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INVESTIGATION TOWARD LARGE ANGLE, SINGLE ORDER 
ATOM INTERFEROMETER 

 

Abstract 

 

by  

Ying Tan 

 

 We have proposed  a scheme for large angle two-dimensional atom 
interferometers based on multiple Raman pulses which will produce a two-
dimensional pattern with independent choice of grating spacings in each 
direction. The feature size of this pattern is on the order of a few nm. 

Our experimental effort in implementing the multiple pulses Raman 
atom interferometer was interrupted by an accident out of our control. In 
order to continue our experiment in a reasonable time frame, we built a small 
and compact atomic beam. In the process of resuming our work on this 
compact atomic beam, we observed the atomic interference in a way we 
didn’t expect.  
 In addition, we have developed a numerical procedure for modeling 
our interferometer and have proposed a novel atom interferometer based on 
single Raman pulse.  
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Thesis Co-Supervisor : Selim Shahriar, Research scientist of Research 
Laboratory of Electronics  
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Chapter One:  

Introduction 

1.1 Atom interferometer1,2,3 

The atom interferometer is an apparatus that takes advantage of the wave nature 

of atoms. It is very similar to optical interferometers. In both cases, the wave is split in 

two coherent parts and recombined later to produce interferences.  However, since the 

equations of motion for photons and for atoms are not the same and because there are 

some other differences between photons and atoms, the atom interferometer has some 

special features. For example, atoms are a lot heavier than photons; atoms have a much 

shorter de Broglie wavelength; atoms can be deposited to substrates, etc. In addition, 

atom interferometers can be applied to some areas which optical interferometers are not 

appropriate or not as good.  For example, the atomic interferometer can be used to study 

atomic properties, because for different internal structure, different mass, different 

magnetic moment, different absorption frequencies, and different polarizability, the 

atomic interference might be different. The atomic interference might also be different 

with other atoms nearby. It can also be used to explore fundamental issues such as 

measuring the inertial effects.  For practical applications, the atomic interferometer is 

very useful too.  For example, it can be used as a good gyroscope or a gravity 

gradiometer.  It can also be used to deposit quantum dots and nano-scale lithography on 

substrates.  Since it has such a rich variety of applications, people are strongly motivated 

to build better and better atomic interferometers.  
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Another difference between atomic interferometers and optical ones is that 

different types of beam splitters and  mirrors are used. Furthermore, while some people 

use nano-fabricated slits or diffraction gratings as atomic beam splitters and mirrors, 

using material structures or periodic light field, others take advantage of the fact that the 

internal and external degree of freedoms in atoms can be related.  In our group, we adopt 

the second approach. 

An atomic beam splitter, which involves internal states, is based on the interaction 

of a two level atom with a standing wave light field. The disadvantage of that method is 

that the atom wave packet scatters into multiple orders since the phase grating is 

sinusoidal. Alternatively, people also use magneto-optic beam splitters and bichromatic 

standing wave beam splitters4. Both methods provide a triangular phase grating so the 

momentum separation of the splitting components of the wave packet is much larger than 

the momentum spread of each component. For the former scheme, because the triangular 

shape only extends to the scale of the wavelength, there are still a number of significant 

higher orders. The latter one would have a potential remaining triangular for all the 

dressed state and extending over many wavelengths. However, for both of them, since the 

excited states are involved, if the interaction time is longer than the lifetime of the excited 

states, spontaneous emission would limit the splitting. 

 

1.2 Application in Rotation Sensing 
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For commercial applications, optical and mechanical gyroscopes are good 

enough. The motivation behind our atom interferometer is to test the fundamentals of 

physics.  

Atomic gyroscopes as well as optical gyroscopes use the Sagnac effect, a rotation 

dependent phase shift, to measure the rotation rate.  

Ω

(ΔΦ)atomic=2mΩ·A/h
(ΔΦ)optical =4πΩ·A/ (lc )

Sagnac effect

 

Figure 1.1 Interferometer as gyroscope 

See Figure 1.1., if an interferometer, with the top and bottom half circles as its 

two legs, is placed in a frame of reference with rotation rate Ω, the phase accumulated for 

the top path and bottom path are 

k (π R + R Ω t) (eq. 1.1) 
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k (π R - R Ω t) (eq. 1.2) 
 

respectively, where R is the radius of the circle and t= π R/v. The phase difference is   

ΔΦ = 2 k R Ω t = 2 k R Ω π R / v = 2 k Ω · A /v, where A is the area of the loop. 

In the optical case,  

v = c,  (eq. 1.3) 
 

k = 2 π / l, (eq. 1.4) 
 

(ΔΦ)optical =4πΩ·A/ (lc ), (eq. 1.5) 
 

in the atomic case, 

ħ k= p =m v,  (eq. 1.6) 
 

(ΔΦ)atomic=2mΩ·A/ħ.  (eq. 1.7) 
 

Given the same rotation rate Ω and the same enclosed area A, the ratio  
 

(ΔΦ)atomic / (ΔΦ)optical =  m c 2/ ħ ω.  (eq. 1.8) 
 

For example, using Rubidium atoms and using visible optical wavelength around 600 nm, 

m c 2/  ħ ω is on the order of 1011. The sensitivity of the gyros is proportional to the phase 

shift. We see that atom interferometers have an 11 orders of magnitude advantage over 

optical interferometers if all else is equal. However, optical interferometer gyros can have 

much larger enclosed areas and have much larger signal to noise ratio. At present, the 

performance of the best atomic gyro is comparable to the best optical gyro. The best atom 

interferometer gyro reported to date has enclosed area about 22 mm 2 and flux about 10 8 

/second 5, which can measure 3x10-8 rad/second6.  In our scheme ,  we ultimately hope to 
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use trapped atoms as the source, which could give us an enclosed area of about 0.5 m 2 

and a flux 10 10 atoms/second. This scheme could measure the rotation rate about 10 –13 

rad/second. 

1.3 Application in lithography7 

An atom can be considered a de Broglie wave packet. For example, the Rubidium 

atom we use in our experiment, at about 300 oC has de Broglie wavelength 

λ=h/mv=0.0153 nm. If we split the de Broglie wave packet and then recombine them, we 

will get interference fringes, just as in the optical case.  

2θ

λ δ= λ / 2Sinθ

 

Figure 1.2 Lithography application 

For the following discussion refer to Figure 1.2. The fringe spacing is λ/2sinθ. 

The smaller the wavelength and the bigger the splitting angle, the finer the fringes will 

be. General optical lithography, in the visible range, can reach a feature size on the order 

of 100 nm. There are other means to push the feature size down by using x rays, electron 

beams, STM (Scanning Tunneling Microscope), MBE(molecular beam epitaxy). 

However, they either have many problems at the current stage or they are very slow and 

only one-dimensional. 
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Atom interferometry in the application of lithography offers some advantages 

over general optical lithography.  Using Rubidium, the de Broglie wavelength is more 

than four orders of magnitude smaller than that of visible light. The difficult part in 

lithography using atom interferometry is the wave packet splitting angle. In the optical 

case, the splitting angle can easily be as large as 90 o and still will generate the smallest 

fringe spacings at that wavelength. In the atomic case, we need good mirrors and good 

beam splitters. Only the transverse components (θ =90 o) contribute to the interference 

fringes. In the atomic case, momentum is related to wavelength. If for example we were 

to use Rubidium atoms, the optical transition wavelength is λo=780 nm; if part of the 

atom wave packet receives n photon recoils in the transverse direction, the momentum in 

that direction is nħk , where k=2π/ λo. The effective de Broglie wavelength is λ=2π/nk= 

λo/n.  If we want to get the atom lithography feature size down to the order of 10 nm, we 

need to have roughly n=80.  In our scheme we hope to achieve on the order of 100 

photon recoils. This could produce uniform one-dimensional and two-dimensional 

structures with feature size less than 10 nm, which can be used as a quantum dot array. 

We also hope to generate two-dimensional arbitrary patterns with feature size down to 10 

nm. What limits us to get down to even smaller structures are some technical difficulties.  

For example, more splitting requires more laser power and  the Raman-Nath limit comes 

into play. Also, when the atom receives too many photon recoils, because of the Doppler 

effect, it’s not in resonance with the laser beam any longer and a more complicated 

scheme has to be designed to solve this problem. 
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1.4 Overview of the thesis 

We investigate the possibility of building large angle and large area one-

dimensional and two dimensional atom interferometers. We also investigate the 

possibility of building a guided wave atom interferometer via binary phase masking of 

the optical field.  

Initially, we tried to realize our atom interferometer by using the bichromatic 

standing wave method8, which produces triangular potential field for atoms, like blazed 

gratings. It turned out that this scheme required too much laser power and still suffered 

from spontaneous emission since atoms are in the excited states half of the time. This 

scheme is ok for a small area interferometer but not good for a large area interferometer 

because part of the atom is in the excited state even during the free flight as well.  

Then we realized that the physical mechanism of the bichromatic standing wave 

method is essentially multiple π pulses. The alternative is to use a bichromatic standing 

wave method in a Λ system. This is equivalent to multiple Raman pulses and is an 

extension of the Raman interferometer of Chu's group9. Using a Λ system for an atom 

interferometer, we have the options of adiabatic following10 and multiple Raman pulses. 

The adiabatic following doesn’t work with mF = 0 level. It also has some other 

difficulties. The multiple Raman pulses method11 has an additional feature necessary for 

spatial interference and can be extended to two-dimensional atom interferometer and this 

is the method we are using in this work. 

 While we were attempting the π/2- π- π/2 interferometer, the first step of multiple 

Raman pulse interferometer experiment, an accident happened. Our lab was shutdown for 

the removal of asbestos on the floor for one day. The next morning I was notified that 
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something was smoking around our experimental apparatus while we were kept out of the 

lab. I went to check and found out that our vacuum system was completely destroyed. 

After failing to recover the vacuum system, we had to take each diffusion pump off and 

test it separately. Eventually we replaced each one of them. The experimental effort along 

the line of the multiple Raman pulses was stopped and instead we built a smaller scale 

atomic beam machine.  

 Before we attempt the π/2- π- π/2 interferometer experiment on this new atomic 

beam machine, we tried to see whether we can use one single counter-propagating Raman 

to get atomic interference since we believe that the one Raman pulse approach is the 

same as π/2- π- π/2 interferometer with the distance set to zero between Raman pulses. 

We did see the atomic inference. Further numerical simulations show that we can design 

a new type of atomic interferometers based on one single Raman pulses by manipulating 

the phases of different parts of the Raman beam.  

 This thesis is organized in six chapters. Chapter one covers the general 

introduction and overview. Chapter two describes the theory of Raman interaction, one-

dimensional atom interferometers using multiple Raman pulses and the extension to two-

dimensional atom interferometers. Chapter three covers the experimental investigation of 

one dimensional atom interferometers using multiple Raman pulses. Chapter four is about 

the experimental investigation of a new type of atom interferometer using single Raman 

pulse. Chapter five contains the numerical simulations and the investigation of the 

possibility of designing a new type of atom interferometer using single Raman pulse. 

Chapter six is the conclusion and the future work.  
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Chapter Two:  

Raman Interaction and One-Dimensional Atom 

Interferometer Using Multiple Raman Pulses 

2.1 Basic ideas of one-dimensional atom interferometer 

using atom-light interaction as beam splitters and beam 

deflectors, using two-level system to demonstrate the 

principles12,13 

The basic idea Borde14 of using Raman pulses to realize the atom interferometer 

was proposed by C. J. in 1989.  

Our beam splitters and deflectors are based on the near resonance atom-light 

interaction. If a ground state two-level atom absorbs a near-resonance photon, it would 

transit to the excited state. At the same time it will also absorb the momentum of the 

photon and pick up a recoil momentum in the same direction and with the same value as 

that of the incident photon. An excited atom will either emit a photon stimulated by an 

incident photon or spontaneously emit a photon and go back to the ground state. In the 

former case, the emitted photon would be identical to the stimulating photon and the 

recoil momentum that the atom picks up would be exactly the same value as that of the 

incident photon but in the opposite direction. In the latter case, the momentum of the 

emitted photon would follow a probability distribution determined by the energy levels 
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involved so the direction of the recoil momentum that the atom picks up is not fixed. We 

see that there is a correspondence between the internal state (distribution of the electrons 

relative to the nucleus) and external state (momentum) of the atom. If we use atom-light 

interaction to manipulate an atom’s internal state, then at the same time we can also 

change its momentum. However, spontaneous emission doesn’t let us manipulate the 

momentum of the atom in the way we want.  It actually contributes noises to this type of 

atom interferometer and so it should be avoided. 

