. 

Thus, the transitions from this state to the 6S1/2 manifold are shifted to lower frequencies 

by an amount equal to the separation between the hyperfine states in the 5P1/2 manifold 
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(~360 MHz). In the case of 85Rb, the frequency difference between the hyperfine states 

in the 6S1/2 manifold (~710 MHz) is such that this shift causes the F=2→F=2 transition 

almost to overlap the F=3→F=3 transition, for the 1323 nm beam. As a result, only 3 

lines are expected to be observed distinctly (see Fig. 3.3(c)). It is to be noted that Fig. 

3.3(b) and 3.3(c) only illustrate the expected relative positions of the 85Rb absorption 

lines (at 1323nm), and not the actual observed data, which are described next. 

 

 

Figure 3.3 Spectroscopic details of ladder transition in 85Rb (a) Schematic of various 

hyperfine levels used, along with the transition frequencies. (b) Expected spectrum if 

both hyperfine states of intermediate level are occupied by zero velocity atoms. (c) Shift 

of spectrum in (b) due to F=3 state at the intermediate level being occupied by negative 

velocity atoms 
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Figures 3.4(a) and 3.4(b) show a couple of typical profiles that were observed for 

85Rb. The data in Fig. 3.4(a) corresponds to a relatively low power (~2 mW) of the 

control beam, and only three absorption lines are observed, in keeping with the 

explanation provided in Fig. 3.3 above. The relative separation between the lines is in 

good agreement with the expected spectrum, as illustrated in Fig. 3.3(c). This data has 

been taken in AC mode (on a standard digital oscilloscope) and hence shows negative 

values. The slow background modulation seen in the signal is most likely due to the 

etalon effect from the windows of the cell. The data in Fig. 3.4(b), taken in DC mode, 

corresponds to much higher power (~200 mW) of the control beam, and we see almost 

complete absorption of the probe while the lines are strongly power broadened. Of 

course, the amount of 1323nm absorption increases with the number of atoms excited to 

the intermediate leg, which in turn is determined by the power of the control beam. Thus 

at sufficiently high power of the control beam, the upper transition is completely 

saturated. It should be noted that even in this case, the pump power is not high enough to 

correspond to Case II, since the power broadening is less than the effective width of the 

intermediate state (~600 MHz) due to Doppler broadening.   
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Figure 3.4 Typical absorption profiles for the ladder transitions (at 1323nm) that are 

observed in 85Rb.  (a) Corresponds to 795 nm laser power ~ 2mW, data taken in AC 

mode. The hyperfine transitions corresponding to the absorption dips are α: 3→2, β: 

3→3, γ: 2→2, δ: 2→3.  The repeat scan has been shown due to the asymmetry of the 

signal (b) Corresponds to 795 nm laser power ~ 200mW, we see near 100% absorption 

and the lines are highly power broadened.  Note that the null value of the probe detuning 

is defined arbitrarily to be at the turn-around point of the scan in each case. 

 

Figure 3.5 shows the spectroscopic details for 87Rb and a few typical absorption 

profiles that were observed at 1323nm. The control laser was locked to the F=1→F=1 

transition on the lower leg as shown in Fig. 3.5(a).  For moderately high powers 

(~50mW) of the control beam, atoms get excited to both hyperfine levels of the 5P1/2 

manifold, due to power broadening of the 5S1/ 2 → 5P1/2 transition. At these powers, we 

can clearly resolve 4 absorption lines, as shown in Fig. 3.5(b). It is worth noting that each 

of the lines is control-power-broadened because of the fact that a significant number of 

velocity groups are excited to both hyperfine states of the intermediate level due to the 

relatively high power of the control beam. At sufficiently low powers of the control beam 

(~0.5mW), two of the four lines are almost completely suppressed, and each individual 
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line can be seen as a narrow sharp line, as illustrated in Fig. 3.5(c).  It is well known 

that the upper-leg is not Doppler broadened, and the spectra reported here are consistent 

with this feature of a ladder transition.  

As before, the data in Fig. 3.5(b) and Fig. 3.5(c) have been taken in AC mode on a 

standard digital oscilloscope, and hence show negative values. The slow background 

modulation observed in both figures is again most likely due to the etalon effect of the Rb 

cell window, as mentioned previously.  It should be noted that ladder transitions of this 

type have been studied previously, theoretically as well as experimentally 16 , 17 , 18 in 

different contexts.   The Doppler-free nature of the upper leg of the ladder transition in 

the co-propagating configuration is consistent with the theoretical model presented in ref. 

16, and the experimental results presented in refs. 17 and 18.  The hyperfine splitting 

frequencies we have observed for the 5P1/2 to 6S1/2 transition for both 85Rb and 87Rb are in 

agreement with those reported in ref. 16.  However, the experiment reported in ref. 16 did 

not show any absorption lines for this transition; therefore, a quantitative comparison of 

the spectral response is not possible.   Finally, the accidental near-degeneracy we have 

observed between the F=3F=2 and F=2F=2 transitions on the upper leg in the case 

of 85Rb due to contributions from different velocity groups (as illustrated in figure 3.3 c 

and figure 3.4a) has not been reported in any of these references.     
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Figure 3.5 Spectroscopic details of ladder transition in 87Rb (a) Schematic of various 

hyperfine levels used along with the transition frequencies. (b) Absorption corresponding 

to 795 nm  laser power ~ 50mW; all four transitions can be clearly seen. The hyperfine 

transitions corresponding to the absorption dips are A: 2→1, B: 1→1, C: 2→2, D: 1→2. 

(c) Corresponds to 795 nm laser power ~ 0.5mW; two of the four lines are suppressed 

and only transitions from F=1 are observed.  

   

c. Modulation 

 

In order to demonstrate modulation, we chose to use the strongest absorption line at the 

upper leg of transitions, which in our case was the F=3 →F=2 resonance for 85Rb (due in 

part to the fact that in a natural mixture of Rb, 72.15 % is 85Rb, and 27.85% is 87Rb).  

Keeping the probe laser (1323 nm) parked on this resonance, we then modulated the 
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amplitude of the pump beam (795 nm). At low frequencies, switching of the control 

beam was accomplished using an AOM while for higher frequencies, an EOM configured 

for intensity modulation was used. The result is shown in Fig. 3.6.  

 

For low frequencies, we used a pump power of ~200mW and we see a strong 

modulation, in phase with the pump modulation, with a modulation depth of essentially 

100% up to a speed of 1MHz. The modulation depths obtained while using the EOM 

were smaller because of the low control beam power (~2mW) used. This was 

necessitated by the damage threshold (~20mW) of the EOM used to switch the pump 

beam and the relatively low efficiency of the EOM (~20%). We have tested the 

modulation up to a speed of 75 MHz, and determined a 3dB bandwidth of approximately 

3 MHz, as shown in Fig. 3.7. In Fig. 3.7, we have plotted the modulation amplitude at 

various frequencies (obtained using the EOM), normalized to the amplitude at 1MHz, 

where the modulation depth was essentially 100%, when obtained with the AOM.  
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Figure 3.6 Voltage as measured by the probe and pump detectors (top and bottom 

respectively) at a frequency of ~1 MHz. The intensities are directly proportional to the 

voltage recorded. 

 

A careful consideration of the physical mechanism behind this modulation reveals that 

the modulation speed is fundamentally limited by the time needed for the atoms to 

repopulate the ground state, after the pump is turned off, so that they can absorb the probe 

again.  This means that the modulation bandwidth cannot exceed the homogeneous 

linewidth (HL). This constraint is rather obvious for Case I, which has been employed 

here.  As we will discuss later, this constraint on the maximum speed also holds if Case II 

is employed for modulation.  
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Figure 3.7 Modulation amplitude (normalized to the amplitude at 1 MHz) vs. frequency 
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CHAPTER 4 HIGH SPEED MODULATION 

 

Experiment 

The HL can be increased very significantly by adding a buffer gas, such as 4He.  In a 

series of studies carried out in the context of the development of diode pumped alkali 

lasers (DPALs),19it has been shown that the atoms excited to the 5P3/2 state relaxes very 

rapidly to the 5P1/2 state.   

 

Figure 4.1. Schematic of modulator in the presence of buffer gas and auxiliary beam. The 

reciprocal relaxation rates (down and up ) for the 5P1/2 and 5P3/2 states can be controlled by 

the pressure of the buffer gas.  Typically, up down /4. For a pressure of about 1 atm, 

down10 GHz.  The mn (m and n integers) relaxation rates along the optical transitions 

are due to radiative decays, and are not affected by the buffer gas. Specifically, 34 = 32  
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3 MHz and 21 = 41  6 MHz.  A schematic of the timing sequence of the pump and the 

auxiliary beam and the expected probe absorption are shown on the right. 

This process increases the HL for the pump transition significantly. For example, HL 

(given effectively by down, which is much larger than 21) is about 10 GHz for a buffer 

gas pressure of 1 atm, and can be as large as 500 GHz for a pressure of 25 atm.  

However, the rate of decay from the 5P1/2 state to the ground state is not affected by the 

presence of the buffer gas, thus preventing rapid repopulation of the ground state.  This 

effect would normally limit the maximum modulation speed achievable.  But, this 

constraint can be circumvented via the addition of an auxiliary beam (which we 

henceforth call the deshelving beam) that would be turned on at the same time as the 

pump is turned off, and turned off before turning on the pump again, as illustrated in Fig. 

4.1. For best performance, (in terms of contrast obtained during modulation) the pulse 

width of the de-shelving beam applied should be much smaller than the time scale of the 

dominant relaxation rate (namely 1/up) from the 5P1/2 state. However, even for longer 

pulse widths (up to 100/up), the system produces very good contrast.  Furthermore, this 

beam should be as close as possible to an ideal π-pulse in a 2-level system.  The de-

shelving beam causes rapid repopulation of the ground state, thereby ensuring atoms can 

be cycled back to the 5P3/2 state when the pump is turned on again. The speed would be 

limited by the dominant relaxation rate (down) of the 5P3/2 state, which is in turn 

controlled by the buffer gas pressure.  It is to be noted that while we have chosen to use 

6S1/2 as the highest level to illustrate this scheme, there are many other states (e.g., 7S1/2, 

4D3/2, 4D5/2, 5D3/2, 5D5/2 and so on) that would work just as well.  However, for optimal 
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operation, the intermediate state must be 5P3/2, since the quenching rate is higher from 

5P3/2 to 5P1/2 than that in the reverse direction.  

 

b. Simulation Results 

Preliminary results obtained from the simulation of the system shown in Fig. 4.1 are 

presented in Fig. 4.2. The values of the decay rates used were down ~ 10 GHz, up ~2.5 

GHz, 34 = 32 ~ 3 MHz and 21 = 41 ~ 6 MHz.  The simulations are carried out using the 

Case II configuration, with the negative probe detuning matched to half the Rabi 

frequency.  Thus, the probe is resonant with the |+> to |3> transition. The residual 

oscillations seen in the probe absorption occur at the pump Rabi frequency.   
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Figure 4.2 High speed modulation in the presence of buffer gas, and using an auxiliary 

(deshelving) beam. The power levels of the pump and the deshelving beam have been re-

scaled. The deshelving beam is applied immediately after turning off the pump and for a 

very short duration. The modulation speed is about 1 GHz. The temporal width of the 

deshelving -pulse used for the simulation is 2/down. 

 

These oscillations can be understood clearly by considering the limiting case where 

state |2> is completely undamped (down=0, 21=0), state |3> decays to state |2> only, and 

the deshelving beam is turned off, so that state |4> is completely decoupled from the 

system.  In this case, the population of level |2> oscillates between 0 and 1 (in the limit of 

a vanishingly weak probe beam) at the rate of the pump Rabi frequency.  Thus, if the 

configuration of Case I is employed, the probe absorption would obviously oscillate 

(between the maximum value and zero) at the same frequency.  Oscillation of the probe 
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absorption between the maximum value and zero also occurs if Case II is employed.  

The later may appear to be somewhat surprising, since the population of the |+> level (as 

well as that of the |-> level) remains constant at a value of 1/2, and the probe is resonant 

with |+> to |3> transition.  On the other hand, it is sensible if one considers the fact that at 

some point in time there are no atoms in state |2>.  These two observations can be 

reconciled by noting that even though the probe is resonant with the |+> to |3> transition, 

there is also the off-resonant transition between the |-> state and state |3>.  For the very 

short time scale of the Rabi oscillation, the |+> and |-> state are effectively broadened by 

the Rabi frequency (akin to transit time broadening), in a manner so that during one point 

in the Rabi oscillation cycle, the imaginary part of 32, which determines the probe 

absorption ( being the density matrix) vanishes due to equal and opposite contributions 

from the |+> and |-> states.  We have verified this explicitly, using numerical simulations 

under this condition. 

 

In the presence of the strong damping of level |2>, as employed in the simulation for 

Fig. 4.2, these oscillations get damped, producing a steady-state absorption of the probe, 

on a time scale given by the damping rate of level |2>.  Thus, if we used the same 

technique, but without the buffer gas, the probe absorption would remain oscillatory 

through the whole time during which the pump is on, since the timescale for reaching 

steady state would be given by the inverse of the radiative decay rate (21) of level 2 only, 

corresponding to more than 30 nanosecond, which is much longer than the modulation 
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rate shown in Fig. 4.2.  Thus, employing Case II by itself is not enough to achieve high 

speed modulation; the rapid decay rate of level |2> is essential.  

 

 

Figure 4.3 High speed modulation using buffer gas but without any deshelving beam. The 

power level of the pump has been re-scaled. The switching speed is about 1 GHz. 

 

In Fig. 4.3, we show results obtained for the same set of parameters as used in Fig. 4.2, 

except that the deshelving beam is not used.  As can be seen, a modulation with a 

significant contrast is still achievable.  Thus, the presence of the deshelving beam is not 

essential for obtaining high speed modulation.  To see why this is the case, we recall from 

Fig. 4.1 that there is also a relaxation (up) of atoms from the 5P1/2 state to the 5P3/2 state in 

the presence of buffer gas, at a rate which is about 4 times smaller than the decay rate 
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(down)  in the opposite direction. Consequently, the atoms never leave the 5P3/2 state 

completely during the time when the pump is turned off.  Half of these atoms get tuned 

back to resonance (between the |+> and |3> states) when the pump is turned back on, 

producing strong absorption.  The reduced contrast in the absence of the deshelving beam 

is due to the fact that fewer number of atoms in state |2> decay to state |4> because there 

is no mechanism for atoms in state |4> to be transferred to state |1>.  In the presence of 

the deshelving beam, the number of atoms remaining in state |2> after the deshelving -

pulse is significantly smaller, thus producing higher transparency for the probe, and 

consequently higher modulation contrast.  

 

For both cases (deshelving beam on or off), the modulation depth remains virtually 

uniform for increasing modulation speeds, but the rapid oscillations do not die off at 

higher speeds.  In order to estimate the bandwidth of the modulator, we used the criterion 

that both the on and off states of the probe must reach a steady state value before the 

corresponding states of the pump.  This gives a bandwidth of about 1.5 GHz for 

down=10GHz. The bandwidth can be increased further by increasing the value of down (as 

well as up =down/4) and scaling the pump power by the same factor.  Indeed, preliminary 

simulation results have shown that the bandwidth roughly scales with down. More details 

about the impact of various parameters, such as pump and auxiliary beam powers, pulse-

width of the de-shelving beam, and the decay rates, on the modulator performance in 

terms of modulation depth and bandwidth will be presented in a separate paper.  Efforts 
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are also underway in our laboratory to investigate the feasibility of realizing a buffer-

gas augmented modulator of this type.  