2.1.1 Rabi flopping 

There is an analytical way to calculate the time evolution of a wave function that 

is to transform the basis to an eigenstate basis representation where the time evolution is 

very easy to calculate and then to transform back. Here is the example with the two level 

system: 

 A two-level atom15 with ground state |g>, energy Eg ,  and excited state |e>, 

energy Ee,  interacts with a laser beam with detuning δ = ( ω – ωeg ) , where ω =2 π f, f is 

the laser frequency, ωeg = ωe - ωg and ωe = Ee / ħ, ωg =Eg / ħ.  The Hamiltonian for the 

interaction is  

H = ħ ωe |e><e| +ħ ωg |g><g| - d · E  (eq. 2.1) 
  

where d is the dipole moment of the atom and E is the laser field, 

E=E0cos(ωt+φ).  (eq. 2.2) 
In matrix form 
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where  

Ω=<e| d•E0|g>/ħ  (eq. 2.4) 
 

is the Rabi frequency. After rotating wave approximation16, we get  
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The atom generally is in state 

|ψ > = ag |g > + a e |e>,  (eq. 2.6) 
 

applying Schrödinger equation 

>Ψ>=Ψ
∂
∂ || H
t

i ,  (eq. 2.7) 

we get  












∗



















Ω
−

Ω
−

=
















+

+−

•

•

g

e

g

ti

ti

e

g

e

a
a

e

e

a

a
i

ω

ω

ϕω

ϕω

)
2

2
(

∗

)(

 (eq. 2.8) 

that is  
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If we factor out the fast varying part, let 
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we get  
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In the new basis { >>=
− eee ti

e |'|
ω , >>=
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geg

ti
g |'|

ω
},  

|ψ > = cg |g′ > + c e |e′>,  (eq. 2.12) 
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Now we want to make a rotating wave transformation so that the transformed 

Hamiltonian HR would be time independent and real. In matrix form, 
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and the transformation matrix is 
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|ψ >R = R |ψ >.  (eq. 2.18) 
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and  
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where  
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We can derive the Hamiltonian for the new representation from the Schrödinger equation. 
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|ψ > = R+|ψ >R,  (eq. 2.25) 
 

so we have 
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Multiplying R from the left, we get 

RRRRR
HRRH

t
iRRR

t
Ri >Ψ=>Ψ=>Ψ

∂
∂

+>Ψ
∂
∂ +++ |'|'||)(  ,  (eq. 2.28) 

 

RRRRR
HR

t
RiH

t
i >Ψ=>Ψ

∂
∂

−=>Ψ
∂
∂ + ||))('(|  ,  (eq. 2.29) 

 















−
=

∂
∂

− +

2
0

0
2)( δ

δ

 R
t

Ri ,  (eq. 2.30) 

 









Ω−

Ω−−
=

∂
∂

−= +

δ
δ

||
||

2
))('( 

 R
t

RiHH
RR

.  (eq. 2.31) 



 26 

 

The eigenvalues of HR are  

r
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We can find the eigenstates by a matrix transformation.  
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is the matrix which should diagonalize HR. 
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If HD is diagonalized, then 

02cos||2sin =Ω+ θθδ   (eq. 2.37) 
 

that is 
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The eigenstates are 
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So the time evolution of the wave function can be expressed as 
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If we use matrix form,  
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After some simple but tedious algebra, we get 
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Rabi flopping is a special case. Assume that the initial conditions are  

t0=0,  (eq. 2.51) 
 

cg (t0) = 1,  (eq. 2.52) 
 

ce(t0) = 0,  (eq. 2.53) 
 

that is the atom is in the ground state to start with, and with zero detuning, δ=0, we get 
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Figure 2.1 Two level system Rabi flopping 

 Figure 2.1 shows the probability of the transition to the excited state as a function 

of time. This is called Rabi flopping.  We see that when  

Ωt= π,   (eq. 2.57) 
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the probability of the transition to the excited state is unity. The “ pulse ” with Ωt= π is 

usually called a π pulse. When 
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The “ pulse ” with Ωt= π/2 is called a π/2 pulse. We see that a π/2 pulse put atoms in a 

superposition state of the ground state and the excited state when they start from a pure 

state, ground state. The probabilities of the atom being at ground state and at the excited 

state are the same. Both are ½.   

If we start with the excited state, that is 
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t0=0,  (eq. 2.66) 
 

ce(t0) = 1,  (eq. 2.67) 
 

cg(t0) = 0,  (eq. 2.68) 
 

with also δ=0, we get 
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For  

Ωt= π,   (eq. 2.71) 
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ρgg (t) = 1.  (eq. 2.74) 
 

So the probability of the transition to the ground state from the excited state is unity. For 

a two level system, the π pulse can be used to flip states of the atoms, as the above 

description shows. When 
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so for a two-level system, when an atom starts with either the ground state or the excited 

state, a π/2 pulse puts the atoms in a superposition state of the ground state and the 

excited state with equal probability in either state. 

2.1.2. Principle of one dimensional atom interferometer  

This kind of atom interferometer is based on the atom-light interactions. As we 

described in the section 2.1, when an atom and light interact, there’s a correlation 

between the atom’s internal state and its external state. We can control the atom’s 

external motion by manipulating the atom’s internal states if we can limit the interaction 

to absorption and stimulated emission while the spontaneous emission is negligible. 

There are two situations where we can consider ignoring spontaneous emission. One is 

when the energy levels involved are very sharp, such as the hyperfine splitting of ground 
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states or metastable states. Another is when the inverse of the Rabi frequency is much 

shorter than the lifetime of the upper energy level.  

From section 2.1.1., we see that a π pulse can be used to deflect the atom. Assume 

that the atom starts at the ground state, though it would  work similarly if the atom were 

to start at the excited state. Furthermore, we ignore the spontaneous emission in the 

following discussion. Since the transition probability is unity, the atom will absorb a 

photon and transit to the excited state and at the same time it will also pick up the 

momentum identical to the incident photon. On the other hand, since a π/2 pulse put the 

atom in a superposition state of the ground state and the excited state with equal 

probability, we can use the π/2 pulse as a beam splitter. The ground state part of the 

superposition keeps its momentum and the excited part of the superposition acquires the 

recoil momentum identical to that of the incident photon.  Ultimately, those two parts will 

separate in space.  
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Figure 2.2 Principle of the atom interferometer (1) 

Figure 2.2-Figure 2.8 shows how the principle of this type of atom interferometer 

works. In Figure 2.2 an atom starts with |g, p> at ground state with initial momentum p 

along x direction. A π/2 pulse is coming with photon momentum -ħk along the –y 

direction. After this π/2 pulse, the atom will be put into a superposition state of the 

ground state |g, p> with momentum p and the excited state |e, p-ħk> with momentum p-

ħk. Given some time, |g, p> and |e, p-ħk> will separate in space, as shown in the left half 

of the diagram. 
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Figure 2.3 Principle of the atom interferometer (2)  

Then we apply a π pulse from the direction opposite to the previous π/2 pulse, in 

the y direction, as in Figure 2.3. One effect of this π pulse is to flip the internal states. So 

we see that the ground state |g, p> flips to the excited state |e, p+ħk> and the momentum 

of this part of the wave packet will change from p to p+ħk. The excited state |e, p-ħk> 

flips to the ground state |g, p-2ħk > and the momentum of this part of the wave packet 

will change from p-ħk to p-2ħk. The split wave packets will move further apart after this 

π pulse, as shown in the left half of Figure 2.3.  
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Figure 2.4 Principle of the atom interferometer (3) 

After this first π pulse, we apply another π pulse from the opposite direction to the 

first π pulse, in -y direction, as in Figure 2.4. The second π pulse will flip state |e, p+ħk> 

to the ground state |g, p+2ħk > and the momentum of this part of the wave packet will 

change from p+ħk to p+2ħk, it will then flip state |g, p-2ħk > to state  |e, p-3ħk > and the 

momentum of this part of the wave packet will change from p-2ħk to p-3ħk. This second 

π pulse also pushes the split wave packet further away, as shown in the left half of Figure 

2.4. The first two π pulses which are opposite in directions can be considered as a π pulse 

pair. Afterwards, each such π pulse pair will push the split wave packet further apart.  
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Figure 2.5 Principle of the atom interferometer (4) 

If we want to bring the split wave packet back together and interfere, we need to 

apply a π pulse, which has the same direction as the previous π pulse, as shown in Figure 

2.5.  
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Figure 2.6 Principle of the atom interferometer (5) 

Appling another π pulse from the opposite direction, as shown in Figure 2.6, will 

bring the wave packets even closer to each other.  So if we apply the same number of π 

pulse pairs as that of the splitting π pulse pairs with directions opposite to that of the 

splitting π pulse pairs, we can bring the momentum states of the split components back to 

the identical states as were present just after the first π/2 pulse.  
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Figure 2.7 Principle of the atom interferometer (6) 

To make them propagate toward each other, we have to apply another π pulse 

with the direction the same as that of the first π/2 pulse, as shown in Figure 2.7. We can 

eventually bring the split wave packet components back together by applying another π/2 

pulse.  
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Figure 2.8 Principle of the atom interferometer (7) 

Depending on the relative phase between the atom and the π/2 pulse, the atom 

will either end up at the ground state or the excited state, as shown in Figure 2.8. 

Similar to optical interference, there are two ways to detect the atomic 

interference for different applications. The first method is to use a substrate so the atomic 

interference pattern can be deposited on. To use this method, some thing has to be done 

to make those two parts of the wave packet in the same internal states but not in the same 

momentum states. This is a good method for lithography applications. The second 

method is to apply another π/2 pulse when those two parts of the wave packet are 

approaching each other, as shown in Figure 2.8. The relative phase between the π/2 pulse 

and the atomic internal states will determine which internal state will be the final state for 

the atom. If we scan the phase of this π/2 pulse, we can detect the population of one 
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internal state as a function of the phase shift of the π/2 pulse. Since rotation sensing only 

depends on the fringe shift, this method is suitable for that type of applications. 

2.2 Raman Interaction 

Due to the selection rules, it’s not always easy to find two very sharp energy 

levels for which spontaneous emission is negligible. For usual energy levels, to ignore the 

effect of spontaneous emission, either the laser beam has to be far detuned or the laser 

beam has to be very intense. Far detuned interaction will have very small transition 

probability. High laser power might not always be available.  

Raman interaction can connect two stable energy levels. 



 42 

δ1
δ2

δ

Δ

|e>

|b>

|a>
Δ= δ1- δ2

δ=(δ1- δ2)/2

 

Figure 2.9 Three level system 

 

2.2.1 On-Resonant Raman Interaction 

Even though we don’t use on-Resonant Raman interaction for our atom 

interferometer, it can be a very good diagnostic tool, for example, to check the frequency 

difference of the two stable energy levels involved and to set the Raman beam frequency 

difference appropriately.   

We will consider a Λ system here. See Figure 2.9. The Hamiltonian for this 

system is  
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H = ħ ωe |e><e| +ħ ωb|b><b| +ħ ωa|a><a| - d · E  (eq. 2.80) 
 

where d is the dipole moment of the atom and E is the laser field, 

d=dea + deb,  (eq. 2.81) 
 

E=Eacos(ω1 t+φ1) + Ebcos(ω2 t+φ2).  (eq. 2.82) 
 

In matrix form 
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 (eq. 2.83) 
 

where  

Ωa=<e| dea•Ea|a>/ħ  (eq. 2.84) 
 

Ωb=<e| deb•Eb|b>/ħ.  (eq. 2.85) 
 

For on-resonance Raman interaction, we have  

021 == δδ ,  (eq. 2.86) 
 

be

ae

ωωω
ωωω

−=
−=

2

1
.  (eq. 2.87) 

 

After rotating wave approximation, changing the basis to the slow-varying basis, and 

after rotating wave transformation, as we did in section 2.1.1, we get  
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The basis in matrix form is 
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We can form two orthogonal states which are superposition of two ground states |a> and 

|b>. They are 
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where  

baN 22 Ω+Ω= .  (eq. 2.91) 
 

Since  
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2.94) 
 

Even if we add a phenomenological decay in the Hamiltonian so  
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the above results don’t change. We see that the state >−|  doesn’t couple with either the 

excited state >e|  or the ground state >+| . The state >−|  is the so-called dark state. If 

an atom starts at either state >a| or state >b| , there’s a finite probability that after on-

resonance Raman interaction, the atom will decay from excited state >e|  to state >−| . 

When the atom ends up at state >−| , it is trapped there and the on-resonance Raman 

interaction can’t get it out of that state. In other words, the atom will stay in the ground 

state and we won’t observe any fluorescence from the excited state. However, when the 

Raman interaction is not exactly on-resonance, we have the following Hamiltonian  
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 (eq. 2.98) 
 

 

We see that even if the state >−| is not coupled with the excited state >e| , it is coupled 

with the orthogonal ground state >+| . Even after the atom is in state >−| , there’s a 

finite probability that it will go to state >+|  and, therefore,  goes to the excited state. 

This explains the on-resonance Raman dip we observed in the experiment. When on 

resonance, we observe no fluorescence and as we detune the Raman beams, we see 

fluorescence. 

2.2.2 Off-Resonant Raman Interaction 

 
For off-resonant Raman interaction, if far detuned, the excited states are almost 

not involved so the three-level system in this case can be simplified to a two-level 

system. After rotating wave approximation, changing the basis to the slow-varying basis, 

and after rotating wave transformation and shift the energy zero point, as we did in 

section 2.1.1, we get  
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In matrix form,  
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We get 
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Since it’s far detuned, we could adiabatically eliminate the excited state17, that is, the 

excited-state population is very small, so that we can ignore the change of the ground 

states population due to the excited state decays, and approximately we get : 

0)( =
•

tC e ,  (eq. 2.104) 
 

so 
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Substituting this into the above equation (eq. 2.106), we get  










∆
+

Ω
+

ΩΩ
=

ΩΩ
+

∆
−

Ω
=

∗∗•

∗∗•

)()
24

||()(
4

)(

)(
4

)()
24

||()(

2

2

tCitCitC

tCitCitC

b
b

a
ba

b

b
ba

a
a

a

δδ

δδ
  (eq. 2.107) 

 

































Ω
−

∆
−

ΩΩ
−

ΩΩ
−

Ω
−

∆

−=













∗∗

∗∗

•

•

)(

)(

4
||

24

44
||

2
)(

)(
2

2

tC

tCi
tC

tC

b

a

bba

baa

b

a

δδ

δδ
  (eq. 2.108) 

 














=












•

•

)(

)(

)(

)( '

tC

tCH
tC

tCi
b

a
R

b

a
  (eq. 2.109) 

 

This is an effective two-level system where 
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  (eq. 2.111) 

 

is the effective Rabi frequency for this two-level system.  
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If we can adjust Ωa and Ωb so that AC stark shift is canceled, that is  

δδ 4
||

4
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ba
∗∗ Ω

=
Ω

,   (eq. 2.112) 

 

then when the difference detuning  

0=∆ ,  (eq. 2.113) 
 

the system is equivalent to an on-resonant two-level system. If we scan the difference 

detuning Δ and detect the atom in state >b|  assuming the atom start at state >a| , the 

signal will be a peak centered at  

0=∆ . 