 

It should be possible to realize this scheme in a tapered nano fiber (TNF) set-up, 

yielding an efficient modulator at the telecom wavelength at very low control powers 

(~40nW).  The TNF will be designed to operate as a single mode fiber for all three 

wavelengths: 780 nm, 795 nm and 1323 nm.  We have carried out designs of such a TNF, 

and have shown that there is a range of taper diameters for which it is possible to have a 

significant overlap between the evanescent modes at these three wavelengths.  The TNF 

would be embedded in a Rb vapor cell, and pressurized with a 4He buffer gas.  The pump 

and the auxiliary beams will be orthogonally polarized, and combined with a polarizing 

beam splitter.  The probe will be combined with these beams using a dichroic mirror.  

The combined beams will be launched into the TNF.  Similar techniques will be used to 

separate the probe from the other beams at the output.  Of course, the intensity needed to 

saturate a 500 GHz broadening would be too hard to realize in a TNF.  However, based 

on a typical DPAL laser employing Rb, which requires a threshold pump intensity of 

about 15 W/m2, a pump power of about 3 W should be enough to achieve a few GHz 

modulation bandwidth in the TNF, which has a mode area of only 0.2 m2.   

Experimental results to be added 
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CHAPTER 5 - OPTICALLY CONTROLLED POLARIZER  

 

Quantum Zeno effect (QZE) 

The quantum Zeno effect (QZE) 20,21,22is the suppression of the evolution of a quantum 

state through the quantum measurement process. Figure 5.1(a) shows the energy level 

diagram of a three level system that illustrates this process. Here, states |1> and |2> are 

assumed long-lived, while state |3> decays rapidly, at a rate Γ, into state |1> only. The 

QZE in this configuration can be described as follows. In the absence of any coupling to 

state |3>, state |1> will undergo Rabi oscillation, thus getting excited to state |2> at a rate 

determined by the 1→2 coupling strength. When coupled to state |3>, the spontaneous 

emission emulates a measurement process, which resets the quantum state of the system 

to state |1>. As such, evolution of state |1> into state |2> is inhibited. 
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Figure 5.1 [A] Quantum Zeno Efffect in an atomic V-system. [B] Evolution of the 

quantum state of a photon via passage through a series of waveplates. [C] In the presence 

of interleaved polarizers acting as measurement devices, the evolution to the horizontally 

polarized state is inhibited. 

The phenomenon described above, although initially investigated in the context of 

atomic transitions, is in fact a general quantum mechanical effect occurring in any system 

where periodic quantum measurement and quantum state evolution occur. In particular, it 

is instructive to analyze a bulk-optic model for this effect, as illustrated in Fig. 5.1(b). 

Here, we consider the evolution of the polarization state of a photon. The polarization 

degree of freedom for the photon spans two orthogonal states: |V> and |H> representing 

vertical and horizontal polarizations, respectively. The general quantum state can thus be 
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written as ,V H   with 
2 2

1   . Consider now a specific situation where input 

quantum state is |V>. When it passes through a wave plate with its fast/slow axis at an 

angle of 45° with respect to the vertical axis, the polarization state of the photon can be 

expressed as (ignoring an overall phase factor) cos( / 2) sin( / 2)nwt V i nwt H     ,. where 

Δn is the difference in refractive index between the fast and slow axis of the waveplate, t 

is the time of propagation and ω is the optical frequency. We can describe this process by 

an unitary evolution operator Uϕ such that cos sinU V V H    , where ϕ = Δnωt/2. 

When N such plates are placed in series, each causing a unitary evolution Uϕ with ϕ = 

π/2N, the polarization state of the photon at the output become |H>, aside from an overall 

but inconsequential phase factor. Consider next a situation where these waveplates are 

interleaved with polarizers oriented along the vertical axis, as shown in Fig. 5.1(c). The 

polarizers act as a measurement device, collapsing the state to be |V> with probability 

cos2 ϕ. In the limit N→∞, corresponding to continuous measurement, the final state will 

be the same as the initial state. 

It is also instructive to analyze this process without invoking a quantum description of 

light. Specifically, we consider a classical light beam polarized in the  x (vertical) 

direction at the input. After passing through a waveplate, the polarization state can be 

expressed as ˆ ˆx y  , with 
2 2

1   , and cos( / 2 )N  . It is now easy to see that after a 

series of N waveplates and polarizers, the output intensity can be expressed as Iout = I0 

[cos2(π/2N)]N and in the limit N→∞, it can be verified that Iout→I0, where I0 is the initial 

intensity. This result seems to imply that there is a so-called “classical Zeno effect”. This 
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is erroneous, since the concept of a measurement induced reduction of a state is absent 

in the classical World. Instead, the process can be understood via the Quantum Zeno 

effect by considering a quantum model of a classical laser field (by which we mean a 

field with intensity much stronger than that of a single photon). Any such field 

(including, but not limited to the coherent state) can be expressed as a superposition of 

the Fock states: 
n

V n  . Now, the analysis we presented above for a single photon 

can be applied to each Fock state. Thus, after passing though the series of N polarizers 

and waveplates, the polarization state remains the same. Therefore, QZE applies even if 

one does not explicitly consider the optical field quantum mechanically. 

b. Optically controlled polarizer 

It is well known that the polarization state of an optical field gets modified after 

propagating through an optically dense vapor medium, a manifestation of optical activity. 

In an atomic system involving ladder type transitions, the presence of two different 

frequencies open up the possibility of controlling the behavior of the probe (upper leg) 

polarization by careful design of the pump parameters (lower leg). In particular, it is 

possible to make the vapor cell act as a polarizer, oriented either vertically or horizontally 

depending on the polarization of the pump. 
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Figure 5.2 Schematic illustration of an optically controlled polarizer using a ladder 

transition in 87Rb atoms. 

In Fig. 5.2(a), we illustrate the basic mechanism for realizing such a polarizer, using a 

simplified set of transitions. We assume here that the atomic population is optically 

pumped into 5S1/2,F = 1,mF = 0 Zeeman sublevel. Here, the control beam at 795 nm is 

resonant, and linearly polarized, in the horizontal direction, for example. This means that 

the two circular components of the control beam, σ+ and σ-, are out of phase with each 

other. As such, these components will produce an out-of-phase superposition of the mF = 

0 and mF = 1 Zeeman sublevels. Such a superposition would act as a non-absorbing 
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(dark) state for the 1323 nm probe that is vertically polarized, since it has two circular 

polarization components (σ+ and σ-) that are in phase with each other. By the same token, 

this superposition will act as a strong absorber for a 1323 nm probe that is horizontally 

polarized. Thus, the presence of this control beam would make the system an ideal 

polarizer. Of course, experimental conditions result in non-ideal behavior and these are 

discussed in later sections. 

c. QZE based all-optical logic gate 

A QZE based optical logic gate can be realized if the polarizing effect generator is 

augmented by a wave-plate effect generator, as shown in Fig. 5.3. Before we understand 

the working of the logic gate, it is instructive to understand how the waveplate effect is 

generated. Consider first the case where the lower leg is excited by the field which is 

detuned from resonance, and the fields on resonance arrows are turned off. The control 

field is now a right-circularly polarized (σ+) beam at around 795 nm, tuned a few GHz 

below the 5S1/2,F = 1→5P1/2,F = 1 transition. We assume here that the atomic population 

is optically pumped into the 5S1/2,F = 1,mF = 0 Zeeman sublevel. The control beam, 

therefore, produces an off-resonant excitations to only the 5P1/2,F = 1,mF = 1 Zeeman 

sublevel in the intermediate state. The probe, at around 1323 nm, is chosen to be linearly 

polarized; therefore, it has two components: σ+ and σ-. As shown in the diagram, the σ- 

component sees the effect of the atoms (because of the detuning, it sees only a real 

susceptibility, with virtually no absorption), while the σ+ component does not. The 

parameters of the control beam can be tuned to achieve the condition for a π phase-shift 
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for the σ- component only, so that the polarization of the signal beam is rotated by 90 

degrees. Theoretical and experimental investigations of controlled polarization rotation of 

a probe field using another optical field (pump) and employing ladder transitions in Rb 

have been carried out previously23,24. However, both of these employ the EIT effect 

where the upper leg is excited by a strong control field while the lower leg is probed by a 

weak optical field, and thus has fundamentally different characteristics than the system 

we have considered. 

 

Figure 5.3 Schematic illustration of an optical logic gate using a ladder-transition based 

polarizer and optical activity in Rb atoms. 

The red beams on the lower leg represent the control signal for the polarizer. The 

presence of this control beam results in selective transmission of one particular 

polarization of the signal beam (blue) and complete suppression of the orthogonal 
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polarization, as explained previously. In order to understand the effect of applying both 

the green and red control beams simultaneously, one should recall the model presented in 

Fig. 5.1 for the QZE and the discussion that followed, where we considered N pairs of 

polarizers and polarization rotators, and showed that the polarization does not change as 

ntation described here operates in this limit. Even though 

both processes are occurring simultaneously, the net result is equivalent to infinitesimal 

evolutions where the processes alternate after each time step. 

When the polarizing effect generator is turned off, the polarization of the probe beam 

rotates by 90 degrees; when it is left on, the Zeno effect induced by the measurement due 

to the polarizer prevents the polarization of the probe beam from rotating, without any 

attenuation. This is illustrated in Fig. 5.3(b). On the other hand, when the waveplate 

effect generator is turned off, the polarization state does not change at all. In Fig. 5.3(c), 

we show how this process can be used as an optical logic gate for a probe data stream. 

Briefly, using WDM couplers, all the control beams and the probe at 1323 nm are made 

to propagate through a Rb vapor cell. Another WDM coupler is used to filter out the 

beams at 795 before the final polarizing beam splitter (PBS) placed at the output. The two 

ports of the PBS serve as the two output channels of the gate. If the control beams 

represent a data stream with their presence and absence denoting the ‘1’ and ‘0’ state 

respectively, then it is easy to construct a truth table for the outputs at port 1 and 2 

respectively as shown in Table 1. 
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Table 1. Truth table for QZE based logic gate 

Polarizer Waveplate O/P at Port 1 O/P at Port 

2 0 0 1 0 

0 1 0 1 

1 0 1 0 

1 1 1 0 

X Y X + Y’ X’Y 

Thus, if the sense of the ‘1’ and ‘0’ states of the waveplate effect generator beam are 

reversed, output at port 1 simply implements an OR operation on the 2 inputs while if the 

same is done for the polarizer effect generator, output at port 2 implements an AND gate. 

Of course, the output at ports 1 and 2 are complementary, as expected for a PBS. Full 

implementation of such a logic gate requires the realization of both the polarizer effect 

and the waveplate effect in the same medium. However, given the complexity offered by 

an actual atomic system, we decided to investigate and optimize these two effects 

separately.  

e. Experimental set-up 

The experimental configuration we used to realize an optically controlled polarizer is 

shown is shown schematically in Fig. 5. 4. We used a conventional vapor cell, containing 

a natural mixture of both the isotopes of Rb. However, we used only 87Rb for our 

experiment. Here, the control beam and signal beam are co-propagating. A similar set-up 

was used when the control beam and the signal beam were counter-propagating. 
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Figure 5.4 Experimental setup used to realize the ladder-sysetm polarizer. 

Briefly, beams from two tunable lasers (one at 795 nm, and the other at 1323 nm) 

were combined with a dichroic mirror (DCM). A part of the 795 nm light was sent to a 

reference vapor cell for saturated absorption spectroscopy and locking. The combined 

beams were sent through a vapor cell, shielded from magnetic fields with μ-metal. The 

cell was heated using bifiliarly wounded wires that do not add any magnetic fields. After 

passing through the cell, another DCM was used to split the light into two parts, and each 

frequency was detected with a separate detector. The polarization of each input beam was 

controlled separately with two half waveplates. The control laser was locked to one of the 

lines on the 5S1/2 1/2 manifold, while the signal laser at 1323 was scanned over the 

5P1/2 1/2 manifold. For the remainder of the paper, the hyperfine levels in the ground 

state are indicated by unprimed alphabets (F), those in the 5P1/2 level are primed (F’) and 

those in the 6S1/2 level are double-primed (F”). 

In section 3, we showed a simplified set of energy levels in order to explain the basic 

process behind an optically controlled polarizer. In practice, however, it is extremely 
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difficult to realize such an ideal system. For example, it is generally necessary to take 

into account both the hyperfine levels (F’ = 1 and F’ = 2) in the 5P1/2 manifold to account 

for Doppler broadening and power broadening. Furthermore, it is virtually impossible to 

eliminate all the atoms from the 1,Fm ±  F = 1 Zeeman sublevels via optical pumping. 

Hence, all the Zeeman sub-levels at the 5P1/2 manifold also get coupled with the optical 

fields. The full set of relevant energy levels that need to be considered are shown in Fig. 

5.5. In our model, we considered all the Zeeman sub-levels which explicitly interact with 

an optical field (all sub-levels of the F=1, F’=1,2 and F”=1,2 hyperfine levels), while the 

F = 2 hyperfine level and the 5P3/2 level were only considered as population transfer 

levels and hence all their sub-levels were lumped together as a single level. The transition 

strengths 25indicated are expressed as multiples of the weakest transition, which in our 

case is the transition from the F = 1, mF = 1 sub-level to the F’ = 1, mF = 0 sub-level. In 

order to avoid unnecessary clutter, the matrix elements for the F’ = 1 to F” = 1, 2 

transitions and for the F’ = 2 to F” = 1 transition are not shown. More details regarding 

the model are presented in the section 8. Initially, we carried out our experiments without 

employing optical pumping. Later in the paper, we will discuss in detail how to 

implement optical pumping properly in order to optimize the performance of the 

polarizer. 
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Figure 5.5  Model used for numerical computation. See text for more details. 

f. Results 

Figure 5. 6(a) shows evidence of the polarizing property of the control beam as the signal 

beam was scanned across the 5P1/2 1/2 manifold. The control beam was vertically 

polarized, co-propagating with the signal beam, had a power of ~5mW and was locked to 

trace is the signal transmission when the signal beam is vertically (horizontally) 

polarized. The F” = 1 and F” = 2 labels indicate the transitions from the F’ = 2 level, as 
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the power of the control beam was not strong enough to produce excitations to the far 

detuned F’ = 1 level. As is evident from Fig. 5. 6(a), signal transmission for the F’ = 

1→F” = 1 increased significantly when the control beam and the signal beam are cross-

polarized. The F’ = 1→F” = 2 transition showed opposite behavior to the F’ = 1→F” = 1 

line in terms of the percentage of absorption. This is due to the fact that the matrix 

elements for the σ- transitions of the F’ = 2 → F” = 2 line are of opposite sign as 

compared to the F’ = 2 → F” = 1 line 25, and hence the σ- coherences pick up an 

additional phase difference of π, thus changing the sense of polarization from horizontal 

to vertical and vice-versa. The assumption in the preceding argument is that the 

significant contribution to the absorption of the signal beam is from the F’ = 2 level, since 

the F’ = 1 is highly detuned. 

 

Figure 5.6 Polarizer effect for co-propagating geometry for pump power ~5mW a) 

Experiment b) Theory. 

We obtain ~50% reduction in absorption for the F’ = 2 → F” = 1 line and about ~70% 

reduction for the F” = 2 line. The background modulation is due to an etalon effect 
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caused by the two windows of the cell, which were anti-reflection (AR) coated for 795 

nm, but not for 1323 nm. In the future, the etalon effect could be eliminated by using a 

cell where the windows are not parallel to each other, along with AR-coating at 1323 nm. 

Figure 5. 6(b) shows the corresponding numerical simulation and it is fairly consistent 

with our experimental result. For this particular simulation, the pump was slightly 

eature does 

is not sufficient to excite the atoms to the F’ = 1 level. In the experimental data too there 

seems to be an additional dip in-between the two lines, which we believe may not be 

caused due to the etalon effect alone. As our simulations indicate, this additional feature 

might be due to a shift in the pump laser frequency resulting in excitations from the F’ = 

1 level, but a more thorough investigation is needed to resolve this apparent discrepancy. 

However, it should be noted that the device we propose would operate at one of the main 

absorption dips, rendering the central dip largely irrelevant. 