 

Off-Resonant Raman interaction has the advantage of involving two long live 

energy levels and the spontaneous emission can be ignored if far detuned. It is the 

interaction we use to realize the atom interferometer. 

2.2.3 Raman-Ramsey Interference 

 Raman-Ramsey interference is the atomic interference and it is a very handy tool 

to optimize the system. Similar to Ramsey’s original separate field microwave excitation, 

here we apply a π/2 pulse which lasts for time duration t in zone A and then let the atom 

move in the dark field for time T, after that the atom goes through zone B which is 

another field of π/2 pulse. We will show the principle in two-level system first. After 

zone B, we can detect the atom in either of the states.  

 From section 2.1.1., equation (eq.2.50),  we got  
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  (eq. 2.115) 
 
For near resonance interaction, a π/2 pulse means Ωr t = π/2. If the atom starts at the 

ground state which is 

Ce (t0 ) = 0,  (eq. 2.116) 
 

Cg (t0 ) = 1,  (eq. 2.117) 
 

t0  = 0,  (eq. 2.118) 
 

After zone A, we have  
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In dark zone Ωr t = 0, so  

Ce (t+T) = Ce (t ),  (eq. 2.120) 
 

Cg ( t + T ) = Cg ( t  ).  (eq. 2.121) 
 

At the end of zone B, we have  
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and  
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For near resonance laser beam,   
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we have 
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If we scan the detuning, we can detect the Ramsey fringes as a function of this detuning.  

 In three-level system far detuned case, as we see in the last section, it can be 

simplified to two level system. In a similar way, we can see Raman Ramsey interference 

fringes. If we make some changes in the above formula, 
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we get 
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2.3 Implementing the atom interferometer with Raman 

pulses 

 
 Using off-Resonance Raman pulses to implement this type of atom interferometer 

has a few advantages. First, since it’s far detuned from excited state for each of the 

optical frequencies, the spontaneous emission effect is negligible. Second, it’s two-

photon interaction. If we arrange the Raman beams in counter-propagating configuration, 

the atom will get two-photon momentum recoil. Third, the alkali atoms we use in our 

experiment have ground state hyperfine splitting in the microwave range. Using Raman 

interaction, we only need to use optical frequencies therefore avoid using microwave 

excitation, which is not as easy to localize as optical waves. Fourth, the Raman 

interaction is only sensitive to difference frequency so ultra stable laser is not required. 

It’s easier to stabilize the RF source.  
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Figure 2.10 Multi pulses in spatial domain 
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Figure 2.11 Multi pulses in time domain, where BS is beam splitter and M is 

mirror.  

 Experimentally, to realize multiple Raman pulses, there are two ways. One way is 

to deploy the Raman pulses spatially in a counter-propagating configuration, as shown in 

Figure 2.10. When the number of pulses is small, this method is better. However, when 

we need to go to larger number of pulses, the alignment of all of the pulses will become 

nightmare and almost impossible to accomplish.  The second method is to implement 

Raman pulses in time domain, as shown in Figure 2.11. Two Raman beams with 

frequencies A and C respectively, each passes through a beam splitter then each split 

beam passes through a switch then goes to the experimental zone so that when all the 

switches are on, in experimental zone both frequencies are present from both sides. The 

switches 1,2, 3 and 4 are timed in a fashion so that the when the switches 1 and 3 are on 

for the duration of a π pulse but switches 2 and 4 are off, we have frequency A presents 
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from the top and C from the bottom. When the switches 2 and 4 are on for the duration of 

a π pulse but switches 1 and 3 are off, we have frequency C presents from the top and A 

from the bottom. This way we can get Raman π pulses with alternative directions. The 

advantage of this method is that the Raman beam alignment is a lot simpler. However, as 

the atom pick up recoil momentum gradually, because of the Doppler effect, the 

difference detuning will change and we have to chirp the Raman beam frequency to 

compensate this effect. 

2.4 Extension to the two-dimensional atom 

interferometer with Raman pulses18 

 We see in section 2.12 the principle of one dimensional atom interferometer based 

on multiple Raman π pulses and π/2 pulses. To demonstrate the principle of two-

dimensional atom interferometer, we use a concrete example here.  

 We consider the 87Rb atom, released from an evaporatively cooled magnetic trap 

(or a Bose condensate) and falling under gravity.  The relevant energy levels are shown in 

Figure 2.12.  The atoms are assumed to be in state |F=1, mf=1> at the onset. We excite 

the Raman transition, coupling |F=1, mf=1> (hereafter referred to as |a>) to |F=2, mf=1> 

(hereafter referred to as |c>). The beams are detuned strongly from the excited manifold 

of the D2 line, but are two-photon-resonant, so that the process can be thought of as a 

two-level transition between the two magnetic sublevels.  Here, the quantization 

direction, z, is assumed to be normal to the direction of gravity, denoted as y. 
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 We assume that right after the atoms are released from their trap, they are in state 

|a, pz=0,px=0>≡|a,0,0>.  We apply two σ+-polarized beams which are counter-propagating 

along the z axis, with frequencies chosen so one beam (hereafter called A) couples |a> to 

the excited state, while the other beam (hereafter called C) couples |c> to the same 

excited state.  Both beams are pulsed, with pulse timing chosen so that counter-

propagating pulses arrive at the atom simultaneously and leave the atom simultaneously.  

In our scheme, the first pulse's duration is chosen so that the pulse is a π/2 pulse, with 

beam A propagating in the –z direction and beam C propagating in the +z direction, so 

that the effect is to place the atom in an equal superposition of |a,0,0> and |c,-2k,0>. 

This is illustrated in Figure 2.13 (solid line transitions). The second pulse pair has a 

longer duration, chosen so that the pulse is a π pulse, and also has the directions of beams 

A and C exchanged.   This will cause a π-pulse transition between states |a> and |c>, and 

the reversal of the beam direction will transfer |a,0,0> to |c,+2k,0> and |c,-2k,0> to |a,-

4k,0> (dashed-line transitions in Figure 2.13).  Note that the π pulses excite two Raman 

transitions in parallel, that momentum selection rules ensure that there is no mixing of 

these transitions, and that the atoms are still in an equal superposition of two states. The 

third pulse pair has the same duration as the second (i.e., it excites a π-pulse transition), 

but the directions of A and C are again exchanged.  The state of the atom after this 

second π-pulse will now be an equal superposition of |a,+4k,0> and |c,-6k,0> (dotted-

line transitions in Figure 2.13).  Each subsequent pair of π-pulses again exchanges the 

directions of A and C, driving the atomic superposition to larger momentum splitting. 
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Inspection of Figure 2.13, we see the rule is that the π-pulse traveling in the +z direction 

should have the frequency that interacts with the current atomic state of the +z-traveling 

part of the atoms.  After exposure to an even number Nz of these alternating-direction 

pairs of π-pulses, the atoms will be in an equal superposition of states |a, +2Nzk, 0> and 

|c, –(2Nz+2)k, 0>. For example, Nz=24 alternating π-pulses will put the atoms in a 

superposition of states |a, +48k,0> and |c, -50k,0>.  The pz difference of 98 k 

corresponds to a velocity of about 0.6 m/s, and after 3.3 ms the atoms will separate into 

two clouds with spatial separation of 2 mm.  We can now reverse the motion of the 

clouds by reversing the splitting scheme—choose the pulse directions so that the –z-

traveling pulse has the frequency that interact with the +z-traveling atoms, and then 

continue to exchange pulse directions each time a π-pulse exchanges the atomic states.  

Nz=24 of these reversed pulses would bring the atoms back to the equal superposition of 

|a,0,0> and |c,-2k,0>, and a further 25 pulses (for a total of 49) would put the atoms in a 

superposition of states |c, -50k, 0> and |a, +48k, 0>, moving the two halves of the 

cloud back towards each other. 

 While the spatially separated components of the superposition state are moving 

toward each other, we can apply a pair of linearly polarized beams, co-propagating along 

the x direction, causing a Raman transition between |a> and |c> (dotted-line transitions in 

Figure 2.12). The duration of this pulse pair is chosen such that a π-pulse is induced on 

the two-photon transition coupling |a> and |c>, and the location of the beam is chosen so 

that it only affects the component of the cloud that corresponds to the state |c,-50k,0>. 
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The atom is now in an equal superposition of the states |a,-50k,0> and |a,+48k,0>, 

since the co-propagating fields give no net momentum transfer in the x direction. If left 

alone these components will come together in about 3.3 ms and form fringes with a peak-

to-peak spacing of about 8 nm.  But before that happens we will split (and later 

recombine) each component further along the x-axis.  We will use a pair of linearly 

polarized beams with frequencies A and C, counter-propagating in the x direction.  In a 

manner analogous to the splitting in z direction, we first apply a π/2 pulse, interacting 

with both components of the split cloud, which produces an equal superposition of four 

states: {|a, -50k,0>, |c, -50k,-2k>} separated spatially in the z direction from {|a, 

48k,0>, |c, 48k,-2k>}.  This is followed by a series of Nx direction-alternating π-pulse 

pairs, producing a set of four states.  For even Nx, the states are: 

{ |a,-50k,2Nxk>, |c,-50k,-(2Nx+2)k>} and { |a,48k,2Nxk>, |c,48k,-(2Nx+2)k>}.  

The two clouds in curly brackets are spatially separate from each other in the z direction, 

while inside each cloud two sub clouds will now separate out in the x direction, with a 

velocity of 1.2 m/s if Nx=2Nz=48.  Thus, after about 1.7 ms, the separation in the x 

direction will be about 2 mm in each cloud.  At this point, 2Nx=96+1 π-pulses will be 

applied in the x direction, with the pulse directions chosen to reverse the momentum 

splitting in the x direction.  This will produce an equal superposition of the four states: 

{ |a, -50k,-98k>, |c, -50k,96k>} and { |a, 48k,-98k>, |c, 48k,96k>}. 

When these states merge their interference fringe spacing would be on the order of a few 

nanometers, which would be difficult to detect by optical grating diffraction. To observe 
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the interference and optimize the amplitude in real time, we could scan the phase of one 

of the laser pulses and detect the atoms either in state |a> or in state |c>. The population in 

either state is a function of the optical phase scan. This is the internal state interference 

and the sensitivity of this interference is independent of the splitting angle.  

 Finally, after optimizing the internal state interference, a z directed pair of co- 

propagating, circularly polarized beams are now used to excite a π transition between |a> 

and |c>, but located spatially so as to affect only the |c> sub cloud of each z separated 

cloud.  The separation of 2 mm in the x direction makes this selective excitation possible.  

After this pulse sequence, we have four sub clouds, converging toward one another in 

both x and z directions, and each in the internal state |a>: 

{ |a, -50k,-98k>, |a, -50k,96k>} and { |a, 48k,-98k>, |a, 48k,96k>}. 

Note that the sub clouds are now separated in the z direction by 1 mm, and in the x 

direction by 2 mm. Similarly, the speed of convergence in the z direction (about 0.6 m/s) 

is half of the convergence speed in the x direction.  As such, all four components of the 

cloud will come together in another 1.7 ms, forming a 2 dimensional matter wave grating 

pattern. The spacing of these patterns are determined by the values of Nz and Nx: for the 

rubidium transition wavelength of about 800 nm, the peak-to-peak separation in the z 

direction is approximately 100/Nz nm, and the separation in the x direction is 100/Nx nm.  

For the parameters chosen here, we would have a grating with about 4 nm spacing in the 

x direction, and 8 nm spacing in the z direction.  Structures as small as 2 nm seem 

feasible given the source particles' parameters considered here. The number of spots, and 

uniformity of height thereof, are determined largely by the coherence length of the 
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sample.  For a Bose condensed source, the coherence length is of the order of 300 µm, so 

that up to 1010 structures can be produced and deposited over an area of 300 µm diameter. 

 In the discussion above, we considered only the state with zero initial momentum. 

To see the effect of wave packet evolution on the interference pattern, we start with a 

Gaussian wave packet and Fourier transform it into momentum space. We take into 

account the initial momentum in the x and z directions and average the interference 

process over the initial wave packet.  Figure 2.14 shows schematically the steps involved 

in producing the two-dimensional beam splitting and recombining. At point S, right after 

atoms are released from the trap, assume the initial momentum state is |ψ0>=|a, poxħk, 

pozħk>.  In what follows, we assume that the duration of the interaction with the laser 

pulses is negligible compared to the free evolution time of the wave-packet. Components 

of the wave-packet following the four distinct paths S-A-A1-E, S-A-A2-E, S-B-B1-E and 

S-B-B2-E will accumulate phase factors given by the following expressions:  

α=Exp{i(-ħk2/2m)t[(poz–2Nz–2)2 + (poz+2Nz)2 + (pox+2Nx)2 + (pox–2Nx-2)2]},  (eq. 2.129) 
 

Here t is the time from S to A or B. At point E, the momentum state becomes: 

|ϕ(pox,poz)>=1/2α1 ( |a,(poz+2Nz-2)ħk, (pox-2Nx)ħk>+ |a, (poz+2Nz-2)ħk, (pox+2Nx-2)ħk> 
  + |a, (poz-2Nz)ħk, (pox-2Nx)ħk>+ |a, (poz-2Nz)ħk, (pox+2Nx-2)ħk> )  (eq. 2.130) 

 

The whole wave packet is then given by:  

|ϕ>= >+−∫∫ ),(|]*)(exp[
2

2 2222
ozoxozoxozox ppkppdpdp ϕd

p
d   (eq. 2.131) 

 

where δ is the standard deviation of the initial packet. The interference pattern is given by 

P(x,z)≡ψ(x,z)* ψ(x,z), where ψ(x,z)=<a, z, x |ϕ> is the spatial wave function. 
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  (eq. 2.132) 
From this, we can see that it is a two-dimensional interference pattern with Gaussian 

envelope.  

 

 Figure 2.15 shows a plot of this pattern for δ=10 nm and t=30 ns as a simple 

example.  The relatively small size of the packet is chosen in order to ensure that both the 

fringe pattern and the roll-off are easily decipherable in the plot. Of course, as discussed 

above, the initial wave packet size could be as large as 1 mm. In that case, we will have 

nearly 1010  fringes within the envelope. 
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Figure 2.12 Relevant energy level 
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Figure 2.13 Schematic illustration of the first three pulses in the Raman pulse 

beam splitter.Explicit form of the initial superposition state, after excitation with the π/2 

pulse, is shown along with the superposition states resulting after the first and second π 

pulses are applied.  Solid lines denote transitions excited with the π/2 pulse, dashed lines 

denote the first π pulse, dotted lines denote the second π pulse.  Note that the π pulses 

excite two Raman transitions in parallel.  Momentum selection rules ensure that there is 

no mixing of these transitions.  For clarity, the energy shifts due to kinetic energy are 

omitted. 
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Figure 2.14 An illustration of the steps involved in producing two-dimensional 

beam-splitting and recombining.  For simplicity, the laser beams are not shown in the 

diagram.  
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Figure 2.15 A two-dimensional interference pattern after initial momentum 

averaging.  This simulation assumes a 10 nm initial Gaussian wave packet size and total 

60 ns propagation time. 

 

 We can use a somewhat different approach to produce two-dimensional structures 

with arbitrary patterns (as illustrated in Figure 2.16).  Briefly, we can draw a desired 

pattern (such as gears, turbines, cantilevers, etc.) in a computer graphic program Then we 

can convert the pattern into a bitmap file. A computer program can be written to create a 
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matrix which is a two-dimensional function, f(x,y), from which one computes a new 

function: g(x,y)=Cos-1(f(x,y)). An optical intensity mask is then produced, corresponding 

to g(x,y).  Consider next the atomic wave. The atoms dropped from the magnetic trap (in 

the form of an atom laser) is first split, using a Raman resonant pulse, with frequency 4 in 

Figure 2.16, into two internal states.  Both internal states are then defocused using a far-

red-detuned laser beam with an anti-gaussian profile, beam 1a; this beam is pulsed on for 

a short time, then turned off. The expanding atomic waves are then collimated using 

another laser pulse with a gaussian profile, beam 2a. A third pulse, on resonance, beam 3, 

carrying the planarized intensity pattern, then interacts with only one internal state of the 

atoms.  For a short interaction time, the laser intensity pattern acts as a linear phase mask 

for the atomic wave.  Both internal states are then defocused and recollimated.  At this 

point, another Raman resonant pulse, beam 4 is used to convert all the atoms into the 

same internal state, so that they can interfere.  The interference pattern is Cos(g(x,y)), 

which yields the original pattern, f(x,y).  However, this pattern is now on a scale much 

shorter than the optical wavelengths.  For parameters that are easily accessible, in the 

case of rubidium atoms, it should be possible to produce patterns with feature sizes of as 

small as 10 nm.  As mentioned above, these patterns can be transferred to semi-

conductors or coinage metals using chemical substitution techniques.  Several layers can 

be bonded together to yield three-dimensional structures, as is often done in current 

MEMS processes.  
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Figure 2.16. Basic illustration of the steps involved in producing two dimensional 

arbitrary patterns using a combination of atom focusing/defocusing and interferometry. 

Here, the inverse cosine of the desired pattern is first transferred to an optical intensity 

mask, which in turn acts as a phase mask (via ac-stark effect) for the atomic wave 

packet.BS1 and BS2 are two beam splitters.    
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Chapter Three:  

Experimental Investigation of One Dimensional Atom 

Interferometer Using Multiple Raman Pulses 

3.1 Experimental Setup 

Our experimental setup consists of  three major parts: atomic beam, optical setup 

and detection system. The diagram of the experimental layout of the π/2- π- π/2 atom 

interferometer is shown in Figure 3.1. So far the π/2- π- π/2 atom interferometer is the 

only multiple Raman pulses based atom interferometer we attempted because of the 

asbestos accident mentioned in chapter one. The apparatus is two meters long from the 

point of optical pumping and the point of detection.  

3.1.1 Atom Source 

 The source of the atom we use in our experiment is Rubidium. The 

Rubidium atom is well studied and is commercially available.  Its optical transitions are 

within the frequency range of our existing Ti:Sapphire lasers and its RF ground level 

splitting is reasonable, only about 3 GHz in the case of Rubidium 85. See Figure 3.2. 

Our source is in the form of an atomic beam. 
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Figure 3.1 Experimental layout 
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Figure 3.2 Rubidium 85 energy levels (MHz) 

3.1.2 Oven, Atomic Beam Collimation and Aperturing 

See Figure 3.3 for the oven structure: A is the oven which holds the Rubidium 

atoms. Above A, there is a valve V2 so oven A can be separated from the vacuum system. 

When something goes wrong with any other part of the vacuum system, we can close 

valve V2 to avoid the exposure of the Rubidium atoms to the air. Above valve V2, there’s 

a 4-way cross B. On the right of B, there is a long section of nipple C+D, then there are a 
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nozzle and two skimmers, which provide the collimation of the atomic beam. Originally 

they were designed for a supersonic beam and the first skimmer was taken out for  the 

thermal beam. Both the nozzle and the second skimmer have 1mm diameters. The 

distance between the nozzle and the second skimmer is 15 cm. From the nozzle to the 

detection PMT, the distance is 2.3 meters. The imaging system of the detection PMT is 

set up such that an aperture can be used to control the field of view. We found out that by 

reducing the aperture size of the PMT we can detect the atoms with less transverse 

velocity spread. We see this effect from the width of the counter-propagating Raman 

signal as a function of the aperture size. Using this method, when the signal to noise level 

is not an important concern, we don’t need to do cooling of the atomic beam to get a 

narrower transverse velocity spread.  

On the left of B, there’s another valve V1. On the left of valve V1, there’s a view 

port. When the system is cooled down, we can open that valve and check whether our 

nozzle is clogged by illuminating it either with a laser beam or just simply a flash light.  
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Figure 3.3 Oven and atomic beam collimation 
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There are some heaters and thermo-couples wound on parts A, B, C, D, E, V1, V2, 

respectively. The oven temperature profile is as follows:  

 

A: 245 oC,  

B:395 oC,  

C:327.5 oC,   

D:392.5 oC,  

E:252.5 oC,  

Nozzle:197.5 oC,  

V2: 370 oC,  

V1: 372.5 oC 

3.1.3 Vacuum system 

Our vacuum system has three diffusion pumps backed by three mechanical 

pumps. The whole system is about 3 meters long. See Figure 3.4. Most experiments were 

done in section 1 and detection was done in section 2.  

3.1.4 Detection 

A photomultiplier is mounted on top of section 2 of our vacuum system to detect 

the fluorescence of the atomic beam. We use F=3  to  F’=4 cyclic transition as our probe 

beam for detection. See Figure 3.5. According to the selection rules, atoms excited to the 

state F’=4 can only decay back to the state F=3, so this transition is called cyclic 

transition. 
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Figure 3.4 Vacuum systems 
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Cyclic transitions don’t pump atoms away to other states which cannot be 

detected by the probe beam. So detection is more efficient using cyclic transitions. 

 

Cyclic transition
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Figure 3.5 Detection frequency 

3.1.5 State preparation 

We want to prepare our atoms in a single pure state so that the later interactions 

are more efficient. We need a bias magnetic field, typically a few hundred mGauss, to 

provide us with the direction of polarization. This is accomplished by two long coil 
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structures sitting on each side of the atomic beam vacuum chamber. To calibrate the 

magnetic field with respect to the current in the coils, we apply co-propagating Raman 

beams. Because the propagating directions of the Raman beams are the same as the B 

field, we don’t have the π polarized Raman beam. If we make both Raman beams 

circularly polarized the same way, the Raman interaction will connect magnetic sublevels 

with the same mf value. So the signal shows the single peak without magnetic field, five 

peaks with magnetic field and the central one correspond to F=2, mf=0 to F’=3, mf=0. 

The peak to the right of this one corresponds to F=2, mf=1 to F’=3, mf=1. The g factor for 

Rubidium 85 ground state F=3 level is 1/3, and for F=2 level is –1/3, where  


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With a magnetic field applied, sublevels in those two levels will shift in the 

opposite direction, corresponding to a shift x=|g|μBB. The distance between peaks in the 

co-propagating signal would be 2x. From this distance we can deduce the magnetic field 

applied and the current needed for the bias magnetic field. 

See Figure 3.6 for the energy levels involved for the state preparation. Rubidium 

85 ground level has two hyperfine states F=2 and F=3. Our goal of state preparation is to 

use magnetic sublevel optical pumping to pump all, or at least most, of the atoms to the 

F=2, mf=0 state.  
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Figure 3.6 State preparation: energy levels involved 

The bias magnetic field is about 400 mGauss. We apply a laser beam with σ+ 

polarization and a F=3 to F’=3 frequency and a laser beam with π polarization and F=2 to 

F’=3 frequency. See Figure 3.7. According to the selection rules, the σ+ beam excites 

atoms from state F = 3, mf = 2, 1, 0, -1, -2, -3, to F’ = 3, mf
’ = 3, 2, 1, 0, -1, -2, 

respectively and the atoms can decay to state F=2, mf = 2, 1, 0, -1, -2 and to state F=3, mf 

= 3, 2, 1, 0, -1, -2, -3. The π polarization beam excites atoms from state F = 2, mf =2, 1, -

1, -2 to state F’= 2, mf
’ = 2, 1, 
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Figure 3.7 State preparation: Magnetic sublevel optical pumping. 

F=3

F=2mf

mf0

0

-1

-1

1

1

2

2

-2
-2

F’=2

F’=3
mf

mf0

0 3

-1

-1

1

1 2

2-2
-2-3

-3
3

F’=4
mf4

0 3
-4

-1 1 2-2-3

R1 R2

D

 

Figure 3.8 Magnetic sublevel optical pumping detection. 
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-1, -2, respectively and atoms can decay to state F = 2, mf = 2, 1,  0, -1, -2 and state F = 3, 

mf = 3, 2, 1, 0, -1, -2, -3. The transition F = 2,  mf = 0 to state F’ = 2, mf
’ = 0 is forbidden. 

Since atoms can be pumped into state F = 2,  mf = 0 but can not be pumped out, most of 

the atoms will be trapped in that state in a few optical pumping cycles. After pumping 

atoms to the pure state F=2,  mf=0 magnetic sublevel, we use a Raman transition R1+R2 

to move atoms to state F=3,  mf=0 and use our cyclic transition F=3 to F’=4 to detect the 

optical pumping effect. See Figure 3.8. 

The result is shown in Figure 3.9. 

 In this figure, the peaks occur when the difference frequency of two Raman 

beams are exactly matched with the difference frequency of the magnetic sublevels 

involved. We see from the figure that most of the atoms ultimately end up in the 

magnetic sublevel F=2, mf=0 state after optical pumping. The small peak on the left is 

due to the imperfect π polarization of F=2 to F’=2 optical pumping beam. 

3.1.6 Overall frequency scheme 

We use the Rubidium 85 D2 line for our experiment. The overall frequency 

scheme is shown in Figure 3.10. The common detuning of Raman beams can be changed.  

3.1.7 The parameters of the atomic beam 

 We measure the average longitudinal velocity of the atomic beam by the time of 

flight method. See Figure 3.11. We apply a co-propagating Raman beam at point A and 

detect it at point E. When we turn off the co-propagating Raman at point A for 10 ms, 

there’s delay time tA before the detected signal decays. When we apply a co-propagating 
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Raman signal at point C and turn it off for 10 ms, we get the delay time tC before the 

detected signal decays. The distance between A and C is LAC = 1 m. So the average 

velocity is VL = ( tA - tC ) /  LAC =  388 m/s.  

We deduce the transverse velocity of the atomic beam by measuring the width of 

the counter-propagating Raman signal. The result is consistent with the geometry of  the 

nozzles and the aperture of the detection PMT. The counter-propagating Raman signal 

width is the convolution of the co-propagating Raman signal width and the transverse 

velocity spread. 