We also investigated the performance of the polarizer under a counter-propagating 

geometry. Figure 5.7 shows data for the F” = 1 transition obtained for two different 

power levels (~2mW and ~200mW) of the control beam and the corresponding numerical 

simulation. The F” = 2 transition also showed similar behavior and is not shown here for 

the sake of brevity. 
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Figure 5.7 Polarizer effect for counter-propagating geometry for 2 different powers of the 

pump. a.1) Experiment a.2) Theory and b.1) Experiment b.2) Theory. 

 

It is useful to note a couple of differences in the observed signals between the co-

propagating and the counter-propagating cases. Since we do not have experimental data 

under identical conditions (powers of the pump and the probe, temperature etc.) for the 

two geometries and our theoretical results are fairly consistent with our experimental 

data, we would present these differences using our simulation results. Figure 5.8 shows 

the simulation results for both geometries for a pump Rabi frequency of 5 (in units of the 
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natural linewidth of the 5P manifold ~5.7 MHz) when both the control and the signal 

beams have the same polarization. As seen in Fig. 5.8, the counter propagating geometry 

produces narrower (and deeper) absorption lines as compared to the co-propagating case. 

In addition, there is also an apparent splitting in the counter-propagating geometry which 

is absent in the co-propagating case. These differences based on geometry are due to 

what we refer to as pump power limited Doppler broadening (PPLDB). 

 

Figure 5.8 Typical absorption profile for co- and counter-propagating geometries. Here, 

Ωp = 5. 

For the purpose of understanding, it suffices to consider a 3-level cascade system with 

similar energy difference between the levels as in our original system i.e k2 ~ 0.6 k1. 

Figure 5.9(a) shows such a system where the pump is on resonance with the intermediate 

level and the probe is scanned across the upper level. Figure 5.9(b) shows the (partial) 

dressed picture of the interactions for the zero velocity atoms. Here |1’> and |2’> are 

shown to be degenerate (with δp=0), while we show |3> to be higher in energy by an 
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amount equal to probe field energy (for δs=0). This picture is valid for a weak probe 

and enables us to understand clearly the dynamics of the probe absorption. On the right-

side of Fig. 5.9 (b), we show the two split states that result from diagonalization of the 

interaction between |1’> and |2’>. Similar diagrams are shown in Figs. 5.9(c) and 5.9(d) 

for a positive velocity (same direction of propagation as pump) for the co- and counter-

propagating configurations, respectively. 

For an arbitrary velocity group v, the energies of the partially diagonalized states can 

be easily calculated to be  2) / 2     2

1 1 pk v± (k v , where k1 is the wavevector of the 

pump optical field and p
 is the pump Rabi frequency. Thus, for the zero-velocity group 

of atoms, these atomic states would have energies p± / 2  and hence would produce 

absorption at probe detunings of p / 2 , as shown in Fig. 5.9(b). This is a manifestation 

of the well-known Autler Townes splitting (ATS). For any non-zero velocity group, the 

probe would be further Doppler shifted by 
2k v , with the direction of shift depending on 

whether the probe is co- or counter-propagating, as shown in Figs. 5.9(c) and 5.9(d) 

respectively. Thus, the resonances would occur at  
21

2 1 / 2
2

 
   

 

2

p

k
k v k v  for a co-

propagating probe and at  
21

2 1 / 2
2

 
   

 

2

p

k
k v k v  a counter-propagating probe. We also 

note that the velocity spread of atoms that contribute significantly to the absorption can 

be estimated to be of the order of 22 2

FWHM 2 pkv ~ r  where Γ2 is the decay rate of the 

intermediate level. From these expressions, we can make the following observations: 
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a) For a vanishingly weak pump, the spread of the velocity groups that contribute 

significantly to the absorption of the probe is very small ( FWHM 2kv ~ ). Thus, both 

geometries would produce narrow lines (although co-propagating is still slightly 

broader) with linewidths that are essentially Doppler free and primarily 

determined by the decay rates of the intermediate and upper level. We can roughly 

estimate the minimum observable linewidth to be 2 2

2 3r r , where Γ3 is the decay 

rate of the upper level. 

 

Fig. 5.9. Dressed state picture of 3-level cascade system for different velocity 

groups 
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b) There are some differences that arise for a pump Rabi frequency that is much 

larger than the minimum observable linewidth. We first note that in the co-

propagating case, for any given pump Rabi frequency p
 we can always find a 

velocity group, 2

2 1 2/ 2 zero pv = k k k  that produces resonance at zero probe 

detuning. If we carry out a similar exercise for the counter-propagating case, we 

find that the velocity group that produces resonance at zero probe detuning would 

have 2

2 1 2/ 2zero pv = k - k k  and this has no valid solution if k2 < k1, as is the case for 

our system. As a consequence, in a co-propagating geometry, ATS is generally 

washed out while it is preserved to some extent in the counter-propagating 

geometry, the specific details of which depend on the exact value of p . 

c) Finally, we also note that 1

2

 
 

 
2

k
k v  is much larger than 1

2

 
 

 
2

k
k v  Thus, the 

resonances for the co-propagating geometry occur at much larger detunings, 

resulting in broader (and consequently shallower) lines as compared to the 

counter-propagating geometry. 

Similar conclusions can be reached for the negative velocity group of atoms. We refer 

to this phenomenon of line broadening in a cascade system for a strong pump as Pump 

power limited Doppler broadening (PPLDB) since the number of velocity groups that 

contribute significantly to the absorption signal is proportional to the pump power. In Fig. 

5.10, the contribution to the absorption (not normalized over the Doppler profile) from 

three velocity groups (-Vzero,0,+Vzero) are presented for both co-propogating and counter-
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propagating geometries for our simplified system. As seen in Fig. 5.10, in the co-

propagating case, the non-zero velocity groups contribute significantly to the absorption 

at zero detuning, while in the counter-propagating case, the contributions from non-zero 

velocity groups tend to align with the zero-velocity group contribution. 

 

Fig. 5.10. Contribution to absorption from 3 sample velocity groups (-

vzero,0, + vzero) for a 3-level cascade system when the control beam and 

signal beam are a) Co-propagating b) Counter-propagating 

Of course, our original system involving all the Zeeman sublevels is more complicated 

due to the presence of additional levels and the fact that Rabi frequencies for the various 

transitions are not identical, but the intuition developed above using a simplified 3-level 

cascade system remains valid. In Fig. 5.11, the contribution to the absorption of the F”=1 

line from 3 velocity groups (-u/10, 0, +u/10, where u is mean velocity of atoms) are 

shown for our original system (see Fig. 5.5) under both geometries. 
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Fig. 5.11. Contribution to absorption of F” = 1 line from 3 sample velocity 

groups (-u/10,0, + u/10 where u is the mean velocity of Rb atoms) for our 

original cascade system (see Fig. 5.5) when the control beam and signal 

beam are a) Co-propagating b) Counter-propagating 

But for the slight asymmetry in the line shapes and the appearance of some additional 

structure in each of the individual lines (due to the presence of multiple levels), the basic 

features remain identical to that of the simplified 3-level system allowing us derive the 

same conclusions. Thus, in a co-propagating geometry, the absorption lines are broader, 

shallower and the ATS is usually washed out while in a counter-propagating geometry 

the lines are narrower, deeper and ATS is generally preserved in the counter-propagating 

case, as was seen in Fig. 5.8. 

 

Despite the significant differential absorption at virtually all power levels of the 

795nm light, in order for our system to work as an ideal polarizer, we need nearly 100% 

suppression of one polarization versus nearly 100% transmission for the orthogonal 
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polarization. Towards this end, we used our numerical model to identify the parameter 

space and experimental modifications needed to improve the contrast. We will first 

describe the model used before going to discuss the experimental modification necessary 

to achieve an acceptable contrast in probe absorption. 

g. Model used for simulation and computational details 

Any analysis of the polarizer proposed above would require careful monitoring of the 

populations and coherences of the various Zeeman sub-levels involved in the system. A 

detailed diagram of all the relevant levels considered along with the relative transition 

strengths has been presented in Fig. 5.5. Due to power broadening, the 5P1/2, F’ = 1 

hyperfine level interacts with both the control and the signal optical fields (indicated by 

dashed lines), albeit at a large detuning, and these interactions have been taken into 

account in our model. However, we ignored the coherent coupling between F = 2 and the 

5P1/2 manifold, because of the large frequency difference between F = 1 and F = 2 

(~6.8GHz for 87Rb). Also, while the control beam is shown to be resonant in Fig. 5.5, 

ours is a general model where the control beam can be detuned from the F’ = 2 level by 

an arbitrary value, say δp. 

All the Zeeman sub-levels in the 5P1/2 (6S1/2) manifold are assumed to decay at the 

same rate, γa~5.75 MHz (γb~3.45 MHz). We also assume a nominal cross-relaxation rate 

(γg ~0.1 MHz) between F = 1 and F = 2 hyperfine levels. Figure 5.12 shows the various 

decay channels and branching ratios in the system. Here, the individual decay rates 

between the Zeeman sub-levels are not explicitly shown but only the branching ratios 
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between the hyperfine levels, which were obtained by summing the decay rates of all 

possible transitions between the corresponding hyperfine levels. The decay rate between 

any two Zeeman sub-levels was calculated by assuming it to be proportional to the square 

of the matrix element of the corresponding transition, such that the sum of all such decays 

rates from the decaying level equaled the net decay from that level. For example, 

consider mF = 0, F’ = 2 sub-level which decays at a rate γa. The transition strengths for 

the σ+, σ-, and π-transitions to the F = 1 (F = 2) are in the ratio 1:1:2 (√3:√3:0). Thus, the 

net decay rate between the mF = 0, F’ = 2 sub-level to the mF = -1, + 1 and 0 states of the 

F = 1 level were computed to be γa/12, γa/12 and γa/3 respectively and the decay to the F 

= 2 level was computed to be γa/2, since all the hyperfine levels in the F = 2 state are 

lumped together as a single state in our model. We have also taken into account the 

sourcing of atoms into the ground states from the 6S1/2 state via the 5P3/2 state (shown by 

dashed lines in Fig. 5.12). For our computations, these additional source terms were 

modeled using an “effective decay rate” directly from the hyperfine levels in the 6S1/2 

state to the 5S1/2 manifold. A detailed calculation, taking into account the various 

branching ratios into and from all the hyperfine levels of the 5P3/2 state was used to 

determine these rates. However, the decay rate of each of the individual Zeeman sub-

level in the 6S1/2 state was not considered, rather it was assumed that all of them decayed 

equally to the Zeeman sub-levels of the F = 1 and F = 2 levels at the respective “effective 

decay rates” previously determined. The ratio between the decay rates into the 5P1/2 and 
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5P3/2 state from the 6S1/2 state was simply decided by the ratio of the explicit values of 

the transition strength of the D1 and D2 lines [25]. 

 

Figure 5.12 Decay rates and branching ratios between various levels in our model. 

In addition to keeping track of the signs of the matrix elements involved in the 

transitions between the Zeeman sub-levels, it is also important to keep track of the 

explicit phase associated with the optical fields. In most cases, this phase can be factored 

out while transforming the Hamiltonian to the rotating basis. However, if any level has 

multiple pathways for excitation such that the pathways form a closed loop architecture, 

it is not possible to transform all the phases out of the Hamiltonian. Upon transformation 
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to the rotating basis, this results in the appearance of a so called “closed-loop phase” 

on one of the legs of the Hamiltonian which cannot be eliminated by any transformation, 

as shown in Fig. 5.13. In fact, changing the polarization of either the signal beam or the 

control beam from horizontal to vertical results in changing this closed-loop phase by π 

and thus the study of the Polarizer effect essentially boils down to studying the behavior 

of the system as this closed-loop phase is switched between 0 and π. 

 

Figure 5.93 Effect of closed-loop architecture resulting from multiple excitation 

pathways between two levels. 

 

In our model, we have up to a maximum of 20 levels. We used the Liouville equation, 

that describes the evolution of the density matrix in terms of a commutator between the 

density matrix and the Hamiltonian, to obtain the steady-state solution. The usual method 
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of vectorizing the density matrix and then inverting the coefficient matrix thus 

obtained, is not easy to handle as the size of the coefficient matrix is very large 

(400*400). In order to overcome this problem, we developed a novel algorithm which 

would compute the said coefficient matrix automatically, given the Hamiltonian and the 

source matrix. Briefly, we set each of the elements of the density matrix to unity one at a 

time while setting all the others to zero and repeatedly compute the commutator between 

the density matrix and the Hamiltonian. Once this procedure is repeated over all the 

elements of the density matrix, we would have computed the coefficient matrix. The 

source terms, as well as any other dephasing terms (such as collisional dephasing) are 

added in finally as a constant matrix. Details regarding the algorithm are presented in 

another section and is published here.26 

While averaging over the Doppler profile, we used the supercomputing cluster at 

Northwestern (QUEST) to perform our computations. Using 64 cores and computing the 

steady state solution for 512 values of detuning, each averaged over 800 points of the 

Doppler profile, we obtained the steady-state solution for our 20-level system in 3-4 

minutes. With a smaller system, say for a 15-level system, we obtained the solution in a 

few seconds. Some of the results, thus obtained, have already been reproduced in Section 

6. For all the simulations, a temperature of 500 Kelvin was used and the density of atoms 

was taken to be ~1011/cm3 
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h. Improvements to system and future work 

In general, the quality of a polarizer is characterized by its extinction ratio, η, defined as 

the ratio of the transmitted intensity of light with its state of polarization (SOP) parallel to 

the transmission axis to the transmitted intensity of the same beam of light with its SOP 

perpendicular to the transmission axis. The minimum value of η that might be acceptable 

depends on the signal to noise ratio (SNR) desired in a particular application. For the SI 

application, for example, an SNR of about 5 would suffice, according to the Rose 

criterion.27 For the optical logic gate, the SNR requirement could be even lower. This 

would translate directly to the η that can be achieved in our polarizer, assuming other 

sources of noise are negligible. The best case, shown in Fig. 5.7(b) corresponds to an η 

~2.5. The value of η can be increased significantly by using higher optical densities of the 

Rb medium (resulting in very high absorption of light polarized perpendicular to the 

transmission axis) but this would also result in lowering of the transmission of light 

polarized along the transmission axis of the polarizer. Thus, the requirement of a high 

value of η needs to be balanced against maximum achievable transmission and this would 

again depend on the particular application at hand. 

In order to increase the extinction ratio of our all-optical polarizer without sacrificing 

the maximum transmission achievable for a beam of light polarized along the 

transmission axis, it is necessary to make modifications to our system. One of the non-

idealities in our system is that all the Zeeman sublevels in the F = 1 state are populated 

due to decay from various channels. Since the transition between the F = 1,mF = 0 and the 
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F’ = 1,mF = 0 Zeeman sublevels is forbidden, application of a π-polarized optical 

pumping beam between the F = 1 and F’ = 1 states would pump the atoms into the F = 

1,mF = 0 state, as required. However, we note that a π-transition is allowed between the F 

= 1, mF = 0 and F’ = 2, mF = 0 Zeeman sublevels. Hence, if the interaction of the π-beam 

with F’ = 2 in considered, it is not possible to obtain a time-independent Hamiltonian 

after switching to a rotating basis. In order to circumvent this complication, we made the 

simplifying assumption that the π-

Although not necessary, we also assumed that the control beam only interacts with the F’ 

= 2 level. Given the separation (0.816 GHz) between the F’ = 1 and F’ = 2 levels, these 

assumptions are valid for the power levels used in our simulation, as detailed later. The π-

be brought in through a slot running parallel to the length of the Rb Cell. 