3.1.8 Lasers and their long term frequency stabilization19,20 

The lasers we use in our experiment are Coherent  899 Ti:sapphire ring lasers 

pumped by Coherent Innova 400 Argon lasers. The Ti:sapphire laser gives us about 1.8 

Watt in single mode operation with the tunability of  20 GHz when pumped by 12 Watt 

Argon ion laser power.  
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Figure 3.9 Effect of the Magnetic sublevel optical pumping. 
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Figure 3.10 The overall frequency scheme 
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Figure 3.11 Time of flight to measure the longitudinal velocity of the atomic beam 
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Figure 3.12 Diagram of the Ti:sapphire laser and its lock scheme 
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Figure 3.12 shows the diagram of the Ti:sapphire laser setup.  

All components are mounted directly or indirectly on a two-inch Invar bar. The 

Invar bar has a very low coefficient of expansion, therefore, resulting in passive cavity 

length thermal stabilization of less than one micro/degree centigrade.  

 Without frequency filters in the cavity, the Ti:sapphire ring laser will lase over a 

broad range of longitudinal modes so long as they are covered  by the Ti:sapphire crystal 

gain profile. The laser has a series of intracavity frequency filters to control the laser 

frequency passively. These include a three plate birefringent filter, an intracavity etalon 

assembly (ICA) that consists of a thin etalon and a thick etalon. The birefringent filter 

allows broadband operation with a bandwidth of 2 GHz. The ICA decreases the 

operational bandwidth to 10 MHz. The coated etalons are of low finesse that would allow 

broadband coverage.  

  The birefringent filter takes advantage of the fact that birefringence could induce 

polarization change.  

 In birefringent materials, if the incoming laser beam propagates along the optic 

axis, then the index of refraction for that beam is no. If the incoming beam propagates 

perpendicular to the optic axis, then the index of refraction for that beam is ne when the 

polarization is lined up with the optic axis and it’s no when the polarization is 

perpendicular to the optic axis. If the propagation direction of the incoming beam makes 

an angle with the optic axis, there are also two allowed polarization directions. The one 

that is perpendicular to the optical axis still has the index of refraction no. It is called the 

ordinary wave. The index of refraction of the other one is a function of the angle, ne (θ). 

It is called the extraordinary wave. 
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1/ ne 2(θ).=cos2 θ/ n2
o +sin2 θ/ n2

e  (eq. 3.2) 
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Figure 3.13 Birefringent filter. 

In a birefringent filter, the birefringent element is placed under the Brewester 

angle. Many Brewster faces inside the laser cavity defines the polarization direction. 

When the laser beam passes through the birefringent element, the ordinary wave and the 

extraordinary wave have different phase velocity because their different indices of 

refraction. So the polarization of the laser beam will change after passing through unless 

the condition 

(ne(θ )- no)d/λ=integer  (eq. 3.3) 
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is satisfied, which is to say, that the optical path difference between the extraordinary 

wave and the ordinary wave should be an integer number of wavelengths. Since only the 

polarization direction defined by all the brewster faces would suffer no reflection loss 

and, therefore, would have enough gain to lase, the birefringent filter selects the 

frequency satisfying above condition. See Figure 3.13 for the birefringent filter. When we 

tune the birefringent filter, we essentially change the direction of its optic axis with 

respect to the direction of the incident beam. Therefore, by changing ne(θ ), and keeping 

the same integer in (eq. 3.3), we tune over a range of λ, i.e. a range of frequencies. 

 From (eq. 3.3), we can see that the birefringent element doesn't just select one 

frequency. It will select many of them. The bigger d, the smaller the distance between the 

selected frequencies. The three birefringent plates have different thicknesses but the 

ratios of the thickness of those three are integer numbers. For example, d1 = d, d2 = 4 d, d3 

= 16 d. This would give 21 peaks between birefringent filter “orders”.  The laser will lase 

on the transmission maximum that is the closest to the maximum of the crystal gain 

curve. 

Incident beam

Retro-reflected beam

 

Figure 3.14  Thin etalon 



 89 

 The birefringent filter is used just for coarse tuning. The thin etalon and the thick 

etalon in the ICA are for frequency tuning in a narrower range. The etaton uses optical 

interference to filter the frequency. See Figure 3.14. When the optical path length 

difference between the incident beam and all the retro reflected beams is Δx=nλ, where n 

is an integer, those beams interfere constructively. All the other frequencies (or 

wavelengths) which don’t satisfy the condition Δx=nλ would interfere destructively.  If 

we can change the thickness of the etalon in someway, we can tune the laser frequency.  

 The thin etalon can be tuned by a galvonameter drive which controls the tip angle. 

Tilting the etalon plate is effectively changing the thickness of the etalon. The thick 

etalon cannot be tuned the same way because of its thickness. Tilting the angle of the 

thick etalon, would cause the beams exiting the backside physically to separate and  to 

induce laser power loss, the so-called “walk off”.  The thick etalon is the air gap between 

two prism wedges. See Figure 3.15 for a diagram of the thick etalon.  There’s a PZT 

attached to one of the wedges to change the spacing of the air gap.  

 The Ti:sapphire gain medium  is tunable from 680nm to 1025nm. The 

birefringent filter coarsely tunes the frequency. The FWHM of the birefringent filter 

order is about 2 THz. The thin etalon is the finer frequency selector. The FWHM of the 

thin etalon is about 200 GHz. The thin etalon thickness is about 0.5 mm and the free 

spectral range is about 225GHz. Then comes the finest one. The thick etalon has a 

FWHM of about 5 GHz . It is about 10mm thick and has the free spectral range about 10 

GHz. The birefringent filter’s transmission order curvature imposes enough losses on the 

nearby orders of the thin etalon to suppress lasing in those orders. In the same way the 

thin etalon’s 
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Figure 3.15 Thick etalon 
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transmission order curvature would also suppress lasing in adjacent orders of the thick 

etalon except one.  This is how the passive frequency control works.   

 Active frequency control reduces the laser line width to about 500 KHz RMS. It is 

achieved by using an extremely stable reference cavity and an electronic servo loop. The 

servo consists of three elements: a reference cavity, a tweeter and a Brewster galvo.  

 Figure 3.16 shows the reference cavity. There is an etalon inside the reference 

cavity. Tilting the etalon plate changes the path length and, therefore, scans the etalon 

transmission. Detector B sees the interference fringes between the incident beam and the 

retro reflected beam. If the laser frequency changes due to the change of the main cavity 

length, the interference fringe pattern detector B receives changes. The signal on detector 

A is for reference and normalization. Other types of noise would show up at B as a 

reduction of signal level. The time scale of those noises is converted to frequency and an 

error signal is generated. The high frequency part (500 Hz~200 KHz) is applied to the 

tweeter to correct for fast cavity length variation. The  low frequency part (0 Hz~ 500 Hz) 

drives the rotating Brewster’s plate to compensate for the slower cavity length changes.  

The Brewster’s plate is mounted at the vertex of the optical beam path so that during a 

scan the displacement of the intracavity beam is minimized.  

 In the Ti:sapphire laser, the single mode frequency scanning is achieved by 

continuously varying the cavity length with the rotating galvanometer driven by the 

Brewster’s plate. Since wide scans could induce loss and mode hops, the servo on the 

thick etalon is used to prevent this. When scaning, the thick etalon keeps track of the laser 

frequency by varying the thickness with a piezoelectric transducer to ensure the overlap 

of cavity modes and the thick etalon’s transmission envelope. 
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Figure 3.16 Reference Cavity 
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 For unidirectional lasing, the Ti:sapphire laser has an optical diode in the cavity 

path. The optical diode consists of a Faraday rotator and an optical active element. In the 

Faraday rotator, the rotation of the polarization of the incoming beam is defined by the 

magnetic field direction. Whether the incoming beam propagates along the magnetic field 

or against the magnetic field, the polarization will rotate the same amount and along the 

same direction. The optical active element will rotate the polarization of the incoming 

beam clockwise (for d-rotatory material) or counterclockwise (for l-rotatory material) 

when looking in the direction of the source. In the forward direction, the optical active 

element will rotate the polarization by -θ and the Faraday rotator will rotate the 

polarization by θ; therefore,  the combination of the Faraday rotator and the optical active 

element will keep the incoming beam polarization constant. However, in the backward 

direction, the combination of the Faraday rotator and the optical active element will rotate 

the polarization by 2θ, and the reflection loss from the intracavity Brewster plates will 

prevent lasing in this direction.  Figure 3.17 shows how the optical diode works.  

 

 For laser long-term stabilization, we need to lock its frequency to a well-known 

frequency. In our experiment, we use the saturation absorption method to achieve this 

goal. Figure 3.18 shows the saturation absorption set up and its electronics.  A part of the 

Ti:Sapphire laser beam goes through a piece of glass and then reflects from a mirror and 

a beam splitter. Two weak probe beams reflected from the front and back surfaces of the 

glass piece go through a Rubidium vapor cell and hit two photo detectors,  
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Figure 3.17 Optical diode 
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Figure 3.18 Saturation absorption set up and electronics 
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respectively. The strong pump beam reflected from the mirror and the beam splitter 

overlaps with one of the weak beams from the opposite direction. When we scan the 

Ti:Sapphire laser frequency, each of the probe beams would give us a Doppler  

absorption profile. The strong pump beam saturates the atoms in its path so that the probe 

beam overlapped with it cannot be absorbed at those frequencies that are saturated. So 

this probe beam gives us transmission peaks of Rubidium line profiles and some cross 

over peaks. Figure 3.19 shows the signals from two photo detectors when we scan the 

laser over only one Doppler profile. The subtraction of these two signals eliminates the 

Doppler background and gives the Rubidium line profiles and cross over peaks.  Figure 

3.20 shows the saturation absorption signal of Rubidium 85 F=3 to F’ lines and cross 

over peaks. The cross-over peaks are caused by the Doppler effect. Assume the frequency 

of the laser beam is f, ω=2πf. Since the probe beam and the pump beam propagate in 

opposite directions, the atoms with velocity v see the probe beam with frequency ω-kv 

and the pump beam with frequency ω+kv. For the group of atoms with v=0, the pump 

beam saturates the Rubidium transitions ω and within the Doppler absorption of the 

probe beam, those frequencies of ω would not get absorbed. If two transitions are close 

enough, their Doppler profile cannot be resolved. For example,  consider a group of 

atoms with velocity v. If 2kv= ω1-ω2, ω+kv= ω1, ω-kv= ω2, which is to say, that this 

group of atoms, when the laser frequency is ω=( ω1+ω2 )/2,  is brought to resonance with 

transition ω1 and ,therefore, the atoms  are saturated by the pump beam. With respect to 

the probe beam, because of its opposite propagating direction, this group of atoms is 

brought to resonance with the transition ω2. Since they are already  
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Figure 3.19 How saturation absorption works 
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Figure 3.20 Saturation absorption signal 
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saturated, the probe beam will give us the transmission peak at ω=( ω1+ω2 )/2, which is a 

cross over peak between ω1and ω2. 

 The saturation absorption signal provides us with a frequency standard. To lock 

the Ti:Sapphire laser to any of the peaks of the saturation absorption signal, we feed the 

later to the standard lock-in electronics and feed the error signal of the lock-in to the 

Ti:Sapphire laser Ext input. This way the Ti:Sapphire laser can be locked to the 

frequency we want over a few hours while we run the experiment.  

3.1.9 Raman laser frequency realization 

 We have two ways to generate our Raman beam frequencies. But, either way, we 

want the difference frequency of those two Raman beams to be stable. The first method is 

the injection lock of the diode laser which can provide us as much power as we need and 

which is useful when we get to a later stage of the experiment. However, the alignment of 

this method is more involved. The second method is to use acoustal optic modulators to 

generate Raman beams. They are  easy to align but the available power is limited by the 

damage threshold of the acoustal optic modulators. Nevertheless,this method is the 

prefered one for the initial stage of the experiment since we don’t need that much power 

and since the alignment is  much simpler.  

3.1.9.1 Injection Lock of Diode Laser 21 

 
We can consider the injection locked diode laser as a laser intensity amplifier that 

is phase coherent with the injecting master laser beam. The requirement of the 

experiment is to injection lock the diode laser so that the frequency of the locked diode 
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laser is about 3 GHz away from the frequency of the master laser. Also when we tune the 

difference frequency around 3 GHz, the lock won’t get destroyed and the direction of the 

available laser beams to the experiment won’t change.  A master laser beam goes through 

a 3 GHz Electro-Optic Modulator (EOM)  (New Focus model 4431) which produces two 

sidebands of 3GHz above and below the incoming laser frequency. The EOM itself is 

driven by a 3 GHz RF source phase locked to a Rubidium clock. The sidebands and the 

fundamental frequency propagate along the same direction. We use a home made Fabry-

Perot cavity with finesse of about 60 and a free spectral range of about 30 GHz to filter 

out the unwanted laser frequencies. When we scan the Fabry-Perot and find the side band 

we want, we lock the Fabry-Perot cavity to the side band and we inject the output of the 

cavity to a SDL 5412 diode laser . The challenge of locking the diode laser is to prevent 

the laser beam from feeding back. Because of the small cavity size, the diode laser could 

become very unstable due to feedback. A normal Faraday isolator could prevent 

feedback, however, it would also prevent the injection locking at the same time. To solve 

this problem, we modified a commercial Faraday isolator (from Electro-Optics 

Technology, Inc, which provides isolation of better than 30 dB) and we designed the 

polarization of all the laser beams involved carefully. See Figure 3.21 for the modified 

isolator.  

A normal Faraday isolator has a Faraday rotator which will rotate the incoming 

laser beam 45o with respect to the magnetic field orientation whether the incoming beam 

is from one side of the rotator or from the other side. On each side of the rotator, there is 

a  
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Figure 3.21 Modified Faraday isolator3  
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Figure 3.22 Diode laser injection locking3 
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linear polarizor. One side of the linear polarizor is vertical and the other side is rotated 

45o to the vertical one. When the diode laser beam first goes through the vertical linear 

polarizor and then through the rotator, the polarization of the beam will be 45o to the 

vertical which would pass the second linear polarization without attenuation. However, 

when the feedback beam, passes first through the linear polarizor which is 45o to the 

vertical, the Faraday rotator rotates its polarization to the horizontal and the second 

vertical linear polarizor would block it completely. In our modified scheme, we remove 

the 45o to the vertical linear polarizor. See Figure 3.22. We have now a circularly 

polarized laser beam after the Fabry-Perot cavity. We then use a quarter wave plate to get 

a beam with vertical linear polarization. A neutral density filter is inserted after that to 

provide adjustment of the injecting beam intensity, therefore, the coupling between the 

master laser beam and the diode laser beam. A polarizing cube beam splitter in the path 

reflects the vertical linear polarized beam and lets the horizontal linear polarized beam 

through. After that a half wave plate changes the polarization from -45o to the vertical 

linear, and after the modified Faraday rotator, the polarization becomes vertical again. 

Since the injecting beam has vertical polarization, the locked diode laser would also have 

a vertically polarized output laser beam. This outgoing beam goes through the modified 

Faraday isolator and the polarization would become 45o to the vertical linear. The half 

wave plate in the path would turn it to horizontally polarized beam. If we trace the beams, 

we can see that there are two possible paths for feedback. One is the path going through 

the polarizing cube beam splitter. This would always carry the horizontal polarization 

past the cube, therefore, 45o to the vertical linear between the half wave plate and the 

isolator, but the isolator would prevent this polarization from feeding back. Another path 
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originates from the cube’s reflected beam. Let’s trace this path. If there’s some residue 

vertical linear polarized outgoing diode laser beam between the half wave plate and the 

cube, it would be reflected into the incoming master laser beam path. After passing 

through the quarter wave plate, it’ll become circularly polarized. Afterwards it will be 

reflected from the cavity and passing through the quarter wave plate second time, it’ll 

become horizontally polarized, which will go through the polarizing cube beam splitter 

without reflecting to the injecting locking path. Our scheme essentially separates the 

master laser beam path and the outgoing diode laser beam path and prevents the feedback 

to a very high degree.  

To lock the laser, we also need to mode match the master laser and the diode 

laser. For horizontal mode matching, we use the temperature of the diode laser cavity for 

coarse tuning and the diode current for fine tuning. For transverse mode matching, we use 

proper collimating optics to achieve the goal. 

3.1.9.2. Raman frequency produced by acoustal optic modulators 

To save us the trouble of complicated alignment, we currently generate our two 

Raman frequencies by using acoustal optic modulators (AOM). We found AOMs from 

Brimrose with about 35% to 40% efficiency at 1.5 GHz and a damage threshold of 300 

mW. That means we can get about 100 to 120 mW laser power at the frequency we need. 

This is a preferred method now since at this stage of the experiment, we are not limited 

by laser power. In the future when we need to implement a multi π pulse scheme, we 

might need to go back to diode laser injection lock and lock a chain of the diode lasers to 

provide us with the required laser intensity.  
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 See Figure 3.23 for the current setup of all the laser beams needed for the 

experiment at the right frequencies generated by a few AOMs. We inserted proper 

collimating optics in the beam path to focus the laser beam. The laser beam waist is small 

enough to match the active aperture size of the AOM (Which is 70 μm in the 1.5 GHz 

AOM’s case) to optimize the AOM output power. There is a beam splitter after the 

collimating optics. The through beam and the reflected beam each goes through a 1.5 

GHz AOM with one frequency upshift and one frequency downshift. So the frequencies 

of the output of these two AOMs are 3 GHz apart. This scheme allows us to scan the 

difference frequency symmetrically.  

To be able to change the common detuning of the two Raman beam, we insert a 

1.2 GHz AOM with a 300 MHz tuning range in the setup. The downshift output of this 

AOM would serve the purpose of optical pumping, detection and locking. We upshift one 

of the three parts of this beam by a 60 MHz AOM to lock the laser at the crossover peak, 

the biggest one in the group, which is 60 MHz above the peak of F=3 to F’=3.The second 

part of the beam has the frequency of F=3 to F’=3 and is used for optical pumping. The 

third part of the beam goes through another AOM and the outgoing beam is upshifted 120 

MHz in frequency. This beam serves as the detection beam, which has the frequency of 

F=3 to F’=4. If the 1.2 GHz AOM is driven at exactly 1.2 GHz, we have both the Raman 

beams red detuned from level F’=3 by about 300 MHz. 
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Figure 3.23 Current setup of all the laser beams with the right frequencies 

generated by a few AOMs.  OP stands for optical pumping beam F=3->F’=3, the other 

optical pumping beam is generated by a separate Ti:sapphire laser. 
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3.1.10 Noise Control 

3.1.10.1 Stray magnetic field gradient 

Both the magnetic sublevel optical pumping and the Raman interaction are very 

sensitive to the laser beam polarization.  It’s very important that we get rid of the stray 

magnetic field otherwise the efficiency of the optical pumping and Raman interaction 

would be affected.  

We put the annealed μ metal around the vacuum chamber for the atomic beam 

with the coils for bias magnetic field inside the μ metal. The stray magnetic field is cut 

down to less than 10 mGauss in the center, though there still might be some leakage 

around the edge.   

3.1.10.2 Mechanical noise 

Our atomic beam (vacuum system) was sitting on top of a Unistruct construction. 

On each side of the atomic beam, four ¾”x1’x11/2’ breadboards were mounted on two 

long Unistruct bars. Breadboards were connected with each other by a few 1”x1”x32” 

aluminum bars. Optics for the last part of the detection beam, Raman beams and cooling 

beam in their corresponding beam paths were mounted on those breadboards.  

To characterize the mechanic vibration effect of the system on our experiment, we 

set up a Mach-Zehnder interferometer and looked at the stability of the interference 

fringes. See Figure 3.24 for this optical interferometer.  In one of our diagnostic 
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experiments, π/2-π-π/2 counter propagating Raman experiment, we use the first π/2 and 

the second π/2  
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Figure 3.24 Optical interferometer to characterize mechanical stability of the 

system 
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beam in one direction of the counter propagating Raman beams to set up this 

interferometer. A photodiode with a small aperture was set up to look at only one fringe 

of the interference. We inserted a glass plate galvo in one leg of the interferometer. When 

we scan this galvo plate, the optical path length of that leg is changed and we expect that 

the photodiode should see the change of the intensity of that particular fringe as a 

function of the galvo scan voltage. If the system is stable and no mechanical vibration 

exist, we expect to see a time independent smooth curve of intensity vs. scan. 

Unfortunately, the time average of this signal approached zero due to the vibration. This 

means that the phase relation between the first π/2 and the second π/2 beams is random. 

In this case the atomic interference fringes would be completely wiped out by the 

mechanical vibration. 

To solve this problem, we made some changes in our system. Two 1”x1’x9’ steel 

plates are mounted on the Unistruct, each weighs about 300 lb. They are connected by six 

2”x4”x40” aluminum bars. Breadboards were mounted on top of these two steel plates. 

We also put vibration control pads under all the mechanical pumps to isolate the main 

sources of the mechanical vibration in the lab. See Figure 3.25 for the effect of the 

mechanical noise control. The interference signal on top is 32 times averaged Compared 

to the single shot interference signal, we still get about 80% of the amplitude left after the 

averaging.  After the change, the short-term stability is greatly improved. However, the 

system is still very sensitive to the transient environmental noises, such as the slam of the 

door, or jumps on the floor. So if we average for a long time, the signal fluctuates. This is 

not perfect, but we have a reasonable chance to observe the atomic interference. 
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3.1.10.3 Laser intensity noise  

When the Ti:sapphire laser is well aligned, the intensity noise is less than 1%. We 

don’t have to worry about this noise source at least for now. 

3.1.10.4 Laser Frequency drift 

When we lock the Ti:sapphire laser to one of the saturation absorption peaks, the 

frequency noise is less than one MHz.  

3.1.10.5 Raman beam difference frequency drift 

What is important is the difference frequency between the two Raman beams in 

our experiment. We lock the RFsource, which drives the two 1.5 GHz AOMs for Raman 

beams, to a microwave frequency stabilizer which is in turn locked to a Rubidium clock. 

3.1.11 Alignment 

3.1.11.1 The alignment of the detection beam and the optical pumping beam 

First we need to align the detection beam so it is perpendicular to the atomic beam 

and goes through the center of the atomic beam. We scan the laser over F=3 to F’ 

frequencies and use the laser’sthe  horizontal scan output to trigger the oscilloscope. We 

put the saturation absorption signal and the signal detected from the photo multiplier tube 

(PMT) into the oscilloscope’s two input channels. Taking  into account all the AOMs in 

the path of the detection beam, the peak of the detected signal should present itself at a 

particular position with respect to the saturation absorption peaks if the detection beam is 

perpendicular to the atomic beam 
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Figure 3.25 The effect of mechanical noise control 
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so there is no Doppler shift . We need to adjust the horizontal alignment to get the 

detected signal peaked at the expected position and adjust the vertical alignment so the 

detection beam goes through the center of the atomic beam. The detection beam is also 

retro reflected back so during the detection, the atoms won’t get pushed to one side after 

a few cycles. We need to align the retro reflected detection beam so when we block the 

retro reflected beam, the fluorescence peak drop by half.  

Next we need to align the optical pumping beam. Both optical pumping beams are 

vertical, perpendicular to the detection beam and Raman beams. We use the optical 

pumping beam F=3 to F’=3 to align and put F=2 to F’=2 on top of it. We want to make 

sure that the optical pumping beam pumps the same group of atoms that will be detected 

by the detection beam. We align the optical pumping beam so the detected signal will 

diminish and disappear. Since F=3 to F’=3 will pump atoms out of F=3 level and the 

detection beam detects atoms at F=3, therefore, when the optical pumping is the most 

efficient, we should see a minimum detection signal.  

3.1.11.2 The alignment of the Raman beams 

 
To roughly align the Raman beams, we use the same procedure as in the 

alignment of the detection beam.  

The difference frequency of the two Raman beams is very important in our 

experiment. AC stark shift is proportional to the laser intensity, so if we don’t cancel the 

AC stark shift, when the laser intensity fluctuates, the difference frequency will fluctuate 

too. To cancel the AC stark shift, we use Raman-Ramsey fringes and co-propagating 

signal. Raman-Ramsey fringes can be used to set the microwave source frequency right 
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so that the difference frequency of those two Raman beams is exactly the difference 

frequency of the two energy levels involved. After that, by adjusting the relative power of 

those two Raman beams, we will find a power ratio so that when we double the power of 

both beams, the peak position of the co-propagating Raman signal stays the same. Then 

we know that the AC stark shift is cancelled. 

Next, we have to make sure that all three counter propagating Raman beams are 

aligned properly. After the rough alignment, we can use a big piece of glass with optical 

quality to make all three counter-propagating Raman beams parallel to each other. The 

glass has to be big enough to cover two beams at least. We mount the glass and insert it 

in front of two Raman beams. We adjust the glass tilting so that one of the Raman beams 

is reflected back to its incoming path and then we adjust the mirrors for the second 

Raman beam to make sure that it also reflects back to its incoming path. This way those 

two Raman beams are parallel to each other. We could use one of these two as standard 

and align the rest of the Raman beams the same way. To check that all Raman beams are 

not only parallel to each other but also overlapped well, we use counter-propagating 

Raman signals from each pair of the counter-propagating Raman beams. If the peaks of 

those counter-propagating Raman signals are lined up, we are ready to do the experiment. 

3.1.12 Raman beam polarization, intensity 

The polarization of the Raman beams plays an important role in this experiment. 

We found out that only cross-linear polarized Raman beams give us significant signal in 

both co-propagating and counter-propagating cases. In the co-propagating case, σ + - σ + 
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and σ - - σ – pairs, in counter-propagating case, σ + - σ -, and σ - - σ + pairs produce 

significant signals.  

The beam splitters for Raman beams are not polarization insensitive, so we 

inserted a half wave plate before they interact with the atomic beam to maximize the 

signals. 

3.2 Diagnostic experiments 

3.2.1 Resonant Raman transition without state preparation 

Raman dip 

This is the experiment performed to check our injection locking of the diode laser. 

The master laser, Ti:Sapphire laser is locked to F=3 to F’=3 and the diode laser output 

has the frequency F=2 to F’=3. Both legs of the Raman beams are on resonance. Optical 

pumping (without magnetic sublevel optical pumping) put atoms in state F=2 and we 

detect atoms at state F=3. When we scan the EOM driving RF frequency and the 

difference detuning is not zero, Raman interaction would move atoms from state F=2 to 

state F=3 so we expect to see a peak. When the difference detuning is exactly zero, we 

expect to see a Raman dip, as described in section 2.2, since a dark state is formed when 

exactly on resonance. See Figure 3.26 for the Raman dip. 
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Ramsey fringes 

The Raman-Ramsey experiment is a very important diagnostic experiment in our 

case. We needed to go back to it again and again. It is used to test whether our microwave 

source is stable enough for Raman beams. It also helps to get rid of the AC stark shift. 
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Figure 3.26 On-resonance Raman dip 
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Figure 3.27 shows the on-resonance co-propagating Raman Ramsey fringes3 with 

a Raman beams separation about 30 cm.  