However, application of this pumping beam alone is not sufficient, as there is decay 

from the intermediate (5P) levels into the F = 2 state, which is another non-ideality in our 

system. This mandates the need for another optical pumping beam from the F = 2 state to 

the 5P3/2 state. The net effect of this additional pumping beam was modeled as an 

increased decay rate from the F = 2 to F = 1 state. The maximum decay rate obtainable by 

the application of such a beam is γa, the radiative decay rate of the 5P3/2 manifold. We 

further note that the ratio of steady-state populations in the F = 1 and F = 2 states (in the 

absence of any field) can be estimated to be ~γa/γg, where γg is the nominal decay rate 

from the F = 1 to F = 2 state. It is clear that we can increase the population in the F = 1 
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state by further decreasing γg, and this can be accomplished by using a buffer gas 

loaded cell. Figure 5.14 shows our model after the afore-mentioned changes are 

incorporated. As noted previously, to avoid unnecessary clutter, not all transition 

strengths are shown. 

 

Figure 5.10 Modified model after addition of optical pumping beams and buffer gas. 

 

A typical simulation result obtained by employing the modified system is shown in 

Fig. 5.15. Again, on

evident from Fig. 5.15, at zero detuning, a signal beam with the same polarization as the 
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control beam is almost completely absorbed (0.00001% transmission) while nearly 

90% of an orthogonally polarized beam is transmitted, corresponding to an η~105, 

comparable to the best commercially available polarizers. For this particular simulation, 

we used the co-propagating geometry, the decay rate from the F = 2 to F = 1 state was set 

to be equal to the decay rate of the 5P manifold while the decay rate in the opposite 

direction was set (reduced due to buffer gas) to about 10 KHz. The Rabi frequencies of 

the control beam and the optical pumping beam were set to be 0.5 and 10 (in units of the 

natural linewidth of the 5P manifold γa ~5.7 MHz), respectively. The density of atoms 

was taken to be 1011/cm3 and the temperature was set to 500K. 

 

Figure 5.115 Numerical simulation of polarizer effect in the presence of two optical 

pumping beams and using a buffer gas loaded cell. 
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It should be possible to realize such a polarizer at a very low light level, using a 

tapered nanofiber (TNF) embedded in Rb vapor. In a TNF, the typical mode area is ~0.2 

μm2. Thus, assuming a saturation intensity of 3mW/cm2, a Rabi frequency of 10γa would 

correspond to a power of only ~1 nW. Unlike the free space case, the maximum speed of 

operation in the TNF system would be limited by the transit time broadening (~60 MHz) 

rather than the natural linewidth of the 5P manifold (~6 MHz). To see why, note that the 

speed is limited by the rate at which atoms in the intermediate state relax to the ground 

state28and for a TNF system, this rate is effectively determined by the transit time. 

Finally, we note that the TNF system may be suitable only for demonstrating an all-

optical logic gate but not for SI, for which the free space version of the polarizer is better 

suited.  

 

CHAPTER 6 - OPTICALLY CONTROLLED WAVEPLATE 

 

a. Schematic of optically controlled waveplate and all-optical switch 

In an atomic system involving ladder type transitions, the presence of two different 

frequencies open up the possibility of controlling the behavior of the probe (upper leg) 

polarization by careful design of the pump parameters (lower leg). In particular, it is 

possible to make the vapor cell act as a waveplate. The mechanism for producing 

controlled polarization rotation, thus emulating a waveplate, is illustrated schematically 

in Figure 6.1a, using a cascaded atomic transition involving four levels where direct 
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excitation to the upper level from the ground state is dipole forbidden. We consider 

the mF=0 Zeeman sublevel of a certain hyperfine level into which the atoms have been 

optically pumped, as the ground state. The lower leg is excited by a right-circularly 

polarized (+) beam (control beam), tuned a few GHz below the transition frequency to 

the intermediate level.  The control beam, therefore, produces an off-resonant excitations 

to only the mF=1 Zeeman sublevel in the intermediate state.  The probe, applied between 

the intermediate level and the upper level is chosen to be linearly polarized and hence has 

two components: + and -.  The - component sees the effect of the atoms and because 

of the detuning, it sees only a real susceptibility with virtually no absorption, while the + 

component of the probe does not see any effect of the pump.  The parameters of the 

control beam can be tuned to achieve the condition for a  phase-shift for the - 

component only, so that at the output the linear polarization is rotated by 90 degrees.  
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Figure 6.1 Schematic illustration of an optical switch using an optically controlled 

waveplate.  See text for details. 

 

It is relatively simple to see how the waveplate may be used as an all-optical switch, as 

shown in Fig. 6.1(b).  Briefly, using a WDM coupler, the control beam and the probe are 

made to propagate through a Rb vapor cell.  Another WDM coupler is used to filter out the 

beams before the final polarizing beam splitter (PBS) placed at the output.  The two ports 

of the PBS serve as the two output channels of the switch.  Now, by turning the control 

beam on and off, the probe beam can be made to switch between the 2 ports of the PBS.  

In our set-up, we utilized the 5S1/2-5P1/2-6S1/2 cascade system, for which the pump and 

probe beams are at 795 nm and 1323nm respectively. Theoretical and experimental 

investigations of an optically controlled waveplate using ladder transitions in Rb have 
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been carried out previously 29,30. However, both of these works employ the EIT effect 

where the upper leg is excited by a strong control field while the lower leg is probed by a 

weak optical field, and thus has fundamentally different characteristics than the system 

we have considered. For example, in above-mentioned references, since most of the 

atoms are present in the ground state, noticeable effect can be produced even when the 

control field is not very strong and is significantly detuned from any resonance. However, 

in our system, the fact that sufficient atoms have to be excited to the intermediate state 

necessitates that a stronger control field tuned closer to resonance. Of course, the primary 

reason for choosing the upper leg as the probe is the need for an all-optical switch at a 

telecommunication wavelength. 

In Fig. 6.1(a), we showed a simplified set of energy levels in order to explain the basic 

process behind an optically controlled waveplate. In practice, however, it is extremely 

difficult to realize such an ideal system. We first note that it is virtually impossible to 

eliminate all the atoms from the  , 5S1/2, F=1, mF = ±1 Zeeman sublevels via optical 

pumping. Hence, Zeeman sub-levels other than mF=1 at the 5P1/2 manifold are also get 

coupled with the pump and probe optical fields. Furthermore, it is generally necessary to 

take into account both the hyperfine levels (F’=1 and F’=2) in the 5P1/2 manifold to 

account for Doppler broadening and power broadening. Thus, the full set of energy levels 

that need to be considered is quite large and the model employed for our system is 

discussed in the next section. For the remainder of the paper, the hyperfine levels in the 
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ground state are indicated by unprimed alphabets (F), those in the 5P1/2 level are 

primed (F’) and those in the 6S1/2 level are double-primed (F”). 

b. Comprehensive model used for numerical simulation 

In previous analyses of similar systems, a simple model consisting of only the relevant 

hyperfine levels transitions was employed [29,30]. Reference 3131 goes into some detail, 

considering some of the Zeeman sub-levels, but makes use of some approximations about 

some of the density matrix elements to arrive at a somewhat approximate result. In our 

model, we considered all the Zeeman sub-levels which explicitly interact with an optical 

field (all sub-levels of the F=2, F’=1,2 and F”=1 hyperfine levels), while the F=1 

hyperfine level and the 5P3/2 level were only considered as population transfer levels and 

hence all their sub-levels were lumped together as a single level. The full set of energy 

levels that we have incorporated in our model are shown in Fig. 6.2. The transition 

strengths indicated are expressed as multiples of the weakest transition, which in our case 

is the transition from the F=2, mF=0 sub-level to the F’=1, mF=1 sub-level, for example. 

We assume that the control beam is tuned below the F=2 F’=1 transition while the 

signal beam is detuned by an amount δs from the F’=1 F”=1 transition. Due to the 

Doppler width and power broadening, the F’=2 hyperfine level also interacts with both 

the control and the signal optical fields (indicated by dashed lines), albeit at a large 

detuning, and these interactions have been taken into account in our model. However, we 

ignored the coherent coupling between F=1 and the 5P1/2 manifold, because of the large 

frequency difference between F=1 and F=2 (~6.8GHz for 87Rb).     
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Figure 6.2 Model used for numerical computation. See text for more details. 

All the Zeeman sub-levels in the 5P1/2 (6S1/2) manifold are assumed to decay at the 

same rate, a~5.75 MHz (b~3.45 MHz). We also assume a nominal cross-relaxation rate 

(g ~0.01 MHz) between the ground states. The decay rate between any two Zeeman sub-

levels was calculated by assuming it to be proportional to the square of the matrix 

element of the corresponding transition, such that the sum of all such decays rates from 

the decaying level equaled the net decay from that level. For example, consider mF=0, 

F’=2 sub-level which decays at a rate a. The transition strengths for the σ+, σ-, and π-

transitions to the F=2 (F=1) are in the ratio √3:√3:0 (1:1:2). Thus, the net decay rate 
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between the mF=0, F’=2 sub-level to the mF=-1,+1 and 0 states of the F=2 level were 

computed to be a/4, a/4 and 0 respectively and the decay to the F=1 level was computed 

to be a/2, since all the hyperfine levels in the F=1 state are lumped together as a single 

state in our model. We have also considered the sourcing of atoms into the ground states 

from the 6S1/2 manifold via the 5P3/2 state. A detailed calculation, taking into account the 

various branching ratios into and from all the hyperfine levels of the 5P3/2 state was used 

to determine these “effective decay rates” directly from the 6S1/2 states to the ground 

states. Table 1 shows the “effective” branching ratios from each of the Zeeman sub-levels 

in the 6S1/2 manifold to the ground states. The ratio between the decay into the 5P1/2 and 

5P3/2 state from the upper levels was decided by the ratio of the explicit values of the 

transition strength of the D1 and D2 lines. 

 

 F”=2 F”=1 

  mF=-2 mF=-1 mF=0 mF=1 mF=2 mF=-1 mF=0 mF=1 

 mF=-2 0.68852 0.19426 0.05055 0 0 0.2361 0.09722 0 

 mF=-1 0.19426 0.47296 0.190277 0.07583 0 0.1667 0.11805 0.04861 

F=2 mF=0 0.05055 0.190277 0.45166 0.190277 0.05055 0.104167 0.125 0.104167 

 mF=1 0 0.07583 0.190277 0.47296 0.19426 0.04861 0.11805 0.1667 

 mF=2 0 0 0.05055 0.19426 0.68852 0 0.09722 0.2361 

 mF=-1 0.04722 0.03333 0.02083 0.009722 0 0.21296 0.1226875 0.1088 

F=1 mF=0 0.01944 0.023611 0.025 0.023611 0.01944 0.1226875 0.199 0.1226875 

 mF=1 0 0.009722 0.02083 0.03333 0.04722 0.1088 0.1226875 0.21296 

 
Table 1. Effective Decay rates between excited states and ground states 

 

We used the Liouville equation that describes the evolution of the density matrix in 

terms of a commutator between the density matrix and the Hamiltonian, to obtain the 

steady-state solution. The usual method of vectorizing the density matrix and then 
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inverting the coefficient matrix thus obtained, is not easy to handle as the size of the 

coefficient matrix is very large (400*400). In order to overcome this problem, we 

developed a novel algorithm which would compute the said coefficient matrix 

automatically, given the Hamiltonian and the source matrix. Briefly, we set each of the 

elements of the density matrix to unity one at a time while setting all the others to zero 

and repeatedly compute the commutator between the density matrix and the Hamiltonian. 

Once this procedure is repeated over all the elements of the density matrix, we would 

have computed the coefficient matrix. The source terms, as well as any other dephasing 

terms (such as collisional dephasing) are added in finally as a constant matrix. While 

averaging over the Doppler profile, we used the supercomputing cluster at Northwestern 

(QUEST) to perform our computations. Using 64 cores and computing the steady state 

solution for 512 values of detuning, each averaged over 800 points of the Doppler profile, 

we obtained the steady-state solution for our 15-level system in a few seconds.  

 

c. Experimental set-up 

 

The experimental configuration is illustrated schematically in Fig. 6.3.  Briefly, beams 

from two tunable lasers (one at 795 nm, and the other at 1323 nm) are combined with a 

dichroic mirror (DCM).  A part of the 795 light is sent to a reference vapor cell for 

saturated absorption spectroscopy and locking.  The combined beams are sent through a 

vapor cell, shielded from magnetic fields with -metal.  The cell is heated using bifiliarly 
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wounded wires that do not add any magnetic fields.  After passing through the cell, 

another DCM is used to split the light into two parts, and each frequency is detected with 

a separate detector.  The control beam at 795 nm, initially polarized linearly, is passed 

through a quarter-wave-plate in order to produce circular polarization.  The polarization 

of the signal beam, at 1323 nm, is controlled separately with a half-wave-plate. Ideally, 

the 1323 nm laser would also be locked at a particular frequency but this laser was found 

to be stable, so that locking it was not necessary.  

 

Figure 6.3 Experimental Set-up 

In order to analyze the polarization of the signal beam after passing through the cell, 

we inserted an analyzer before detector A, consisting of a voltage-controlled liquid 

crystal retarder (LCR), whose fast axis is placed at 45 degrees to the initial polarization 

direction (say 𝑦̂) of the signal beam, followed by a polarizer with its axis orthogonal to 

initial polarization of the signal beam. Having a orthogonal polarizer at the output is, in 



 115 

general, not enough, as one cannot determine if the observed signal is a manifestation 

of polarization rotation alone or a combination of both rotation and absorption, unless of 

course the detector signal is at least as large as the far off-resonant signal. However, it 

can serve as a diagnostic tool in identifying the regions of large phase shift as the probe is 

scanned across the 6S1/2 manifold. The LCR produces a phase retardance between its 

orthogonal axes that depends non-linearly on the amount of voltage applied to the LCR 

controller which can determined from a calibration curve provided by the manufactured 

and verified independently by us.  During our experiment, the control voltage to the LCR 

is scanned linearly from 0 V to 10 V, with 2 V and 8V corresponding to a phase shifts of 

approximately π and 0, respectively for the wavelength that we are using. This particular 

arrangement of the analyzer provides us with a very large set of data points 

(corresponding to the LCR scan) from which to obtain the values of absorption 

coefficients and the phase rotations, thus making it more robust against noise in the 

system. The signal observed at the detector A can be ascertained by performing a Jones 

matrix analysis of the entire system, which is discussed next. 

 

d. Jones matrix analysis 

Let Ein be the signal field amplitude before the Rb cell and let 𝑦̂  be its polarization 

direction. Let 𝜎̂+ = −(
𝑥+𝑖𝑦̂

√2
)  and 𝜎̂− = (

𝑥−𝑖𝑦̂

√2
) be the unit vectors corresponding to right 

(RCP) and left circular polarizations (LCP) respectively. Then, Ein can be represented in 

the circular polarization basis as 𝐸⃗ 𝑖𝑛 = 𝐸0𝑦̂ = 𝐸𝑖𝑛+𝜎̂++𝐸𝑖𝑛−𝜎̂−, where Ein+= Ein-=𝑖 𝐸0 √2⁄  
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and E0 is some arbitrary value. The field amplitude after the cell can be represented, 

in its most general form as  𝐸⃗⃗  ⃗𝑎𝑓𝑡𝑒𝑟 𝑐𝑒𝑙𝑙 = 𝐸𝑖𝑛+𝑒(−𝛼++𝑗𝜙+)𝜎̂++𝐸𝑖𝑛−𝑒(−𝛼−+𝑗𝜙−)𝜎̂− , where 

(𝛼+, 𝜑+) and (𝛼−, 𝜑−) are the attenuations and phase rotations for the RCP and LCP part 

of the signal beam respectively after passing through the Rb vapor cell. With 𝑥̂ and 𝑦̂ as 

the basis for the Jones vector representation and after some algebraic manipulation, we 

find that the field amplitude after the cell can be represented as 

 

           ,  

 

where 

 

Thus, αd and ϕd represent the differential absorption and phase rotation between the 

RCP and LCP parts of the signal beam. If θ represents the phase retardation produced by 

the LCR, then the Jones matrix for the LCR is given by  
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and the Jones matrix for the LCR whose axis is rotated by 450 is given by JLCR45=R-
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Finally, the polarizer with its axis parallel to the 𝑦̂  axis has the Jones matrix 

representation  

1 0

0 0
XPolJ

 
  

 
 

Thus, the Jones vector for the signal observed at the detector A would be 

Jout=JYPol* JLCR45*Eaftercell 

Performing the calculations, we find that the intensity as seen by the detector A is given 

by,  

𝐼 =
𝐸0

4
𝑒−2𝛼−(1 + 𝑒−2𝛼𝑑 + (1 − 𝑒−2𝛼𝑑)sin 𝜃 − 2𝑒−𝛼𝑑cos 𝜙𝑑 cos 𝜃) 

In Fig. 6.4(a), I is plotted for different values of ϕd (in degrees) and αd =0 as the LCR 

phase retardance θ varies from 0 (left-end) to π (center) and back to 0 (right-end). As is 

evident from the figure, the signature for increasing differential phase rotation is the 

upward shift of the minimum and downward shift of the maximum of the curve until ϕd = 

900, at which point the signal is perfectly flat. For greater values of ϕd, the shape of the 

curve gets inverted until ϕd = π. On the other hand, for non-zero values of αd and ϕd =0, 

the minima of the curves get shifted inwards, the curves slope upward on either side of 

the minima and the central part of the curve is flattened out, as shown in Fig. 6.4(b). For 

non-zero values of both αd and ϕd, the interpretation is not so straight-forward and one has 

to use 3 data points and invert the expression for I to obtain their values. The algebra is 

somewhat involved and we present only the final result – 
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𝑦 = 𝑒𝛼𝑑 = √
𝐼2
2(𝐶1 − 𝐶3 − 𝑆3−1) + 𝐼1𝐼2(𝐶3 − 𝐶2 − 𝑆2−3) + 𝐼2𝐼3(𝐶2 − 𝐶1 − 𝑆1−2)

𝐼2
2(𝐶3 − 𝐶1 − 𝑆3−1) + 𝐼1𝐼2(𝐶2 − 𝐶3 − 𝑆2−3) + 𝐼2𝐼3(𝐶1 − 𝐶2 − 𝑆1−2)

 𝑎𝑛𝑑 

 cos 𝜙𝑑 = 
(𝐼2−𝐼1)(𝑦+

1

𝑦
)+(𝐼1𝑆2−𝐼2𝑆1)(

1

𝑦
−𝑦)

2 (𝐼2𝐶1−𝐼1𝐶2)
, 

Where Cj= cos (θj), Sj= sin (θj), and Sj-k = sin (θj -θk), where θj is the phase 

rotations produced for some voltage, and Ij is the corresponding intensity seen by the 

detector. 
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Figure 6.4 Ideal Output seen by detector for different values of a) ϕd with α+ = α- = 0 and 

b) α-  with ϕd = α+= 0  

 

e. Results 

 

The exact spectroscopic details of the 5P1/2-6S1/2 transitions depend critically on the 

control beam intensity and detuning, the temperature of the cell and probe detuning. 

Thus, as a diagnostic tool to identify regions of high phase shift, the LCR was removed 
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and an orthogonal polarizer was placed after the Rb cell. As the probe laser was 

scanned across the 6S1/2 manifold, the detuning of the control beam was varied in order to 

maximize the transmission through the orthogonal polarizer over the largest possible 

bandwidth. Then, the LCR was inserted and with the control beam and signal lasers 

positioned at the detunings previously determined, the exact differential phase rotation 

and absorption were determined. The temperature of the cell was maintained around 130o 

Celsius and pump power was about 600 mW obtained from a Ti-Sapphire laser. The 

probe laser was about 1 mW obtained from a fiber coupled semiconductor laser. Both 

beams were focused to a spot size of about 50 μm near the center of the Rb cell.  

 

Figure 6.5 shows the results obtained when the LCR control voltage was scanned linearly 

from 10V to 0V and back up to 10V, for the co-propagating and counter-propagating 

geometries respectively. The control beam was right circularly polarized and the signal 

beam was vertically polarized. The pump was placed at a detuning of about 1.5 GHz. The 

blue trace (normalized from 0 to 1) corresponds to the situation when the control beam 

was blocked and can thus be treated as the reference signal, corresponding to 0 phase 

retardance. When the control beam is unblocked, our system acts as an optically 

controlled waveplate and the red trace is obtained. Comparing with the theoretical plots, 

we found that the phase shifts for the co- and counter-propagating  ϕd ~ 1800 and αd ~0. 

The values obtained are consistent with those obtained using the analytical expressions 
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Figure 6.5 Observed experimental data showing differential phase rotation of ~ 1600 

and 1800 respectively and no differential absorption. See text for more details 

 

Fig. 6.6 shows the result obtained from numerical simulations using the model 

presented in section 2. We perform our calculations by setting Γa to unity and rescaling 

all parameters in units of Γa. The pump is resonant with the F=1 to F’=2 transition and the 

probe detuning (δs) ranges from -1200𝛤𝑎 to 1200𝛤𝑎. Fig. 6.6(a) and 6.6(b) show the phase 

shift of the RCP and LCP parts of the signal beam introduced by the Rb medium and Fig. 

6.6(c) shows the difference between them. Fig. 6.6(d)-6.6(f) show the corresponding 

figures for attenuation. As is evident from the figure, at a pump detuning of ~1.2 GHz 

and for Rb density of 1012/cm3 and cell length of 7.5 cm, we can only produce a phase 

shift of about 1800 with minimal differential absorption. The relevant parameters used for 

this particular simulation are as follows- the decay rates Γa, Γb and Γg are 2π*5.75 sec-1, 

2π*3.45 sec-1 and 2π*0.1 sec-1 respectively. The separation Δ, between F’=1 and F’=2 is 

2π*814.5 sec-1 (= 141.4𝛤𝑎)  and the Rabi frequencies have been chosen to be Ω𝑝 =

100𝛤𝑎, and Ω𝑠 = 0.1𝛤𝑎. The expressions used to calculate the attenuation and additional 

phase retardance introduced by the Rb medium are given by  

 

Phase Shift: 

𝜙+ = 𝑘𝐿
𝛽+

2
𝑅𝑒(𝑎13,4ρ13,4 + 𝑎14,5ρ14,5 + 𝑎12,7ρ12,7 + 𝑎13,8ρ13,8 + 𝑎14,9ρ14,9)  

𝜙− = 𝑘𝐿
𝛽−

2
𝑅𝑒(𝑎12,5ρ12,5 + 𝑎13,6ρ13,6 + 𝑎12,9ρ12,9 + 𝑎13,10ρ13,10 + 𝑎14,11ρ14,11) 
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Attenuation: 

𝛼+ =  𝑘𝐿𝛽+𝐼𝑚(𝑎13,4ρ13,4 + 𝑎14,5ρ14,5 + 𝑎12,7ρ12,7 + 𝑎13,8ρ13,8 + 𝑎14,9ρ14,9)/2 

𝛼− = 𝑘𝐿𝛽−𝐼𝑚(𝑎12,5ρ12,5 + 𝑎13,6ρ13,6 + 𝑎12,9ρ12,9 + 𝑎13,10ρ13,10 + 𝑎14,11ρ14,11)

/2 

And  

𝛽± = 𝑏𝑚𝑖𝑛
2 3𝑛𝑎𝑡𝑜𝑚𝛤𝜆3

 

4𝜋2𝛺𝑚𝑖𝑛
, 

where 𝑘 is the wavevector of signal beam, L is the length of the cell, natom is the density 

of Rb atoms, 𝛺𝑚𝑖𝑛  is the Rabi frequency for the weakest probe transition and the various 

aij’s are the ratios of the Rabi frequency (𝛺𝑖𝑗 ) of the |i>-|j> transition to 𝛺𝑚𝑖𝑛 .  For 

example, 𝑎12,7 = 𝛺12,7 𝛺14,9⁄ = √6 . 𝑏𝑚𝑖𝑛
2  is the fraction of the atoms (<1) that decay 

along the transition corresponding to  𝛺𝑚𝑖𝑛, among all allowed decay channels from the 

decaying level. In our model, the amplitudes for all possible transitions from |14> are in 

the ratio 1:1:1: √3: √6 and hence the fraction of atoms that decay along the different 

channels are in the ratio 1:1:1:3:6. Thus, 𝑏𝑚𝑖𝑛
2 = 1 (1 + 1 + 1 + 3 + 6)⁄ = 1/12. 
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Figure 6.6 Numerical simulation of 15-level system showing phase shift and attenuation 

of the RCP and LCP parts  

of the probe beam as a function of probe detuning. Here δc~1.2 GHz, natom~1012/cm3 and 

Ωmin=100Γa. See text for more details. 
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CHAPTER 7 N-LEVEL ALGORITHM 

 

For some situations in atomic and molecular physics, it is necessary to consider a system 

with many energy levels, such as excitation involving many hyperfine levels and/or 

Zeeman sublevels. The Liouville equation that describes the evolution of the density 

matrix is expressed in terms of a commutator between the density matrix and the 

Hamiltonian, as well as additional terms that account for decay and redistribution []. To 

find solutions to this equation in steady-state or as a function of time, it is convenient first 

to reformulate the Liouville equation by defining a vector corresponding to the elements 

of the density operator, and determining the corresponding time evolution matrix. To find 

the steady-state solution in a closed system, it is also necessary to eliminate one of the 

diagonal elements of the density matrix from these equations, because of redundancy.  

For a system of N atoms, the size of the evolution matrix is N2xN2, and the size of the 

reduced matrix is (N2-1)x(N2-1). When N is very large, evaluating the elements of these 

matrices becomes very cumbersome. In this paper, we describe an algorithm that can 

produce the evolution matrix in an automated fashion, for an arbitrary value of N. We 

then apply this algorithm to a fifteen level atomic system used for producing optically 

controlled polarization rotation. 
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a.  A Two Level System 

To illustrate the basic idea behind the algorithm, we first consider the simplest case: a 

two-level system of atoms excited by a monochromatic field [], as illustrated in figure 1.  

Here,  
1  and 

2 are the energies of levels 1 and 2 , and  is the frequency of the 

laser, with a Rabi frequency of 0 [].   

 

The Hamiltonian, under electric dipole and rotating wave approximations, is given as 

 

 

0

0

i t-kz0
1

-i t-kz

+

+0
2

e
2

=

e
2

 

 





 
 
 

 
 
 

  (1) 

where k is the wavenumber of the laser, z0 is the position of the atom, and  is the phase 

of the field.  Without loss of generality, we set z0=0 and =0 in what follows.  The 

corresponding two-level state vector for each atom is  

1

2

( )

( )

C t

C t


 
  

 
 ,                        (2) 

which obeys the Schrodinger equation 

i
t








    (3) 

To simplify the calculation, we convert the equations to the rotating wave frame by 

carrying out the following transformation into an interaction picture:  

1

2

( )

( )

C t
R

C t
 

 
  

 
     (4a) 
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where 

    
1

2

i t

i t

e 0

0 e
R





 
  

 
    (4b)  

The Schroedinger equation now can be written as  

i
t








             (5a) 

where 

0

0

0
2

2


 
 

  
  

 

    (5b) 

 2 1=          (5c) 

 

    The time independent Hamiltonian shown in equation 5b can also be derived easily 

without any algebraic manipulation. To see how, consider the diagram shown in figure 

1(b), where we have added the number of photons as a quantum number in designating 

the quantum states. Thus, for example, |N,1> represents a joint quantum system where 

the number of photons in the laser field is N, and the atom is in state 1, and so on. Of 

course, a laser, being in a coherent state, is a linear superposition of number states, with a 

mean photon number <N>, assumed to be much larger than unity. In the presence of such 

a field, the interaction takes place between near-degenerate states, namely |N,2> and 

|N+1,1>, for example, with a coupling rate of 0/2, where 𝑁 ∝ √𝑁. Since the mean 

value of N is assumed to be very large, and much larger than its variance, one can assume 
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the mean value of N , defined as 0 to be proportional to √〈𝑁〉 . Under this 

approximation, we see that the coupling between any neighboring, near-degenerate pair 

of states is 0, and the energies of these states differ by δ. If we choose the energy of 

|N+1,1> to be 0, arbitrarily, then the energy of |N,2> is –ћδ. The interaction is contained 

within a given manifold, so that a difference in energy (by ћω) between neighboring 

manifold is of no consequence in determining the evolution. These considerations 

directly lead to the Hamiltonian of equation 5(b). For a system involving more than two 

levels, a similar observation can be employed to write down the time-independent 

Hamiltonian by inspection, as we will show later.  

 

The decay of the excited state amplitude, at the rate of can be taken into 

account by adding a complex term to the Hamiltonian, as follows: 

ℋ̃′ = ℏ [
0

Ω0

2
Ω0

2
−

𝑖𝛤

2
− 𝛿

]                (6) 

For this modified Hamiltonian, the equation of evolution for the interaction picture 

density operator can be expressed as  

𝜕

𝜕𝑡
𝜌̃ =

𝜕

𝜕𝑡
𝜌̃ℎ𝑎𝑚 +

𝜕

𝜕𝑡
𝜌̃𝑠𝑜𝑢𝑟𝑐𝑒 +

𝜕

𝜕𝑡
𝜌̃𝑡𝑟𝑎𝑛𝑠−𝑑𝑒𝑐𝑎𝑦 ≡ 𝑄      (7) 

where the 2nd term in the middle accounts for the influx of atoms into a state due to 

decay from another state, and the 3rd term stands for any dephasing unaccompanied by 

population decay, often called transverse decay. In the case of a two level system, we 

have:  
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𝜕

𝜕𝑡
𝜌̃ℎ𝑎𝑚 = −

𝑖

ℏ
[ℋ̃ ′𝜌̃ − 𝜌̃ℋ̃′∗]                       (8a) 

𝜕

𝜕𝑡
𝜌̃𝑠𝑜𝑢𝑟𝑐𝑒 = [

𝛤𝜌̃22 0
0 0

]    (8b) 

𝜕

𝜕𝑡
𝜌̃𝑡𝑟𝑎𝑛𝑠−𝑑𝑒𝑐𝑎𝑦 = [

0 −𝛾𝑑𝜌̃12

−𝛾𝑑𝜌̃21 0
]  (8c) 

For simplicity, we ignore the dephasing term in 8c.  

Substituting eqn. 6 into eqn. 8a, we get: 

    

     

0 12 21 12 0 11 22

ham

21 0 11 22 0 12 21 22

1 1
( 2 )

2 2

1 1
( 2 ) 2

2 2

i i i

i i i
t

     



      

 
       

 
             
 





  

            (10) 

 Substituting eqns. 8 and 10 into eqn. 7, we get 

    

     

0 12 21 22 12 0 11 22
11 12

21 22
21 0 11 22 0 12 21 22

11 12

21 22

1 1
i - + i i( +2i ) + -

2 2

1 1
- i (-i -2 ) + - -i - -2

2 2

Q

t

Q
Q

Q Q

t

      
 

 
      



 
     

  
      

 
 




 

 
   

 



 (11) 

 

In general, each of the matrix elements Qij can depend on all the ρij. In order to find the 

steady state solution, it is convenient to construct the following vector 

11

12

21

22

A









 
 
 
 
 
      

  (12) 
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Equation 11 can now be expressed as a matrix equation 

MAA
t






     
 (13) 

where M is a (4×4) matrix, represented formally as: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

M M M M

M M M M
M

M M M M

M M M M

 
 
 
 
 
   

Of course, the elements of this matrix can be read-off from eqn. 11. However, this task is 

quite cumbersome for an N-level system.  Thus, it is useful to seek a general rule for 

finding this element without having to write down eqn. 11 explicitly.  Later on in this 

paper, we establish such a rule, and specify the algorithm for implementing it.  Here, we 

can illustrate this rule with some explicit examples:  

 M11= 11Q , if we set 
11 =1 and ( 11)ij ij  =0 in eqn. 7;  

M12= 11Q , if we set 12 =1 and ( 12)ij ij  =0 in eqn. 7; 

M13= 11Q , if we set 21 =1 and ( 21)ij ij  =0 in eqn. 7; 

M14= 11Q , if we set 22 =1 and ( 22)ij ij  =0 in eqn. 7; 

M21= 12Q , if we set 11 =1 and ( 11)ij ij  =0 in eqn. 7; 

M22= 12Q , if we set 12 =1 and ( 12)ij ij  =0 in eqn. 7; 

M23= 12Q , if we set 21 =1 and ( 21)ij ij  =0 in eqn. 7; 

M24= 12Q , if we set 22 =1 and ( 22)ij ij  =0 in eqn. 7; 
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  and so on...       (14) 

 

This is the key element of the algorithm presented in this paper.  Explicitly, in a 

computer program, such as the one in Appendix A, every time a parameter is changed, 

the elements of the M matrix are obtained by evaluating equation 7, while setting all but 

one of the elements of the density matrix to zero.  For numerical integration as a function 

of time, one can then use a Taylor expansion to solve equation 13. 