3.2.2 Off-resonant Raman transition 

Co-propagating Raman excitation  

We use the co-propagating Raman signal to perfect our magnetic sublevel optical 

pumping. See Figure 3.9 for the effect of our magnetic sublevel optical pumping. Figure 

3.28 shows a co-propagating signal without an applied magnetic field.  

One way to find the π pulse duration is to use a co-propagating Raman signal. 

After setting the right relative intensity ratio of those two Raman beams (see next 

section), the Rabi frequency of those two Raman beams are the same, and we can 

measure the co-propagating signal strength as a function of the Rabi frequency (intensity) 

of the two Raman beams. We then can compare the measured data and the theoretical 

calculation to get the right intensity for a π pulse and get a π/2 pulse by cutting down the 

intensity by half.  

Ramsey fringes 

As mentioned above, we need to use the off-resonant Raman-Ramsey fringes to 

find the proper transition frequency and to balance the relative intensity of those two 

Raman beams to get rid of the AC stark shift. We know that Raman-Ramsey fringes are 

located very close to the center of the zero difference frequency detuning, almost no AC 

stark shift exist compared to the co-propagating Raman signal envelope22. When the 
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Raman beam intensity ratio is too much off, we can’t find the Raman-Ramsey fringes 

within the co-propagating Raman signal envelope.  

AC stark shift could be caused by unbalanced intensities; it’s also connected with 

the alignment since Doppler shift could also detune the interaction. Our goal is to adjust 

the intensity ratio and the alignment so that the Raman-Ramsey fringes occur at the peak 

of the co-propagating Raman envelope and that at the peak position the Raman difference 

detuning is really zero. In other words the frequency difference of the two Raman beams 

to be the same as the F=2 and F=3 level frequency difference.  

Figure 3.29 shows an off-resonant Ramsey fringes.  

Counter-propagating Raman excitation  

The atom interferometer experiment would be performed in a counter-propagating 

configuration.  We can use the counter-propagating Raman excitation to find the proper 

laser power and polarization and to check alignment. In the counter-propagating 

configuration, since we have to take into account the atom transverse velocity spread, the 

π pulse Raman beam intensity we measured using co-propagating Raman signal is a π 

pulse only for atoms with transverse velocity zero. To include some of the other atoms, 

we need to  power broaden the Raman transitions.  

As for the alignment and polarization check, we need to make sure that the first 

π/2 Raman beams produce the same counter-propagating Raman signal strength as that of 

the second π/2 Raman beams. We also have to make sure that the centers of the counter-

propagating Raman signals for the two π/2 Raman beams and the middle π Raman beams 

are lined up.  



 121 

Figure 3.30 shows a counter-propagating Raman signal. The width is a lot bigger 

than that of the co-propagating Raman signal due to the atom transverse velocity 

distribution.  

 

Figure 3.27 On-resonance Raman-Ramsey fringes 
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Figure 3.28 Co-propagating Raman signal without an applied magnetic field  
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Figure 3.29 Off-resonance Raman-Ramsey fringes 
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Figure 3.30 Counter-propagating Raman signal 
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3.3 Asbestos accident and the interruption of our 

experimental effort on this atomic beam machine for 

now 

 As described in Chapter one, after the asbestos accident happened, the vacuum 

system was destroyed completely and it’s impossible to continue the experimental effort 

on this atomic beam machine for now. While we tried to recover this vacuum system, we 

build a small atomic beam and shift our experiment on that atomic beam. 
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Chapter Four:  

Atom Interferometer Experiment on a New Atomic 

Beam 

 

 After the vacuum system of the big atomic beam was destroyed by the asbestos 

accident, the new compact atomic beam was built to continue the π/2- π - π/2 

interferometer experiment we already started. As we went along, we observed atomic 

interference from single counter-propagating Raman beams and we discovered a better 

way to design an atom interferometer. 

4.1 The structure of the new atomic beam 

 Figure 4.1 shows the structure of the new atomic beam. In a vacuum system, 

Rubidium atoms are emitted from an oven and form a thermal beam. Two nozzles are 

used to collimate the atomic beam. Since there is not enough length for us to do the 

aperturing as what we did for the big atomic beam machine, we use smaller nozzles to 

provide us with acceptable transverse velocity spread. By measuring the width of the 

counter-propagating Raman signal, we can estimate the atomic beam transverse velocity 

spread and therefore estimate whether the size of the nozzles is appropriate. After a few 

trials, we settled down with both the primary and the secondary nozzle diameters at about 

330 μm. The distance between two nozzles is about 112 mm.  
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Figure 4.1 Small atomic beam 

 Due to the small size, the nozzle parts have to be very hot so they wouldn't clog 

easily. During the test run, we raised the temperature higher than what we actually need 

in the real experiment and found that the parts of our apparatus can endure high 

temperature without developing leaks. Now the running temperature profile is as follows: 

Oven: 270 oC, 

Oven top: 450 oC, 

Nozzles: 560 oC. 

There is a Helmholtz coil structure positioned around the interaction region to 

provide the bias magnetic field, which is along the direction of the Raman beams; see 
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Figure 4.1 for the interaction region. A μ metal shielding for the small atomic beam is 

wrapped around the interaction region, enclosing the Helmholtz coil structure. 

4.2 The experiment and the result 

  In this experiment, we don’t need to do magnetic sublevel optical pumping. We 

only need four different laser beams: an optical pumping beam, a detection beam and two 

Raman beams. One Ti:sapphire laser is all we need.   

We set up acoustal optic modulators (AOMs) in the Ti:Sapphire laser frequency 

locking path so we can shift the Raman beam common detuning which would give us a 

bigger Rabi frequency for the Raman beam given the power constraint we have. As 

before, we use Rubidium 85 transitions. The Ti:sapphire laser is locked to the Rubidium 

85 transition 5P3/2 (F=3) to 5S1/2 (F=3) through a saturation absorption  of  a Rubidium 

vapor cell. Part of the laser beam at this frequency is used for optical pumping which 

pumps Rb atoms to their initial state 5P3/2 (F=2) from 5P3/2 (F=3). Part of the laser beam 

passes through an acousto-optic modulator (AOM) (Isomet, model 1206C) with center 

frequency 110 MHz, upshift 120 MHz, which will tune the deflected beam to transition 

5P3/2 (F=3) to 5S1/2 (F=4).  This transition is a cyclic transition. We use it as the detection 

beam. By irradiating the atoms with this detection beam, we collect the fluorescence on a 

photomultiplier tube, which is mounted on top of the detection region and its position can 

be adjusted in three dimensions. The rest of the laser beam is split into two parts by a 

50% beam splitter. One part goes through a 1.5 GHz AOM (Brimrose model GPF-1500-

300-.795), upshift and another goes through a 1.5 GHz AOM (Brimrose model GPF-

1500-300-.795), downshift. Those two 1.5 GHz AOMs are controlled by the same 
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microwave generator (Wavetek 1-4 GHz Micro Sweep model 962). Since the hyperfine 

splitting of Rubidium 85 ground states is about 3 GHz, both deflected beams after 1.5 

GHz AOMs are red detuned by 1.5 GHz, from transitions 5P3/2 (F=2) to 5S1/2 (F=3) and 

5P3/2 (F=3) to 5S1/2 (F=3), respectively.  

We used the optical pumping method to set up Raman beam apertures so the 

Raman beams are roughly perpendicular to the atomic beam. The basic procedure of the 

alignment is very similar to what we did on the big atomic beam.  

We scan the laser over transitions 5P3/2 (F=3) to 5S1/2. First we block all the 

beams except the detection beam to align and check to make sure that we have a good 

atomic beam. Then we let through and align the optical pumping beam. Since we detect 

the atom population in state 5P3/2 (F=3) and since the optical pumping beam moves atoms 

away from this state, we should see that the fluorescence signal is decreased and 

minimized when the alignment of the optical pumping beam is good as we gradually 

decrease the intensity of this beam. After this we can lock the laser to 5P3/2 (F=3) to 5S1/2 

(F=3) and let the Raman beams through. To detect the Raman signal, we scan the 

difference detuning of the Raman beams by scanning the frequency of the microwave 

generator.  

 We performed two-zone Ramsey-Raman experiment with this new atomic beam. 

We tried to use one zone co-propagating Raman to get rid of the AC stark shift by 

changing the relative power of the two frequencies of the Raman beams and adjusting the 

overlap of the two. For this step we were limited by the stiffness of the mirror mounts we 

had. However, soon we found out that for the type of the atom interferometer we are 

interested in, canceling AC stark shift is not critical anymore. We also set up Counter-
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propagating Raman beams, and tried π/2-π-π/2 by setting the middle beam twice as 

strong as each of the other two. We didn’t see any interference signal. There could be 

many factors that defeated our effort. So we decided to start with a simpler configuration 

by using one enlarged beam separating into three beams by using two vertical wires. The 

idea is that this configuration should be equivalent to the case of π/2- π- π/2 with the 

separation between Raman beams almost zero if the total intensity is equivalent to a 2 π 

Raman pulse.  The initial enlarged beam size is about 5 mm. To scan the phase of one 

part of one of the Raman beams, we used a galvo glass. The glass plate we had was too 

thick because we originally designed for separate Raman beams. So we used a piece of 

1mm thick glass. It was attached to the side of the original glass plate by a piece of 

double sided tape. The galvo is directly mounted on a magnetic base and is driven by a 

function generator  (BK Precision 5 MHz function generator). There is a loading effect.   

When we scan the phase of the last part of one of the Raman beams, we observed 

the fringes on top of the counter-propagating Raman signal. However, when we block the 

middle part of the Raman beam, the amplitude of the fringes decreased but did not 

disappear. We have yet to figure out a way to test whether the fringe is the real 

interference signal or just the intensity modulation.   

 Then another idea came along. If we can use two pieces of wires to break one set 

of counter-propagating Raman pulses to π/2- π- π/2 configuration, why not just keep the 

Raman beams as they are and use a galvo glass to scan the last ¼ of one of the Raman 

beams. This configuration also should be equivalent to π/2- π- π/2 configuration. The 

experiment layout is shown in Figure 4.2.  
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 When we get a good counter-propagating Raman signal, we can insert the galvo 

glass plate in one of the Raman beams and scan it. We then slow down the Raman 

difference-detuning scan to about 0.1 Hz. The interference fringes appear on top of the 

counter propagating Raman signal, see Figure 4.3 for this. Then we try to adjust the offset 

of the difference detuning scan and decrease this scan range to let the Raman signal sit at 

the peak position. At the same time we scan the galvo glass and carefully adjust the width 

of the Raman beam that the galvo glass cut through till we see the atomic interference. 

The galvo glass tilt angle is between 10o and 20o.  When the galvo glass is completely in 

the Raman beam or when it’s completely out of the Raman beam, we don’t observe any 

atomic interference, which is we expected. Figure 4.4 shows this. When we change the 

tilt angle of the glavo glass or when we change the scan amplitude, in both cases, the 

phase shifts covered by one scan would change. Furthermore,  we can see that the 

number of the atomic interference fringes also changes, accordingly. Figure 4.5 and 4.6 

show the effect of varying the galvo scan amplitude. We can use a Mach-Zehnder optical 

interferometer to calibrate the phase shift caused by the galvo glass scanner by insert this 

galvo glass plate in one leg of the optical interferometer and scan it. The fringe period of 

this optical interferometer is a function of the phase of the Raman beam the galvo glass 

scanned over; the same is also true with the fringe period of our atomic interferometer. 

For the same tilt angle and the same scan amplitude, the fringe period we get from the 

optical interferometer should be the same as that of the atomic interferometer.  

  Figure 4.7 shows the best results of the atomic interference fringes and the optical 

interference fringes we got for the same galvo glass tilt angle.  
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 For this type of the atomic interferometer to work, we do not need to do very 

complicated alignments since there is only one interaction area and all the components of 

the Raman beams are automatically parallel to each other. Just one set of counter-

propagating Raman beams exist. We only need to make sure that they are roughly 

perpendicular to the atomic beam and are overlapped well. We don’t have to balance the 

AC stark shift either. If we can extend this type of the atom interferometer to a larger 

area, and it will be a new approach to build atom interferometers. 

Atomic beam

OP R1

R2

D

PMT

galvo glass

 

Figure 4.2 Experimental layout 
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Figure 4.3 Atomic interference fringes on top of the counter-propagating Raman 

signal 
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Figure 4.4 No atomic interference fringes (1) when the galvo glass is completely 

in the Raman beam and (3) when the galvo glass is completely out of the Raman beam. 

(2) is the scan ramp for the galvo glass.  
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Figure 4.5 (1) Atomic interference (2) Galvo scan ramp with galvo glass tilt 

angle 20o and scan amplitude maximum 
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Figure 4.6 (1) Atomic interference (2) Galvo scan ramp with galvo glass tilt 

angle 20o and scan amplitude half maximum 
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Figure 4.7 Results of  the atomic interference fringes and the optical interference 

fringes for the same galvo glass tilt angle (1): atomic interference (2): optical 

interference 
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Chapter Five:  

Numerical Simulations and the Investigation of the 

Possibility of Designing a New Type of Large Area 

Atom Interferometer Using Single Raman Pulse 

 Motivated by the experimental result we got in last chapter, we did some 

numerical simulation to see whether it is possible to design a large area atom 

interferometer based on a single counter-propagating Raman pulse. 

5.1 The calculation method and approximations 

 In the case of the separated field Raman atom interferometer, we can always 

assume that the interaction time is much shorter than the atom free propagating time. 