To find the steady-state solution, we set  0A
t




 , so that: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42

11

12

21

243 4 24

0

M M M M

M M M M

M M M M

M M M M









 
 
 
 
 


 
 
  
 





 

   (15) 

Expanding this equation, we get: 

11 12 21 22

11 12 21 22

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43

11 12 21 22

11 12 21 244 2

M M M M

M M M M

M M M M

M M M M

   

   

   

   

   

   










 

 



 

  (16) 

For a closed system, there cannot be any net influx or outflux of atoms from the system. 

Thus, the rate of change of one of the diagonal (population) terms of the density matrix is 

the negative sum of the rates of change of the other diagonal (population) terms. Thus, 

one of the equations in the above system of equations is rendered redundant. We also 

know that for a closed system, sum of the diagonal elements of the density matrix equals 

unity.  In the case of the two level system, we thus have
11 22 1   .  We can thus choose 
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to eliminate the last equation, for example, and replace 22 with 11(1 ) in the 

remaining three equations, to get 

 

11 11

12 12 11

11 12 13 14 14

21 22 23 24 24

31 32 33 34 321 21 4

'

M M M M M

M M M M M

M M M M M

M

 

  

 

     
     

 
     
      

   
   


   

         

 (17a) 

 

so that 

 

 

 

11 14 12 13 14

21 24 22 23 24

31 34 32 33

11

12

21 34

M M M M M

M M M M M

M M M M M







   
   

   


  
 

 
 
       

   (17b) 

 

Here, we have defined M’ as the reduced matrix resulting from M after eliminating the 

last row and column, for convenience of discussion during the presentation of the general 

algorithm later on.  To simplify the notation further, we define: 

11

12

21

B







 
 


 
  

, 
14

24

34

M

M

M

S

 









, 

 

 

 

11 14 12 13

21 24 22 23

31 34 32 33

M M M M

W M M M M

M M M M

 
 
 
 











 (18)

 

Using these definitions in eqn. 17, we get: 

    WB S           

Thus, the steady-state solution is simply given by: 

1B W S         (19) 
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In a computer code, such as the one in Appendix A, the elements of W and S can 

be determined in an automated fashion by using a simple algorithm based on a 

generalization of this example. We get the values of 
11 , 12 , and 21  by using eqn. 19. 

Using the condition
11 22 1   , we can then find the value of 22 .  

 

For the 2-level system, the elements of M, W and S can be worked out by hand, 

without employing the general rules, with relative ease. However, for arbitrarily large 

systems, it can become exceedingly cumbersome.  In what follows, we describe a 

compact algorithm for determining the elements of M, W and S for a system with N 

energy levels. 

 

To start with, determine the elements of the complex effective Hamiltonian of eqn. 6, 

as well as the elements of source for the N-level system. These matrices can be used to 

calculate the elements of Q, as defined in eqns. 7 and 11.  The elements of M can then be 

found by using the following algorithm.  Let Mnp denote the element corresponding to the 

n-th row and p-th column of the M matrix. Similarly, let Qαβ denote the element 

corresponding to the -th row and -th column of the Q matrix, and  denote the 

elements corresponding to the -th row and -th column of the   matrix.  Then one can 

use the following  prescription to obtain Mnp: 
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  Mnp = Qαβ if we set  =1 and ( )ij ij   =0  in eqn. 7. 

 

Thus, the crux of the algorithm is to obtain a way of finding α,β,ε and γ efficiently, for 

a given set of values of {n,p}. These indices are obtained as follows: 

 

  =  nzrem[n/N];   = 1+(n-)/N;   =nzrem[p/N];   = 1+(p-)/N        (20) 

 

where nzrem is a user-defined function prescribed as follows: nzrem[A/B]= 

remainder[A/B] if the remainder is non-zero; otherwise nzrem[A/B]=B.  As an example, 

consider the case of the last line in eqn. 14.  Here, n=2, p=4 and N=2.  Thus, applying 

eqn.20, we get: =2, =1, =2, =2, in agreement with the last line of eqn. 14.  We 

should note that there are other ways to determine these coefficients as well, using the 

greatest integer function, for example.  

  

Once (α,β) and (ε,) have been obtained, set  to be 1 while setting the other 

elements to 0, evaluate the Q matrix using eqn. 7, and then pick out Qαβ and assign it to 

Mnp. Then repeat this procedure of evaluating the Q matrix every time with different 

element of the   matrix set to 1 sequentially, until all elements of the M matrix have 

been calculated. 
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The steps for finding S and W, as defined in eqn. 18 for the case of a two level 

system, are rather simple. The last column of the M matrix barring the very last element 

is the S matrix. In order to determine the elements of W, find first the M’ matrix, which is 

obatined from M by eliminating the last row and the last column, as illustrated in eqn. 

17a for a two level system. Define Wi and M’i as the i-th column of the W and the M’ 

matrix. Then, update a selected set of Wi, using an index  k running from 1 to (N-1), as 

follows: 

 

    W(k-1)N+k = M’(k-1)N+k  –S       (21) 

 

To illustrate this rule, consider, for example, the case where N=3.  In this case, W1=M1-S 

(for k=1) and W5=M5-S (for k=2), and the other six columns remain the same.   With S 

and W thus determined, eqn.  20 is used to find the steady-state solution vector: B. A 

particular element of the density matrix, jk (excluding NN ), corresponds to the ((j-

1)*N+k)-th element of the B vector.  The population in the N-th level, NN  is simply 

obtained from the knowledge of the steady- state populations in all other levels and the 

constraint 
1

N

ii

i




 = 1. Explicitly, we can write: 

   

( 1)

1

1 (( 1) )
N

NN

j

B j N j




   
   (22) 

 

where we have used the notation that B(k) represents the k-th element of the B vector. 
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A Matlab code for an N-level system, applied to the case of two-levels, is shown in 

Appendix A.  The code is valid for a general system, only N (number of levels in the 

system), and the effective, complex Hamiltonian (eqn.6)  and the source terms (eqn. 8) 

need to be changed. The rest of the program does not have to be changed.  Of course, the 

plotting commands would have to be defined by the user based on the information being 

sought.  As an example, the population of the excited state as a function of the detuning, 

, produced by this code, is plotted in figure 2. 

 

b.  A Three Level System  

 

The two-level problem discussed above is somewhat trivial, and may mask the generality 

of the algorithm.  Therefore, we include here the specific steps for a three-level  system 

[6-11], shown in figure 3, in order to elucidate how the algorithm is completely scalable 

to an arbitrary number of energy levels involved. In this case, the Hamiltonian under 

electric dipole and rotating wave approximations is given by 

1

2

a

a
3

0

= 0

2

2

2 2

a

b

a b

i t

i tb

i t i tb

e

e

e e





 







 
 
 

 
 
 

  
 
 

  (23) 

where 1 , 2 , and 3  are the energies of the three levels, and a  and b  are the 

frequencies of  the laser fields. 
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After applying the interaction picture transformation using the following matrix 

i

i

i

e 0 0

0 e 0

0 0 e

R=

t

t

t





 
 
 
 
 

    (24) 

where θ = ω1 −
∆

2
, 𝛽 = ω2 +

∆

2
, ∆= 𝛿𝑎 − 𝛿𝑏 , 𝛿 = (𝛿𝑎 + 𝛿𝑏)/2, 𝛿𝑎 = ω𝑎 − (ω3 − ω1),

𝛿𝑏 = ω𝑏 − (ω3 − ω2)  the Hamiltonian can be expressed as 

a

b

a b

0

= 0 -
2

-2

  
 

  
    .

   (25) 

The transformed state vector for each atom can be written as 

1

2

3

C ( )

=R ( )

( )

t

C t

C t

 

 
 

  
 
 

    (26) 

 

The time independent Hamiltonian Η̃ of equation 25 can be written down by inspection, 

following the discussion presented earlier for the two-level system. First, we observe that 

the energy difference between |1> and |3> (Η̃11 − Η̃33) is ћδ𝑎, and the energy difference 

between |2> and |3> (Η̃22 − Η̃33) is ћδ𝑏. Next, we make a judicious but arbitrary choice 

that Η̃11 =
ћ

2
∆ . We then get that Η̃33 = −ћ𝛿, which in turn implies that Η̃22 = −

ћ

2
∆ . 

The off diagonal terms are, of course, obvious, with non-zero elements for transitions 

excited by fields. This approach is generic, and can be used to find the time independent 
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Hamiltonian by inspection for an arbitrary number of levels. We should note that a 

complication exists when closed-loop excitations are present. In that case, it is wiser to 

work out the Hamiltonian explicitly using the transformation matrix approach outlined 

here. We now add the decay term to get the complex Hamiltonian 

 

a

b

a b

0

= 0 -
2

-i -2

  
    
    

              (27) 

We assume that the population of the excited state decays at the same rate 

( from 3 to 1  and from 3  to 2 .  Now we construct the M matrix for the 

three-level system which satisfies the following equation under the steady-state condition: 

11 12 13 14 15 16 17 18 19

21 22 23 24 25 26 27 28 29

31 32 33 34 35 36 37 38 39

41 42 43 44 45 46 47 48 49

51 52 53 54 55 56 57 58 59

61 62 63 64 65 66 67 68 69

71 72 73 74 75 76 77 78 79

81 82 83 8

M M M M M M M M M

M M M M M M M M M

M M M M M M M M M

M M M M M M M M M

M M M M M M M M M

M M M M M M M M M

M M M M M M M M M

M M M M
4 85 86 87 88 89

91 92 93 94 95 96 97 98 99

11

12

13

21

22

23

31

32

33

0

M M M M M

M M M M M M M M M



















  
  
  
  
  
  
   
  
  
  
  
  
  

   

  (28) 

The elements of the M matrix can be found explicitly by following the same steps as 

shown in equation (7) through (13) for the two-level system. Alternatively, these can be 

found by using the algorithmic approach outlined in equation (20), and implemented by a 

computer code. The M-matrix can be obtained in O (N2) steps as opposed O (N4) that 
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would be needed using the method prescribed thus far, but it is non-intuitive and 

masks the understanding of the algorithm. We have outlined the faster method in the 

appendix. 

 

Substituting  
11 22 33+ + =1    into eqn. 28, we get 

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

M M M M M M M M

M M M M M M M M

M M M M M M M M

M M M M M M M M

M M M M M M M M

M M M M M M M M

M M M M M M M M

M M M M M M M M











19 19 19

29 29 29

39 39 39

49 49 49

59 59

69 69

79 79

89

11

12

13

21

11 22

22

23

8

31

932

M M M

M M M

M M M

M M M

M M M

M M

M M

M M








 









      
      
      
      
      
        
      

       
       
       
       
             

59

69

79

89

M

M

M

 
 
 
 
 
 
 
 
 
 
 
  

 

          (29.a) 

Or 

11 19 12 13 14 15 19 16 17 18

21 29 22 23 24 25 29 26 27 28

31 39 32 33 34 35 39 36 37 38

41 49 42 43 44 45 49 46 47 48

51 59 52 53 54 55 59 56 57 58

61 69 62 63 64

) )

) )

) )

)

( (

( (

( (

( (

( (

( (

)

) )

)

M M M M M M M M M M

M M M M M M M M M M

M M M M M M M M M M

M M M M M M M M M M

M M M M M M M M M M

M M M M M M

 

 

 

 

 



11 19
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69 66 67 68 69

71 79 72 73 74 75 79 76 77 78 79
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( (

( (

)

) )
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M

M
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M

M M M M M

M M M M M M M M M M M

M M M M M M M M M M M

















    
   
   
   
   
     
   
   

   
    
   

        


 
 
 
 
 
 
 
 
 
 
 

 

                     (29.b) 

To simplify the above expression, we define the following objects as before 



 140 

19 11 19 12 13 14 15 19 16 17 18

29 21 29 22 23 24 25 29 26 27 28

39 31 39 32 3

49

59
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8

11

12

13
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2

3 9
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2
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M

B S
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M
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


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 
   
    
   
     
   
   
   
   
   
      

3 34 35 39 36 37 38
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
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 

 

 
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 
 
 
 
 
 
 
 
 
 
 
  

Substituting them into eqn. 29.b, we get 

WB S   or 1B W S      (30) 

The Matlab program shown in Appendix B implements our algorithm for the three 

level system.  Note that this program is essentially the same as the program for the two-

level case with the following modifications: we have (a) defined additional parameters 

relevant to this system, (b) entered proper elements in the Hamiltonian, and (c) added 

appropriate source terms for the populations.  As an example, we have shown in figure 4 

a plot of the population of the excited state, produced using this code, displaying the 

well-known coherent population trapping dip. 

 

c.  Applying the code to a system with an arbitrary number of energy levels 

 

There are many examples in atomic and molecular physics where it is necessary to 

include a large number of energy levels.  One example is an atomic clock employing 

coherent population trapping []. The basic process employs only three Zeeman sublevels. 

However, the other Zeeman sublevels have to be taken into account in order to describe 

the behavior of the clock accurately. Using alkai atoms for other applications such as 
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atomic interferometry, magnetometry and  Zeno-effect based switching also requires 

taking into account a large number of Zeeman sublevels []. Another example is the 

cooling of molecules using lasers.  In this case, many rotational and vibrational levels 

have to be considered []. The code presented here can be applied readily to these 

problems, with the following modifications: (a) define additional parameters to 

characterize the problem, (b) develop the time independent Hamiltonian (possibly by 

inspection using the technique described earlier, if no closed-loop excitation is present), 

(c) add proper decay terms to the Hamiltonian, (d) add appropriate  source terms for the 

populations & transverse decay terms, and (e) add plotting instructions for components of 

interest from the solution vector.  Of course, if numerical techniques are to be employed 

for finding time-dependent solutions, the code can be truncated after the M matrix is 

determined, followed by application of eqn. 13 along with a proper choice of initial 

conditions.  

 

d.  Applying the code to a specific system with fifteen energy levels: an optically 

controlled waveplate 

 

As an explicit example of a system involving a non-trivial number of energy levels and 

optical transitions, we consider here a process where a ladder transition in 87Rb is used to 

affect the polarization of a probe beam (upper leg) by varying parameters for the control 

beam (lower leg). The excitation process is illustrated schematically in figure 5, for one 
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particular configuration where the control beam is right circularly polarized, and the 

probe is linearly polarized. Because of the asymmetry introduced by the control, it is 

expected that the left circular component of the probe would experience a much larger 

phase shift, which in turn would induce an effective rotation of the probe polarization. 

Thus, the system can be viewed as an optically controlled waveplate for the probe. Here, 

we use the generalized algorithm to compute the response of this system. Of course, the 

response of the system under various experimental conditions would be quite different. 

The interactions of the pump (~795nm) and the probe (~1323nm) are modeled as follows. 

The pump is either left or right circularly polarized, and is tuned between the 5S1/2, F=1 -> 

5P1/2, F’=1 and the 5S1/2, F=1 -> 5P1/2, F’=2 transitions, with a detuning of δp, as 

illustrated in figure 5. The probe, linearly polarized, is tuned to the 5P1/2, F’=1 to 6S1/2, 

F”=1 transition, with a detuning of δs. Due to Doppler broadening, it is important to 

consider the interaction of the 5P1/2, F’=2 level with both the pump and probe optical 

fields. For example, δp =814.5MHz corresponds to the situation where the pump is 

resonant with the 5S1/2, F=1 -> 5P1/2, F’=2 transition and δs =-814.5MHz corresponds to 

the situation where the probe is resonant with the 5P1/2, F’=2 to 6S1/2, F”=1 transition. In 

our model, we ignore the coherent coupling between 5S1/2, F=2 and the 5P1/2 manifold, 

because of the large frequency difference between 5S1/2, F=1 and 5S1/2, F=2 (~6.8GHz for 

87Rb). However, we take into account the decay of atoms from the 5P1/2 manifold to the 

5S1/2, F=2 state. Furthermore, we account for collisional relaxation (at a rate Γg) between 

5S1/2, F=1 and 5S1/2, F=2 manifolds, in order to model the behavior of atoms in a vapor 
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cell. Finally, we also take into account the decay of atoms from 6S1/2, F”=1 to the 

5S1/2 manifold via the 5P3/2 manifold in an approximate manner. 

The Rabi frequency of each transition is proportional to the corresponding dipole moment 

matrix elements. In Fig. 5, all the Rabi frequencies are expressed as a multiple of the 

Rabi frequency corresponding to the weakest transition. For example, the dipole matrix 

elements of σ+ transitions for the 5S1/2-5P1/2 excitation are tabulated in Table 1. Thus, if 

we set the coupling between |1> and |5> to be  𝐻̃1,5 = −
Ω𝑃+

2
, then the other coupling 

terms for the lower leg are as follows: 

𝐻1,9 = −
Ω𝑃+

2
, 𝐻2,6 = −

Ω𝑃+

2
, 𝐻2,10 = −

√3Ω𝑃+

2
, 𝐻̃3,11 = −

√6Ω𝑃+

2
. 

 

The decay rates between any two Zeeman sub-levels are assumed to be proportional to 

the squares of the dipole moment matrix elements such that the sum of all the decay rates 

equals the net decay rate from that level. We assume all the Zeeman sub-levels in the 

5P1/2 and 6S1/2 manifold decay at the same rate, Γa and Γb respectively. To illustrate how 

the decay terms are determined, consider, for example, state |5>, which denotes the 

Zeeman sublevel 5P1/2, F’=1, mF=0. The dipole matrix elements for all allowed 

transitions from this state to the various sublevels within the 5S1/2 manifold are shown in 

Fig. 6. With the decay rate from |5> to the 5S1/2 manifold being Γa, the decay rate from |5> 

to |1> (or |2>) is Γa /12. The decay from |5> to |15> (5S1/2, F=2) is calculated by adding 

the squares of the matrix elements for all transitions between |5> and the Zeeman levels 

of |15> , and this turns out to be 5Γa/6.  
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We have also taken into account the sourcing of atoms into the ground states from the 

6S1/2 state via the 5P3/2 state. These additional source terms are modeled using an 

“effective decay rate” (Γbi) directly from the Zeeman sub-levels in the 6S1/2, F”=1 level to 

the 5S1/2 manifold. It is then assumed that all the Zeeman sub-levels at the 6S1/2, F”=1 

level decays equally to the Zeeman sub-levels of F=1 and F=2 levels at this rate. In Fig 7, 

the branching ratios between the various hyperfine levels and the effective decay rates 

from the 6S1/2, F”=1 level to the 5S1/2 manifold are shown. For our initial computations, 

we used a rough estimate for Γbi. A more detailed calculation, taking into account the 

various branching ratios into and from all the hyperfine levels of the 5P3/2 state can be 

used to determine Γbi. However, we found that the results did not change significantly 

when Γbi was changed slightly and hence using an approximate value is justified.   

 

The goal of the simulation of the process illustrated in figure 5 is to determine how the 

state of a linearly polarized probe beam (@1323nm) is affected by its passage through a 

vapor cell of length L and density n, in the presence of a circularly polarized pump beam 

(@795nm). Thus, before presenting the details of the atom laser interaction, we specify 

the terminology relevant for characterizing the probe beam, using the Jones vector 

formulation. We consider the direction of propagation as the z-axis, and the input probe 

to be linearly polarized in the x direction. Thus, the input probe can be described as: 

J⃑probe,input = [
1
0
] =

1

2
[
1
i
] +

1

2
[
1
−i

]  (31) 



 145 

The second part of eqn. (31) indicates that the linear polarization has been 

decomposed into a right circular polarization and a left circular polarization. The effect of 

propagation through the cell can now be modeled by expressing the output Jones vector 

as follows: 

J⃑probe,output =
1

2
[
1
i
] 𝑒−𝛼++𝑗𝛷+ +

1

2
[
1
−i

] 𝑒−𝛼−+𝑗𝛷−    (32) 

where 𝛼+ (𝛼−) and  𝛷+ (𝛷−) are the attenuation and phase shift experienced by the right 

(left) circular component, respectively. 

 

In order to make the system behave as an ideal half waveplate, for example, the phase 

difference between the right and left polarization components (|∅+ − ∅−| ) should be 

equal to π, and the attenuation for each component should equal zero (𝛼+ = 𝛼− = 0). In 

that case, the output expression can be simplified as:  

  J⃑probe,output =
1

2
[
1
𝑖
] 𝑒𝑗∅+ +

1

2
[
1
−𝑖

] 𝑒𝑗∅− =
1

2
𝑒𝑗∅− ([

1
𝑖
] 𝑒𝑗π + [

1
−𝑖

]) = 𝑒𝑗(∅−−
π

2
) [

0
1
]  

(33) 

which is polarized linearly in the y-direction. In practice, the attenuation coefficients are 

non-vanishing. However, if they are equal to each other (i.e. 𝛼+ = 𝛼−), then they simply 

reduce the amplitude of the signal, without affecting the sense of polarization. Of course, 

the phase difference (𝛷+ = 𝛷−  ) can have a wide range of values, corresponding to 

different output polarization states. In what follows, we solve the density matrix equation 
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of motion for the 15-level system shown in figure 5, in order to determine the four 

quantities of interest: 𝛷+, 𝛷−, 𝛼+, 𝛼−.  

The time-independent Hamiltonian after moving to a rotating basis and the RWA 

can be written down using the method we described in Section 2 & 3. Given the large 

number of levels, we use below a compact notation, rather than a matrix, to express the 

Hamiltonian. Specifically, 𝐻 is given by (setting h=1):  

𝐻1,1 = −𝑖
ᴦ𝑔

2
, 𝐻̃1,5 = −

Ω𝑃

2
, 𝐻1,9 = −

Ω𝑃

2
; 

𝐻2,2 = −𝑖
ᴦ𝑔

2
, 𝐻2,6 = −

Ω𝑃

2
, 𝐻̃2,10 = −

√3Ω𝑃

2
; 

𝐻3,3 = −𝑖
ᴦ𝑔

2
, 𝐻3,11 = −

√6Ω𝑃

2
; 

𝐻4,4 = −𝛿𝑃 − 𝑖
ᴦ𝑎

2
, 𝐻4,13 = −

Ω𝑠

2
; 

𝐻5,1 = 𝐻1,5
∗
, 𝐻5,5 = −𝛿𝑃 − 𝑖

ᴦ𝑎

2
, 𝐻5,12 =

Ω𝑠

2
, 𝐻5,14 = −

Ω𝑠

2
 ; 

𝐻6,2 = 𝐻2,6
∗
, 𝐻6,6 = −𝛿𝑃 − 𝑖

ᴦ𝑎

2
, 𝐻6,13 =

Ω𝑠

2
 ; 

H̃7,7 = Δ − δP − i
ᴦa

2
, H̃7,12 =

√6Ωs

2
;  

H̃8,8 = 𝛥 − 𝛿𝑃 − 𝑖
ᴦ𝑎

2
, H̃8,13 =

√3Ω𝑠

2
; 

H̃9,1 = H̃1,9
∗
, H̃9,9 = 𝛥 − 𝛿𝑃 − 𝑖

ᴦ𝑎

2
, H̃9,12 =

Ω𝑠

2
, H̃9,14 =

Ω𝑠

2
; 

H̃10,2 = H̃2,10
∗
, H̃10,10 = 𝛥 − 𝛿𝑃 − 𝑖

ᴦ𝑎

2
, H̃10,13 =

√3Ω𝑠

2
; 

H̃11,3 = H̃3,11
∗
, H̃11,11 = 𝛥 − 𝛿𝑃 − 𝑖

ᴦ𝑎

2
, H̃11,14 =

√6Ω𝑠

2
; 

H̃12,5 = H̃5,12
∗
, H̃12,7 = H̃7,12

∗
, H̃12,9 = H̃9,12

∗
, H̃12,12 = −𝛿𝑠−𝛿𝑃 − 𝑖

ᴦ𝑏

2
; 
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H̃13,4 = H̃4,13
∗
, H̃13,6 = H̃6,13

∗
, H̃13,8 = H̃8,13

∗
, H̃13,10 = H̃10,13

∗
, H̃13,13 = −𝛿𝑠−𝛿𝑃 −

𝑖
ᴦ𝑏

2
; 

H̃14,5 = H̃5,14
∗
, H̃14,9 = H̃9,14

∗
, H̃14,11 = H̃11,14

∗
, H̃14,14 = −𝛿𝑠−𝛿𝑃 − 𝑖

ᴦ𝑏

2
; 

H̃15,15 = −𝑖
ᴦ𝑔

2
. 

All the other terms of 𝐻̃ are equal to zero. We then add the population source terms to the 

Hamiltonian. We assume the decay rates from F”=1 to 5P1/2 (𝛤𝑏𝑑 ) are equal to the 

effective decay rate from F”=1 to 5S1/2 (𝛤𝑏𝑖). Thus, 𝛤𝑏𝑑 = 𝛼𝛤𝑏, 𝛤𝑏𝑖 = (1 − 𝛼)𝛤𝑏 where 

𝛼 = 0.5 

 

dρ11

𝑑𝑡
= (ρ44 + ρ55 + ρ99)

ᴦ𝑎

12
+ ρ77

ᴦ𝑎

2
+ ρ88

ᴦ𝑎

4
+ (ρ12,12 + ρ13,13 + ρ14,14)

ᴦ𝑏𝑖

18

+ ρ15,15

ᴦ𝑔

3
 

dρ22

𝑑𝑡
= (ρ44 + ρ66)

ᴦ𝑎

12
+ ρ88

ᴦ𝑎

4
+ ρ99

ᴦ𝑎

3
+ ρ10,10

ᴦ𝑎

4
+ (ρ12,12 + ρ13,13 + ρ14,14)

ᴦ𝑏𝑖

18

+ ρ15,15

ᴦ𝑔

3
 

 

dρ33

𝑑𝑡
= (ρ55 + ρ66 + ρ99)

ᴦ𝑎

12
+ ρ10,10

ᴦ𝑎

4
+ ρ11,11

ᴦ𝑎

2
+ (ρ12,12 + ρ13,13 + ρ14,14)

ᴦ𝑏𝑖

18

+ ρ15,15

ᴦ𝑔

3
 

dρ44

𝑑𝑡
= ρ12,12

ᴦ𝑏𝑑

12
+ ρ13,13

ᴦ𝑏𝑑

12
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dρ55

𝑑𝑡
= ρ12,12

ᴦ𝑏𝑑

12
+ ρ14,14

ᴦ𝑏𝑑

12
 

dρ66

𝑑𝑡
= ρ13,13

ᴦ𝑏𝑑

12
+ ρ14,14

ᴦ𝑏𝑑

12
 

dρ77

𝑑𝑡
= ρ12,12

ᴦ𝑏𝑑

2
 

dρ88

𝑑𝑡
= ρ12,12

ᴦ𝑏𝑑

4
+ ρ13,13

ᴦ𝑏𝑑

4
 

dρ99

𝑑𝑡
= ρ12,12

ᴦ𝑏𝑑

12
+ ρ13,13

ᴦ𝑏𝑑

3
+ ρ14,14

ᴦ𝑏𝑑

12
 

 

dρ10,10

𝑑𝑡
= ρ13,13

ᴦ𝑏𝑑

4
+ ρ14,14

ᴦ𝑏𝑑

4
 

 

dρ11,11

𝑑𝑡
= ρ14,14

ᴦ𝑏𝑑

2
 

dρ15,15

𝑑𝑡
= (ρ1,1 + ρ2,2 + ρ3,3)ᴦ𝑔𝑔 + (ρ44 + ρ55 + ρ66)

5ᴦ𝑎

6

+ (ρ77 + ρ88 + ρ99 + ρ10,10 + ρ11,11)
ᴦ𝑎

2
+ (ρ12,12 + ρ13,13 + ρ14,14)

5ᴦ𝑏𝑖

6
 

 

The attenuation and the additional phase shift introduced by the Rb medium (as 

compared to free space propagation) of the signal beam can be expressed as: 

Phase: 

𝜙+ = 𝑘𝐿
𝛽+

2
𝑅𝑒(𝑎13,4ρ13,4 + 𝑎14,5ρ14,5 + 𝑎12,7ρ12,7 + 𝑎13,8ρ13,8 + 𝑎14,9ρ14,9)  
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𝜙− = 𝑘𝐿
𝛽−

2
𝑅𝑒(𝑎12,5ρ12,5 + 𝑎13,6ρ13,6 + 𝑎12,9ρ12,9 + 𝑎13,10ρ13,10

+ 𝑎14,11ρ14,11) 

 

Attenuation: 

𝛼+ = 𝑒−𝑘𝐿𝛽+𝐼𝑚(𝑎13,4ρ13,4+𝑎14,5ρ14,5+𝑎12,7ρ12,7+𝑎13,8ρ13,8+𝑎14,9ρ14,9)/2 

𝛼− = 𝑒−𝑘𝐿𝛽−𝐼𝑚(𝑎12,5ρ12,5+𝑎13,6ρ13,6+𝑎12,9ρ12,9+𝑎13,10ρ13,10+𝑎14,11ρ14,11)/2 

And  

𝛽± = 𝑏𝑚𝑖𝑛
2 3𝑛𝑎𝑡𝑜𝑚𝛤𝜆3

 

4𝜋2𝛺𝑚𝑖𝑛
,  

where, 𝑘  is the wavevector of signal beam, which is at 1323nm, 

L  is the length of the cell, which is set to be 15cm,  natom is the density of Rb atoms, 

which is set to be 1016 𝑚3⁄ , 𝛺𝑚𝑖𝑛  is the Rabi frequency for the weakest probe transition 

(for example, the |14> - |9> transition in our model) and the various aij’s are the ratios of 

the Rabi frequency ( 𝛺𝑖𝑗 ) of the |i>-|j> transition to 𝛺𝑚𝑖𝑛 .  For example, 

𝑎12,7 = 𝛺12,7 𝛺14,9⁄ = √6. 𝑏𝑚𝑖𝑛
2  is the fraction of the atoms (<1) that decay along the 

transition corresponding to  𝛺𝑚𝑖𝑛, among all allowed decay channels from the decaying 

level. In our model, the amplitudes for all possible transitions from |14> are in the ratio 

1:1:1: √3: √6 and hence the fraction of atoms that decay along the different channels are 

in the ratio 1:1:1:3:6. Thus, 𝑏𝑚𝑖𝑛
2 = 1 (1 + 1 + 1 + 3 + 6)⁄ = 1/12. 
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Setting the pump frequency at a certain value (𝛿𝑝 = ∆,  which corresponds to 

the situation when the pump is resonant with the F=1 to F’=2 transition) and scanning the 

probe detuning (𝛿𝑠), we can plot the various quantities of interest (𝛷+, 𝛷−, 𝛼+, 𝛼−) as a 

function of 𝛿𝑠 , as shown in Fig. 8. The relevant parameters used for this particular 

simulation are as follows. The decay rates Γa, Γb and Γg are 2π*5.75 sec-1, 2π*3.45 sec-1 

and 2π*0.1 sec-1 respectively. We perform our calculations by setting Γa to unity and 

rescaling all parameters in units of Γa. The separation Δ, between F’=1 and F’=2 is 

2π*814.5 sec-1 (= 141.4𝛤𝑎) and the probe detuning (δs) ranges from -200𝛤𝑎 to 200𝛤𝑎. The 

Rabi frequencies have been chosen to be Ω𝑝 = 5𝛤𝑎, and Ω𝑠 = 0.1𝛤𝑎. Fig. 8(a) and 8(b) 

show the additional phase shifts produced by the Rb medium for the right and left 

circular polarization parts of the signal beam and Fig. 8(c) shows the difference between 

them. Fig. 8(d)-8(f) show the corresponding figures for attenuation.  For example, at 

δs=200, we have  a differential attenuation of ~0 and a differential phase shift of about 

300. Since the main purpose of this paper is to illustrate the application of the algorithm 

for obtaining the solution to the density matrix equations for a large quantum system, we 

refrain from exploring the parameter space in detail.   