Therefore in the calculation and simulation we can ignore the atom wave packet free 

propagation in the interaction region. This way the calculation of the atom light 

interaction and the atomic wave packet free propagation is separated. Obviously we 

cannot make the same approximation for the one field Raman atom interferometer.  

 To understand the problem physically and more intuitively, we can model the 

interaction and free propagation like this. Suppose that the Raman field is separated in 

many fine slices with the distance between each adjacent pair set to zero. Raman 

interaction will couple two states, |g, p, x> and  |e, p+2ħ k, x>. We assume that (p+2ħ 

k)2/2m – p2/2m<<|Ω|, then for wave packet of state g and state e, we can analyze them in 
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momentum space, the Raman interaction will couple |g, pi> and  |e, pi+2ħ k >, where pi is 

the corresponding momentum components in momentum space, see Figure 5.1.  

|g, p>

|e, p+2hk>

P1
P2

P3

P4

P1 +2hk

P2 +2hk
P3 +2hk

P4 +2hk

P
Assume 

[(p+2hk)2-p2]/2m<<|Ω|

 

Figure 5.1 Wave packets for States |g, p, x> and  |e, p+2ħ k, x> are exactly the 

same except that in momentum space, all the momentum components are shifted by 2ħ k 

for |e, p+2ħ k, x> from that of |g, p, x>. Assume (p+2ħ k)2/2m – p2/2m<<|Ω|  and 

Raman interaction couple |g, pi > and  |e, pi+2ħ k >. 
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 After each slice of Raman interaction and propagation, the part originally in state |g, p, 

x> will have some probability being in state |e, p+2ħ k, x>, and the part originally in state 

|e, p+2ħ k, x> will have some probability being in state |g, p, x>. The wave packets of 

both states will also free evolve, i.e. expand. We can combine the |g, p, x> state wave 

packets and the state |e, p+2ħ k, x> wave packets at the end of each slice of the Raman 

interaction and start over again for the next slice. See Figure 5.2 for the process. In the 

simulation, to simplify the calculation, we separate the Raman interaction part and the 

wave packet free evolution part. If the time step is fine enough, the result should be close 

to the reality.      Since the three level system of far-detuned off-resonance Raman 

interaction can be simplified to an on-resonance two level system, as described in chapter 

two, we use two level system in the following calculation. Also we use natural units. Set 

ħ=1, mass of the atom m=1, effective Rabi frequency for the two level system Ω=1, wave 

number of the light k=1. 

 Assume for the first slice that the atom starts at the ground state |g, p=0, x>, 

where p is in the direction of the light beam and is perpendicular to the atom wave free 

propagation direction. At the end of the first slice, we will see a small population of 

excited state |e, p= ħ k, x>, of course the magnitude is dependent on the interaction time.  

 

 Assume that p is small and the change of the energies of states |g, p=0, x>, and 

state |e, p= ħ k, x> due to p can be ignored. For an on-resonance two-level system, after a 

rotating wave approximation and rotating wave transformation, as described in chapter 

two, the Hamiltonian becomes 









Ω−

Ω−
=

0||
||0

2


RH .  (eq. 5.1) 
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The wave function of the system is  

|ψ > = cg |g, p=0, x> + c e |e, p= ħ k, x> = cg |g>| p=0, x> + c e |e>| p= ħ k, x>.  (eq. 5.2) 
 

HR will only have effect on the part of |g> and |e>. Applying Schrödinger equation 

>Ψ>=Ψ
∂
∂ || H
t

i ,  (eq. 5.3) 

we get  


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
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


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=

Ω
=

•

•

eg

ge
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cic

2
||

2
||

.  (eq. 5.4) 

 

If in the beginning of the slice the atom starts at ground state Cg=1 and Ce=0 and the time 

duration of the slice is dt, at the end of the slice we have  

|ψ > = cos (|Ω|dt/2)  |g>| p=0, x>+i *sin(|Ω|dt/2) |e>| p= ħ k, x>.  (eq. 5.5) 
 

If in the beginning of the slice the atom starts at excited state Cg=0 and Ce=1, at the end 

of the slice we have  

|ψ > = i*sin (|Ω|dt/2)  |g>| p=0, x>+cos (|Ω|dt/2) |e>| p= ħ k, x>.  (eq. 5.6) 
 

 States | p= 0, x> and | p= ħ k, x> will also propagate freely. Project the wave 

function in position space, we get  
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 Next, let’s derive the general formula for the wave function free time evolution. 

Let the initial wave function be ψ (x,0). We can express ψ (x,0) as 

dkekbx ikx∫
∞

∞−

=Ψ )(
2
1)0,(
π   (eq. 5.9) 

 

 

where  

dxexkb ikx∫
∞

∞−

−Ψ= )0,(
2
1)(
π   (eq. 5.10) 

 

 

If Hamiltonian 
∧

H  is not a function of time, in this case  

m
pH
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= ,  (eq. 5.11) 

 

 

we have  
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 Using this equation, if we know the initial spatial wave function, we can 

propagate it easily. The whole simulation scheme works like this. An atom starts at 

ground state |g, p=0, x> with a Gaussian profile like the one in eq. 5.7 . In the first slice, 

after the atom light interaction the wave function will have a small component in the 

excited state. That part of the spatial wave function will have an extra phase factor exp 

(ikx). Then, we free propagate the spatial wave functions corresponding to the ground 

state and the excited state. By the end of the slice, the |g> state wave packet center 

position won’t change but the wave packet will spread out a little. The little wave packet 

in state |e> will behave slightly differently. Since it has an extra phase factor exp(ikx), the 

center position of that wave packet will move to the right at the speed of  ħk/m and the 

wave packet will also spread a little.  At the end of the next slice, the initial ground state 

part of the wave function would have a small component of the excited state with an extra 

phase factor exp (ikx) for that part of the wave function. The large part of the wave 
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function will stay in the ground state. The initial excited state part of the wave function 

will have a small component of the ground state with an extra phase factor exp (-ikx) for 

that part of the wave function. The large part of the wave function will stay in the excited 

state. Then we group the two parts of the ground state wave functions and let it propagate 

freely. The same will be done for the two parts of the excited state wave function. The 

process will repeat itself as we go along all the slices.  
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Figure 5.2 The exaggerated version of the scheme of the simulation process. The 

solid line represents the ground state and the dotted line represents the excited state.  
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 To detect the atomic interference, we need to scan the phase of part of light beam. 

Describe this in physics, which is the Rabi frequency  that will have a phase factor. 

Suppose we change the phase by δ, Hamiltonian will become 










Ω−
Ω−

=
− 0||

||0
2 δ

δ

i

i

R e
e

H 

.  (eq. 5.15) 

 

Apply rotating wave transformation, as what we did before in section 2.1, by applying a 

transformation matrix Q where  
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and  

>Ψ=>Ψ || QR .  (eq. 5.18) 
 

In matrix form, we have  
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5.2 Simulation results  

Figure 5.3 shows the trajectory of the ground state and the excited state, the total 

interaction time is 4π/5. Figure 5.4 shows the population of the ground state and the 

excited state at each time step, corresponding to the trajectory in Figure 5.3. 
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Figure 5.3 The initial trajectory of the center of the ground state and excited state 

wave packet. The total interaction time is 4π/5. 
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Figure 5.4 The population of the ground state and the excited state at each time 

step. 

Figure 5.5 shows the population of excited state at the detecting point of Figure 

5.3 as a function of the phase scanned over the part indicated in Figure 5.3. 
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Figure 5.5 The population of excited state we can detect at the end of the 

trajectory as a function of the phase scanned over the last part of the trajectory, as 

indicated in Figure 5.3 

Figure 5.6-5.10 show the wave packets of the ground state and the excited state 

evolve at each time step along the initial trajectory.  
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Figure 5.6 The wave packets of the ground state and the excited state of the first 

three time steps.  
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Figure 5.7 The wave packets of the ground state and the excited state of the 

second three time steps. 
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Figure 5.8 The wave packets of the ground state and the excited state of the third 

three time steps. 
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Figure 5.9 The wave packets of the ground state and the excited state of the 

fourth three time steps. 
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Figure 5.10 The wave packets of the ground state and the excited state of the 

fourth three time steps. 
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Figure 5.11 Without phase manipulation, the trajectory of the excited state and 

the ground state will cross each other again and again as we apply longer and longer 

Raman pulse.  
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Figure 5.12  Manipulating the trajectory by applying π shift. 

We want to investigate whether we can enlarge the enclosed area of the 

interferometer. Figure 5.11 shows the trajectory when we make the Raman pulse longer. 

Without any manipulation, we see that the trajectory of the ground state and the excited 

state will cross each other. Figure 5.12 shows that by applying π shift to part of the 

Raman beam, we can effectively change the trajectory. Figure 5.13 shows why the phase 

shift of the Raman beam would bend the trajectory.  
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Figure 5.13 Along the trajectory, the next center positions of the wave packets for 

state |e> and |g> are determined by the interference of wave packets 1 and 3, 2 and 4. 

Phase shift plays an important role in determine where the constructive interference will 

be.  

Figure 5.14 shows the trajectory of the ground state and the excited state with a 

bigger enclosed area; the total interaction time is 2π. There are a few π shifts applied in 

the earlier part of the Raman beam.  
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Figure 5.14 The initial trajectory of the center of the ground state and excited 

state wave packet. The total interaction time is 2π. At the time steps with black arrows, a 

π phase shift is applied to change the trajectory so that the interferometer can enclose 

bigger area. 
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Figure 5.15 The population of the ground state and the excited state at each time 

step.  
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Figure 5.16 The population of excited state we can detect at the end of the 

trajectory as a function of the phase scanned over the last part of the trajectory, as 

indicated in Figure 5.14 
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Figure 5.17 The trajectory of the center position of the ground state and the 

excited state of the biggest population point in Figure 5.16 
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Figure 5.18 The corresponding population for the trajectory in Figure 5.17 
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Figure 5.19 The trajectory of the center position of the ground state and the 

excited state of the smallest population point in Figure 5.16 
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Figure 5.20 The corresponding population for the trajectory in Figure 5.19 
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 Figure 5.15 shows the population of the ground state and excited state at each 

time step. Figure 5.16 shows the population of excited state we can detect at the end of 

the trajectory as a function of the phase scanned over the last part of the trajectory, as 

indicated in Figure 5.14. The contrast of the atomic interference fringe in this case is 

about 30%. Figure 5.17 shows the trajectory of the center position of the ground state and 

the excited state of the biggest population point in Figure 5.16, while Figure 5.19 shows 

the smallest point. Figure 5.18 shows the corresponding population for the trajectory in 

Figure 5.17, while Figure 5.20 shows the corresponding population for the trajectory in 

Figure 5.19. 

 Figure 5.21 shows another trajectory with the same interaction time but initially 

has one more π phase shift point. Figure 5.22 shows the corresponding population at each 

time step. Figure 5.23 shows the population of the excited state at the end of the 

trajectory as a function of the phase scanned over the part indicated in Figure 5.21.  

 Comparing to the trajectory in Figure 5.14 and in Figure 5.21, we see that 

applying a π phase shift to the light beam would definitely change the trajectory of the 

center of the ground state and the excited state. If we let the atom interact with the light 

without changing any light phase, the trajectory of the ground state and the excited state 

will eventually form an enclosed loop. However, if we can apply a π phase shift to the 

light beam at some points, we can make the enclosed loop bigger and bigger.  
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Figure 5.21 Another trajectory with the same interaction time but initially have 

one more π phase shift point, compare to Figure 5.3 
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Figure 5.22 The population of the ground state and the excited state of the 

trajectory shown in Figure 5.10 at each time step.  
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Figure 5.23 The population of the excited state at the end of the trajectory as a 

function of the phase scanned over the part indicated in Figure 5.10. 
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Chapter Six:  

Conclusion and Future Work 

 
 
 The goal of this project, to investigate the possibility of building a large angle, 

large area atom interferometer has come a long way. We started with a Bichromatic 

standing wave method and discovered the scheme’s limitations, the most serious one 

being that we were limited by the available laser power to completely carry through that 

method. Subsequently we moved on with our work on the multiple Raman pulses 

scheme. While we were struggling with the technical difficulties of this experiment, 

another research group succeeded with the π/2- π- π/2 experiment.  We chose to extend 

this idea further and proceeded to implement the multiple π pulses scheme.  

Unfortunately, after considerable effort was put into this project our vacuum system was 

completely destroyed by an accident out of our control.  Nevertheless, since further work 

along this line is worthwhile because this scheme can be extended to two-dimensional 

atom interferometers or even further, to generate arbitrary pattern nanolithography, 

someone else in our group is continuing this work and is studying the theoretical aspects 

of arbitrary pattern generation using this type of atom interferometer. 

 To resume the experimental investigation of the work that we had already carried 

out and to apply our knowledge gained from the previous systems, we built a completely 

new small-scale atomic beam machine. To our great relief we saw the atomic interference 

on this small atomic beam machine. 
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 Looking at the experimental results that we obtained in chapter four and the 

simulation results in chapter five, it seems reasonable to conclude that there is a very 

good possibility to design a successful large angle and large area atom interferometer 

based on the novel scheme of using single Raman pulse. The experimental 

implementation of this new scheme should be a lot easier than the original one which was 

based on multiple Raman pulses since in the new scheme only one Raman pulse is 

needed which simplifies the alignment considerably.  To enlarge the enclosed area, one 

only needs to apply at predetermined positions π phase shifts to one of the Raman beams.  

This could be done using phase plates with adjustable positions. 

It definitely seems worthwhile to continue the investigation of this project to gain a more 

thorough theoretical and experimental understanding of its aspects.   
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