 

e. Conclusion 

 

We have presented a novel algorithm for efficiently finding the solution to the density 

matrix equations for an atomic system with arbitrary number of energy levels. For this 
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purpose, the Liouville equation that describes the time evolution of the density matrix 

is formulated as a matrix-vector equation. We presented an algorithm that allows us to 

find the elements of the evolution matrix with ease for systems with arbitrarily large 

value of N. As examples, we then used the algorithm to find steady-state solutions for 

atomic systems consisting of two- and three- levels. We also described a comprehensive 

model (consisting of 15 levels) for an optically controlled waveplate using the 5S1/2-5P1/2-

6S1/2 cascade system. Finally, we used the algorithm to obtain the steady state solution for 

the 15-level system. The algorithm and the Matlab codes presented here should prove 

very useful for the atomic and molecular physics community.   

 

Appendix A: Matlab Program for Solving the Two Level Problem 

 

omeg=5;          % express rabi freq, normalized to gamma 

N=2;             % number of energy levels 

R=401            % number of points to plot 

                 % initialize and set dimensions for all matrices 

delta=zeros(1,R);   %detuning array 

M=zeros(N^2,N^2);   %M-matrix 

rho=zeros(N,N);     %dens mat 

Ham=zeros(N,N);     %Hamiltonian with decay 

Q=zeros(N,N);       %matrix corresponding to derivative of the density matrix 

      

W=zeros((N^2-1),(N^2-1));   %W-matrix 

S=zeros((N^2-1),1);         %S-vector 

B=zeros((N^2-1),1);         %B-vector 

A=zeros(N^2,R);             %A-vectors, for all detunings 

 

for m=1:R     %start the overall-loop 

 delta(1,m)=(m-(R+1)/2)/2; %define the detuning, normalized to gamma 

 Ham=[0 omeg/2; omeg/2 (delta(1,m)+0.5i)*(-1)]; %elements of Hamiltonian 

  

 for n=1:N^2      %start the outer-loop for finding elements of M;  

     for p=1:N^2  %start inner-loop for finding elements of M;  
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   %M(n,p) equals Q(alpha,beta) with only rho(epsilon,    

  %sigma)=1, and other elements of rho set to zero. 

    

                 %determining dummy coefficients alpha and beta 

         remain=rem(n,N); 

         if remain==0 

             beta=N; 

         else beta=remain; 

         end 

         alpha=(1+(n-beta)/N); 

          

                 %determining dummy coefficients epsilon and sigma 

         remain=rem(p,N); 

         if remain==0 

             sigma=N; 

         else sigma=remain; 

         end 

         epsilon=(1+(p-sigma)/N); 

                 

         rho=zeros(N,N);                %reset rho to all zeros 

         rho(epsilon,sigma)=1;          %pick one element to be unity 

         Q=(Ham*rho-rho*conj(Ham))*(0-1i); %find first part of Q matrix 

         Q(1,1)=Q(1,1)+rho(2,2);        %add pop source term to Q 

                                        %For an N-levl system, add additional     

      %source terms as needed 

         M(n,p)=Q(alpha,beta); 

     end        %end the inner-loop for finding elements of M 

 end            %end of the outer-loop for finding elements of M 

  

        S=M(1:(N^2-1),N^2:N^2);      %find S-vector 

        W=M(1:(N^2-1),1:(N^2-1));    %initialize W-matrix 

         

        for d=1:(N-1) 

            W(:,((d-1)*N+d))=W(:,((d-1)*N+d))-S; %update W by subtracting 

                                                 %from selected columns 

        end 

                   

        B=(W\S)*(-1);           %find B-vector: primary solution 

         

        rhonn=1;                 %initialize pop of N-th state 

        %determine pop of N-th state 



 153 

        for f=1:(N-1) 

            rhonn=rhonn-B(((f-1)*N+f), 1); 

        end  

               %determine the elements of the A vector 

        A(1:(N^2-1),m)=B; 

        A(N^2,m)=rhonn; 

     

end             %end of over-all loop    

plot(delta,real(A((N^2-0),:))) 
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Appendix B: Matlab Program for Solving the Three Level Problem 

 

oma=1; omb=1;    % express omeg rabi freqs, in units of gamma 

dels=0;          % common detuning set to zero 

N=3;             % number of energy levels 

R=401            % number of points to plot 

                 %initialize and set dimensions for all matrices 

del=zeros(1,R);   %diff detuning array 

M=zeros(N^2,N^2);   %M-matrix 

rho=zeros(N,N);     %density matrix 

Ham=zeros(N,N);     %Hamiltonian with decay 

Q=zeros(N,N);       %matrix representing derivative of density matrix 

W=zeros((N^2-1),(N^2-1));   %W-matrix 

S=zeros((N^2-1),1);         %S-vector 

B=zeros((N^2-1),1);         %B-vector 

A=zeros(N^2,R);             %A-vectors, for all detunings 

 

for m=1:R     %start the overall-loop 

 del(1,m)=(m-(R+1)/2)/10; %define the detuning 

 Ham=[del(1,m)/2 0 oma/2; 0 del(1,m)*(-1)/2 omb/2; ... 

     oma/2 omb/2 (dels+0.5i)*(-1)]; 

  

 for n=1:N^2      %start the outer-loop for finding elements of M;  

     for p=1:N^2  %start inner-loop for finding elements of M;  

          

                 %finding alpha and beta 

         remain=rem(n,N); 

         if remain==0 

             beta=N; 

         else beta=remain; 

         end 

         alpha=(1+(n-beta)/N); 

          

                %finding epsilon and sigma 

         remain=rem(p,N); 

         if remain==0 

             sigma=N; 

         else sigma=remain; 

         end 

         epsilon=(1+(p-sigma)/N); 

                 

         rho=zeros(N,N);                %reset rho to all zeros 
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         rho(epsilon,sigma)=1;          %pick one element to unity 

         Q=(Ham*rho-rho*conj(Ham))*(0-1i); %find first part of Q matrix 

          

         Q(1,1)=Q(1,1)+rho(3,3)/2;        %add pop source term to Q 

         Q(2,2)=Q(2,2)+rho(3,3)/2;        %add pop source term to Q 

                                          %Modify as needed for general      

   %systems 

         M(n,p)=Q(alpha,beta); 

     end        %end the inner-loop for finding elements of M 

 end            %end of the outer-loop for finding elements of M 

  

        S=M(1:(N^2-1),N^2:N^2);      %find S-vector 

        W=M(1:(N^2-1),1:(N^2-1));    %initialize W-matrix 

         

        for d=1:(N-1) 

            W(:,((d-1)*N+d))=W(:,((d-1)*N+d))-S; %update W by subtracting 

                                                 %from selected columns 

        end 

                   

        B=(W\S)*(-1);           %find B-vector: primary solution 

         

        rhonn=1;                 %initialize pop of N-th state 

        %determine pop of N-th state 

        for f=1:(N-1) 

            rhonn=rhonn-B(((f-1)*N+f), 1); 

        end  

               %determine elements of A vector 

        A(1:(N^2-1),m)=B; 

        A(N^2,m)=rhonn; 

     

end             %end of over-all loop    

plot(del,real( A ( (N^2-0),: ) ) ) 
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Algorithm Optimization  

 

The crux of the algorithm is to obtain the M matrix in an automated fashion. The most 

obvious, but rather elaborate (O (N4) operations) way to perform this task has been 

illustrated previously. However, several simplifications can be made to the algorithm so 

that the entire process can be accomplished using O (N2) operations and also avoid some 

other redundant operations, thereby increasing the speed by a factor of ~N2. To do this, 

we first observe that instead of evaluating the M matrix row-wise as was shown before, it 

is more beneficial to evaluate it column wise. Each column in the M matrix is simply 

obtained by successively setting each of the density matrix elements to 1, while setting all 

others to 0. Thus, the entire 1st column can be obtained be setting ρ11=1 and all other 

ρij=0, 2nd column with ρ12=0 and all other ρij=0 and so on. In general, by setting ρεσ=1 and 

all other density matrix elements to 0, we obtain the ((ε-1)*N+σ)th column of the M 

matrix where each of ε and σ vary from 1 to N.  

 

Furthermore, it is to be noted that the computation Hρ-ρH+ involve multiplication of 

extremely sparse matrices, since only one of the elements of the ρ matrix is 1 each time. 

It is evident that each column of the M matrix will simply be made up of certain columns 

of the Hamiltonian. Thus, the task is reduced to (a) figuring out the pattern of columns 

that are picked out from the Hamiltonian and (b) identify the locations in the M-matrix, 

where they would be filled. To illustrate this clearly, it is convenient to treat the 
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calculation of the M-matrix as arising from two separate computations: Hρ and ρH+. 

Let us consider a specific case when ρεσ=1. The ρH+ computations would pick the σth 

column of the Hamiltonian (with its elements conjugated) to be placed between rows (ε-

1)*N+1 and ε*N of the ((ε-1)*N+σ)th column of the M matrix. The Hρ computations, on 

other hand, would pick the elements of the ε th column of the Hamiltonian (with the 

elements picking up an extra negative sign) and populate the following rows of the ((ε-

1)*N+σ)th column of the M matrix:  σth row, (σ+N)th row, (σ+2*N)th row and so on until 

the (σ+N*(N-1))th row. When, this process is repeated for each element of the density 

matrix, the M-matrix, barring the sourse terms would have been computed.  

 

Finally, the addition of the source terms can also be simplified by choosing to modify 

the M-matrix only when one of the diagonal elements of the density matrix is set to 1, i.e 

ρεε=1, where ε=1 to N. Furthermore, instead of adding the source terms in-line, as was 

done previously, we can simply pre-define a “source-matrix” and simply pick off the 

elements of this matrix that would then be added to the appropriate entries in the M-

matrix. For example, one way of defining such a “source matrix” would be to have the 

coefficients of the ρεε in all the source equations (from dρ11 𝑑𝑡⁄  to dρNN 𝑑𝑡⁄ ) along the εth 

column of the source matrix. Now, all that needs to be done is to simply add the εth 

column of the source matrix to the (ε-1)*N+ εth column of the previously computed M 

matrix whenever ρεε=1. As an illustration of these optimization steps, we reproduce 
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below a modified version of the code for a 3-level system, which should be contrasted 

with the unoptimized code for the same system presented in Appendix B. 

 

oma=1; omb=1;    % express omeg rabi freqs, in units of gamma 

dels=0;          % common detuning set to zero 

N=3;             % number of energy levels 

R=401            % number of points to plot 

                 %initialize and set dimensions for all matrices 

del=zeros(1,R);   %diff detuning array 

M=zeros(N^2,N^2);   %M-matrix 

rho=zeros(N,N);     %density matrix 

Ham=zeros(N,N);     %Hamiltonian with decay 

W=zeros((N^2-1),(N^2-1));   %W-matrix 

S=zeros((N^2-1),1);         %S-vector 

B=zeros((N^2-1),1);         %B-vector 

A=zeros(N^2,R);             %A-vectors, for all detunings 

Q_source=[0 0 1/2; 

        0 0 1/2; 

         0 0 0]; 

 

for m=1:R     %start the overall-loop 

 del(1,m)=(m-(R+1)/2)/10; %define the detuning 

 Ham=[del(1,m)/2 0 oma/2;  

     0 del(1,m)*(-1)/2 omb/2; ... 

     oma/2 omb/2 (dels+0.5i)*(-1)]; 

 

 col=0;  % index for column of M-matrix that will filled.     

    index1=1:N; 

    index2=1:N:N*(N-1)+1; 

    index3=1:N+1:N^2; 

    for n=1:N      %n keeps track of where in the M matrix the elements of  

    Ham have to be entered 

         for p=1:N  %p picks the pth column from the Ham 

            col=col+1; 

            M(index1+(n-1)*N,col)=1i*conj(H(:,p)); 

            M(index2+p-1,col)=M(index2+p-1,col)-1i*(H(:,n)); 

            if n==p 

                M(index3,col)=M(index3,col)+Q_source(:,n); 

            end     

         end        %end the inner-loop for finding elements of M 
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     end 

    S=M(1:(N^2-1),N^2:N^2);      %find S-vector 

    W=M(1:(N^2-1),1:(N^2-1));    %initialize W-matrix 

  

    for d=1:(N-1) 

        W(:,((d-1)*N+d))=W(:,((d-1)*N+d))-S; %update W by subtracting 

                                             %from selected columns 

    end 

  

    B=(W\S)*(-1);           %find B-vector: primary solution! 

  

    rhonn=1;                 %initialize pop of N-th state 

    for f=1:(N-1) 

        rhonn=rhonn-B(((f-1)*N+f), 1); 

    end  

  

    A(1:(N^2-1),m)=B; 

    A(N^2,m)=rhonn; 

    M=zeros(N^2,N^2); 

end             %end of over-all loop  

plot(del,real( A ( (N^2-0),: ) ) ) 
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CHAPTER 8  SUMMARY 

 

We demonstrated all-optical modulation in TNF at ultra-low powers (~40nW). We 

addressed key issues related to the longetivity of the TNF and tried several approaches to 

prolong its life. In order to implement a modulator in one of the telecom bands we 

switched to the 5S-5P-6S system. We demonstrated a modulator using this system up to 

speeds of few MHz, limited by the homogenous linewidth of the intermediate levels. We 

proposed a novel high-speed modulator in a cascade system using buffer gas induced 

spin-relaxation and de-phasing, theoretically capable of functioning at few tens of GHz. 

Under similar conditions, we observed a 100-fold increase in the modulation bandwidth. 

However, we could not achieve the expected GHz modulation. Further investigation is 

needed to improve the performance. 

 

We also demonstrated an optically controlled polarizer and waveplate, both of which 

could operate at speeds of few MHz, thus making high-speed Stokesmetric imaging 

practical. We obtained an extinction ratio of 2.5 for the polarizer and identified means to 

improve it by using optical pumping. We investigated the performance under both the co- 

and counter-propagating geometries. We were able to achieve full control the polarization 

of one optical field using another, having demonstrated rotation of polarization from 

horizontal to vertical and also to a circular polarization. Further investigation is needed to 

optimize the performance of these devices, in terms of the bandwidth, power required etc. 
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We also developed a novel computational algorithm which could prove extremely 

useful in performing numerical computations of arbitrarily large quantum systems. We 

took advantage of a supercomputing cluster to parallelize the code and make the 

computations extremely efficient.  
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